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The Hedgehog signalling pathway in bone formation

Jing Yang1,2, Philipp Andre2, Ling Ye1 and Ying-Zi Yang2,3

The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical

function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh

signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and

diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb

buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the

perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate

cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis,

and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone

diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh

signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses

and therapeutics.
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HEDGEHOG SIGNAL TRANSDUCTION

The Hedgehog (Hh) signalling pathway is evolutionarily conserved

and plays critical roles in development and homeostasis. Disruption of

Hh signalling leads to tumour formation and other diseases.1–5 The

Hh gene was first identified in Drosophila melanogaster and was named

according to the phenotypes of the Drosophila mutant embryo, which

displayed disorganised bristles that resembled Hh spines.6

Hh protein maturation

The Hh protein undergoes several steps of processing, including

proteolytic cleavage, glycosylation and lipid modification. Newly

synthesised Hh protein is first translocated to the endoplasmic

reticulum (ER) and is autoproteolytically cleaved into C-terminal

Hh (Hh-C) and N-terminal Hh (Hh-N). During this process, Hh-N

is dually modified by the addition of palmitate and cholesterol to

the N- and C-termini, respectively.7–8 Although Hh-C is critical for

catalysing the autoproteolytic cleavage, it is rapidly degraded there-

after in the proteasome.9 The dually lipid-modified Hh-N is

secreted and associates with the lipid bilayer of the plasma mem-

brane. With the assistance of Dispatched (Disp), a transmembrane

transporter-like protein, Hh protein is released from Hh-producing

cells and exerts its effect up to a distance of 300 mm in the verte-

brate limb bud.10–12

Hh receptor complex and regulation of the Hh pathway

in Drosophila

Patched (Ptc) is a transmembrane protein and was the first identified

Hh-binding protein that inhibits Hh signalling in the absence of Hh

protein binding.13–15 Ptc suppresses the activity of the seven trans-

membrane protein Smoothened (Smo) by triggering its degradation

and/or intracellular vesicle trafficking16–18 (Figure 1a). The intracel-

lular Hh signalling components include an important complex com-

posed of Costal 2 (Cos2), Fused (Fu), Suppressor of Fused (SuFu) and

Cubitus interruptus (Ci). When the Hh ligand binds to Ptc, the inhibi-

tion of Smo by Ptc is relieved.19–21 Smo is then stabilised on the plasma

membrane and activated. Phosphorylation of Smo by casein kinase 1

(CK1), casein kinase 2 (CK2), G protein-coupled receptor (Gpcr)

Kinase 2 (Gprk2) and protein kinase A (PKA) plays a critical role in

Smo activation. The cytoplasmic tail of Smo can recruit Cos2, a kine-

sin-like protein. Cos2 is critical because it associates with Ci, the tran-

scriptional effector of Hh signalling; regulates Ci’s processing; and

anchors Ci in the cytoplasm.22–24 In the absence of Hh, Ci is phos-

phorylated by PKA, CK1 and glycogen synthase kinase-3b (Gsk3b) in

the Cos2 complex, partially degraded by a Slimb (Slmb)-regulated

ubiquitination pathway and the proteasome to be converted into its

repressor form CiR (Figure 1a). However, in the presence of Hh

ligand, Cos2 is recruited to Smo, released from Ci and phosphorylated

by Fu. In this case, Ci is activated and not cleaved. The full-length Ci
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then translocates into the nucleus and activates the transcription of Hh

target genes25–26 (Figure 1b).

Hh pathway in mammals

In mammals, the Hh signalling pathway is mostly conserved. However,

this pathway requires more components and, most importantly, the

mammalian Hh signal transduction requires a distinct cell organelle,

the cilium.27–29 Approximately 800 cilium proteins have been found

in mammals.30–31 The relationship between cilium and Hh sig-

nalling is best understood among cilium-transduced signalling

pathways.29,32 The Hh homologous proteins in mammals are

Sonic hedgehog (Shh), Indian hedgehog (Ihh) and Desert hedge-

hog (Dhh).33–35 In the absence of Hh ligands, protein Ptc homo-

logues 1 and 2 (Ptch1 and Ptch2), the mammalian homologues of

Ptc, are enriched on and around cilium.36 Smo, the mammalian

counterpart of Drosophila Smo, is kept outside of the cilium and

inactive (Figure 1c). When Hh ligands bind Ptch1, Ptch1 exits the

cilium and Smo inhibition is relieved and accumulates in the

primary cilium.36–38 In addition to Ptch1, in the presence of

Hh protein, Ptch2 can form a receptor complex by oncogenes

(CDO), brother and CDO (BOC) and growth arrest specific

(GAS) on the cell surface, which is critical in Hh signal trans-

Fu

Hh OFF Hh ON

Ptc Ptc

Smo

cytomembrane

Hh

nucleus

No transcription
of target gene

No transcription
of target gene

Transcription
of target gene

Transcription
of target gene

Smo

SuFu

Slmb

Drosophila model

nucleus nucleus

Hh

Ptch

Smo

Smo

Hh OFF Hh ONPtch

Ptch IFT IFT

a b

c d

nucleus

cytomembrane

cytomembrane cytomembrane

Drosophila model

Mammalian modelMammalian model

CiR

Cos2
Kinases

Kinases

GliR

Kinases

SuFu β-Trcp

CiA

Fu
Cos2

CiA

GliA

GliA

SuFu

GliA
Kif7
SuFu

Kif7 GliR
Kif7 Kinases

β-Trcp

Slmb

SuFu

Figure 1 The Hedgehog signalling pathway in Drosophila and vertebrates. (a) In Drosophila, Ptc inhibits Smo activity by suppressing the membrane stabilisation of

Smo in the absence of Hh ligand. The Cos2, Ci, Fu and Sufu complex recruits kinases, such as PKA, CK1, Gsk3b, and promotes the cleavage of full-length Ci to

become its repressor form (CiR) in a Slmb-dependent manner. Hh signalling transduction is blocked. (b) In Drosophila, Smo inhibition by Ptc is removed in the

presence of Hh ligand. Smo is relocated to the plasma membrane and activated by several kinases, such as CK1, CK2, Gprk2 and PKA. The Fu-Cos2 complex is

recruited to Smo and releases Ci. The released Ci is not cleaved and remains in its active form (CiA). CiA translocates into the nucleus and activates Hh downstream

gene expression. (c) In vertebrates, Ptch1 is located in the cilium, whereas Smo is kept outside of cilium in the absence of Hh ligands. Gli is phosphorylated by kinases,

such as PKA, CK1 and Gsk3b, which promote the processing of the repressor form (GliR) in a b-Trcp-dependent manner. Hh signalling is blocked. (d) In vertebrates,

when Hh ligands bind to Ptch1, Smo inhibition is relieved. Ptch1 exits from the cilium, whereas Smo is translocated to cilium. The repressor form of the Gli (GliR), Sufu

and Kif7 complex travels from the base of the cilium to the top via intraflagellar transport (IFT). Kif7 blocks the function of Sufu at the top of the cilium. Gli is not

processed and is maintained its active form (GliA). Activated Gli travels from the top of the cilium to the cytoplasm via IFT and translocates to the nucleus to transcript

target genes thereby activating Hh signalling.
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duction and gradient establishment.39 Suppressor of fused homo-

logue (Sufu) and kinesin family member 7 (Kif7), the mammalian

homologues of Drosophila SuFu and Cos2,40 are both located in

the primary cilium and act as dynamic regulators of Hh signal

transduction.41–46 Kif7 plays a dual role, as it does in Drosophila.

Glioma-associated oncogene family members (Gli1/2/3) are the

mammalian homologues of Ci. In the absence of Hh protein,

Kif7 and PKA convert Gli3, and to a lesser extent Gli2, to their

repressor forms via proteolytic processing at the base of the

cilium and Hh signal transduction is blocked43–44 (Figure 1c).

In the presence of Hh ligands, Smo is relocated to the cilium

and is phosphorylated, which abolishes PKA function and

allows for the movement of Kif7 and the Gli2/3-SuFu complex

from the base of the cilium to the top.47–48 In this process, Kif7

plays a role in facilitating protein trafficking and disasso-

ciating binding between Gli and Sufu,48–49 which leads to Gli2/3

activation as active forms that relocate to the nucleus to activate

the expression of Hh target genes, such as Ptch1, Gli1 and

Hhip1.50–51 Ptch1 itself is a transcriptional target of Hh signalling

(Figure 1d); therefore, it forms a negative feedback system in

Hh signalling.40 Interestingly, Stk36, the mammalian homologue

of Fused, becomes a component that is required in ciliogenesis

rather than a key regulator of Hh signalling in Drosophila.52

In some situations, Hh signalling is not transduced through

Gli, which is referred to as non-canonical Hh signalling.39,53–54

However, more studies are necessary to understand how the

cilium controls specific roles of each component in Hh signalling

and trafficking in the cilium.

HH SIGNALLING AND BONE DEVELOPMENT

There are two processes of bone development in vertebrates: intra-

membranous ossification in most craniofacial bones and endochon-

dral ossification in other parts of the skeletal system. During

endochondral ossification, mesenchymal progenitor cells condense

and differentiate into chondrocytes first. These chondrocytes go

through a tightly regulated developmental programme of prolifera-

tion, prehypertrophy, hypertrophy and apoptosis and are eventually

replaced by osteoblasts in the ossification centre.55 Perichondral cells,

the cell sheath surrounding chondrocytes, differentiate into osteo-

blasts and migrate to the ossification centre together with blood vessels

to form the trabecular bones. In contrast, during intramembranous

ossification, condensed mesenchymal progenitor cells differentiate

into osteoblasts and form bone directly.

In general, Shh acts at early stages of development to regulate pat-

terning and growth.56 Ihh acts later in the process of endochondral

bone formation in limb development.57

Hh and limb patterning

During early limb development, Shh is expressed in the posterior

margin of the limb bud called the zone of polarising activity

(ZPA).58 The limb bud is the primordium of the future limb. Shh acts

as an important morphogen that patterns the anteroposterior axis of

the future limb.59 Ectopic Shh expression in the anterior limb bud

leads to mirror image digit duplication.60 Gli3 is expressed in an

anterior to posterior gradient61 and can be downregulated by

Hand2, which is expressed in the posterior region, where Shh signal-

ling is high.61 Hh mutations can lead to either abnormal digit number

or changes in digit identity.62–64 Towers et al. recently reported that

Shh expression in the chick limb bud is regulated by an intrinsic cell

cycle clock.65 According to that model, the periodic expression of Shh

regulated by cell cycle progression can be reset, whereas anterior-pos-

terior position cannot be changed.65

Hh and endochondral ossification

Ihh is expressed in the prehypertrophic chondrocytes adjacent to the

proliferation zone. Parathyroid hormone-related peptide (PTHrP),

which resembles parathyroid hormone (PTH), is expressed by peri-

articular cells during endochondral ossification.66 Ihh and PThrP

form a feedback loop to regulate growth plate and long bone develop-

ment.18,67 Ihh stimulates PTHrP expression in periarticular chondro-

cytes.57,68–69 PTHrP diffuses into the growth plate region to promote

the proliferation of chondrocytes. Chondrocytes exit the cell cycle and

undergo hypertrophy when PTHrP expression drops below a critical

level.70 In the absence of Ihh, the expression of PTHrP is reduced,67

leading to an accelerated hypertrophy of chondrocytes.69,71–72 Loss of

endochondral ossification due to abolished osteoblast differentiation

is also observed in the absence of Ihh signalling.67,73 Bone morphoge-

netic proteins (BMPs), fibroblastic growth factors (FGFs) and mecha-

nical loading may have effects on this feedback system.57

Jemtland et al. demonstrated that Ihh is also expressed in osteoblasts

postnatally in rats and mice.74–75 Gli2 and Gli3 are essential for mouse

skeletal development, whereas Gli1 is not critical in this process.2,76–77

Gli1 acts synergistically with Gli2 and Gli3 in osteogenesis.78

Removing Gli3 rescues the Ihh null mice phenotype in chondrocyte

hypertrophy,58,79–80 whereas removing Gli3 and activating Gli2 at

the same time restore Runx 2 expression in the absence of Ihh.80–81

Therefore, the function of Ihh is mainly to suppress the Gli3 repressor

function in regulating chondrocyte hypertrophy during cartilage

development, whereas osteoblast differentiation requires Hh signal-

ling to activate Gli2 activator activity. Our lab has shown that Wnt/

b-catenin signalling is required downstream of Hh signalling in regu-

lating osteoblast differentiation during endochondral bone develop-

ment by establishing double mutant mice.82 In this model, Hh

signalling is activated and Wnt/b-catenin is inactivated by generating

a chondrocyte-specific deletion of Ptch1 and b-catenin in mouse. By

examining the expression of the Ihh signalling target genes Hip and Gli

and the Ihh downstream gene Pthrp, strong activation was found in

Ptch1 single mutant and Ptch1, b-catenin double mutant mice. This

study demonstrates that b-catenin is not required in Hh signalling.

Bone formation was blocked in b-catenin single mutants and Ptch1,

b-catenin double mutant mice, which indicates that Wnt/b-catenin is

required for bone formation and acts downstream of Hh signal-

ling.64,82 Recent studies have also demonstrated that Ihh induces col-

lagen type X (Col10a1) expression through the direct regulation of the

Col10 a1 promoter via Gli1 or Gli2 or indirect interaction with the

Runx2/smad pathway.83 The Bmp pathway also interacts with the Hh

pathway during endochondral ossification. It has been reported that

BMP signalling acts downstream of the Hh pathway and regulates

osteoblast cell differentiation from perichondrial cells.84

Hh and intramembranous ossification

In intramembranous or dermal bone formation, Hh signalling is also

required. Ihh2/2 mice are observed to have smaller calvaria with

reduced expanse, thickness and mineralization and widened

sutures.67,85–86 Lenton et al. further studied the mechanism underlying

this phenotype. They found that Ihh, which is expressed at the osteo-

genic edge of growing cranial bones, promotes bone formation by

regulating osteogenic differentiation rather than proliferation. Loss

of Ihh leads to a reduction of BMP2/4, suggesting that BMP2/4 is

downstream of Ihh in the intramembrane ossification process.86
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Rice et al. and Jenkins et al. found that deletion of Gli3 or RAB23,

the repressors of Hh signalling, results in an increased ossification

of the calvarial bone, causing craniosynostosis.87–88 In zebrafish,

Huycke et al. demonstrated that in the craniofacial bone opercle

(OP), a dermal bone model, Hh signalling mediates early morphoge-

nesis in intramembranous bone formation and that Ihh is expressed

in active osteoblasts along the growing OP in the second phase of

morphogenesis.89 In addition, Shh expression is found in cranial

bones.90 Taken together, these findings show that Hh serves as a posi-

tive regulator in intramembranous ossification.

Hh and joint formation

During synovial joint formation, ectopic Hh signalling in the cartilage

leads to joint fusion. Overexpression of Shh in the cartilage caused

joint fusion.91 Mak et al. further demonstrated that Ihh and Wnt

signalling interact with each other in regulating synovial joint forma-

tion in developing cartilage by upregulating Ihh signalling and inac-

tivating Wnt signalling in a mouse model simultaneously.82,91–92 Ihh

in the joint must be kept at a low level to prevent joint fusion.

HH SIGNALLING AND BONE HOMEOSTASIS

Bone remodelling is a lifelong process that regulates bone mass and

quality. During this process, osteoblasts of mesenchymal stem cell

origin are responsible for bone formation, whereas osteoclasts derived

from monocytes are responsible for bone resorption. These two cell

types maintain the balance of bone formation and resorption during

bone homeostasis through a coupling and feedback mechanism.

Osteoblasts secret the receptor activator of NFkB ligand (RANKL)

and Osteoprotegerin (OPG). The former binds to the receptor acti-

vator of NFkB (RANK) on monocytes to stimulate osteoclast diffe-

rentiation in the presence of monocyte colony stimulating factor

(M-CSF). The latter is a decoy receptor of Rankl and blocks osteoclast

induction by competing with Rankl to bind Rank.

Ihh is expressed in growth plate chondrocytes in postnatal humans

and rodents as well as osteoblasts in postnatal human and mice.68,75,93

The growth plate is composed of chondrocytes undergoing constant

mitosis at the end of each long bone and elongates the long bones by

pushing the old chondrocytes into the middle shaft. The chondrocytes

in growth plates exhibit increased apoptosis under the control of

oestrogen levels in puberty.94 Increased bone mass is observed in

Ptch1-deficient mice and patients. An in vitro study showed that

Ptch1-deficient osteoblast precursor cells differentiate into osteoblasts

at an accelerated rate as a result of an enhanced response to runt-

related transcription factor 2 (Runx2) and reducing the generation

of Gli3 repressor.95 Consistent with this result, Gli1-haploinsufficient

mice exhibit reduced bone mass with impaired osteoblast differenti-

ation and increased osteoclastogenesis.96 Furthermore, Kingston et al.

found that Hh signalling plays an important role in mature osteo-

blasts. Activated Hh signalling in mature osteoblasts in adult mice

leads to fragile long bones with significantly reduced bone density.

The authors demonstrated that the reduced bone mass is due to

enhanced bone resorption by osteoclasts. They further showed, at

the cellular and molecular levels that increased Hh signalling in mature

osteoblasts promoted RANKL expression by upregulating PTHrP

expression. PTHrP then acts through PKA and its target transcription

factor CREB to regulate Rankl expression. Thus, Hh signalling indi-

rectly induces osteoclast maturation and promotes bone resorption.97

Another in vitro study showed that Shh upregulates Osx expression in

osteoblast cell lines,98 increases osteoblast production and indirectly

upregulates osteoclast activity, resulting in more bone resorption and

less bone strength.97,99 Furthermore, Ihh and Ptch1 are upregulated

during the initial stage of fracture repair100–102 and Shh is activated in

osteoblasts at the remodelling site of fractures to regulate osteoblast

proliferation, differentiation and osteoclast formation as well as vas-

cularization.103–105 Tissue engineering experiments using implanted

Ihh/MSCs/scaffold complexes showed increased bone repair ability.106

The latest study by Benjamin’s group showed that Gli11 cells are

located in the perivascular region and act as mesenchymal stem cells

to contribute to organ fibrosis, especially after kidney, lung, liver and

heart injury.107 Zhao et al. demonstrated that Gli11 cells in mouse

incisors expressed MSCs surface markers and contributed to dentin

tubules after tooth injury.108 However, whether stem cells mediate the

effects of Hh signalling in bone repair remains unknown. Taken

together, these findings shown that the Hh signalling pathway plays

a critical role in bone homeostasis.

HH SIGNALLING AND BONE DISEASE

Hh signalling is a key factor in regulating bone development, home-

ostasis and repair. Abnormalities of the Hh pathway result in various

bone diseases. Gao et al. showed that mutations in Ihh resulting

human brachydactyly type A1 (BDA1), which is characterised by shor-

tened or missing middle phalanges.109–110 One of the mutations was

knocked into the mouse Ihh gene to establish the DBA1 mouse model.

It was found that a BDA1 mutation (E95K) affects the range and

capacity of Ihh signalling via its interaction with Hh co-receptors, such

as Ptch1 and Hip1.111 A GLI3 mutation is reported to cause Grieg

cephalopolysyndactyly, Pallister–Hall syndrome or postaxial polydac-

tyly type 3, which are characterised by various bone anomalies, such as

syndactyly, polydactyly, abnormality of limbs or skull or hip disloca-

tions.112–114 VACTERL Syndrome, which involves vertebral defects

and limb abnormalities, is also related to Gli2 or Gli3 mutations.115

Shh mutations are observed in patients with Smith–Lemli–Opitz syn-

drome (SLOS), which is characterised by syndactyly and polydactyly

in bone abnormalities116 PTCH1 mutations cause Gorlin syndrome,

which is also known as nevoid basal cell carcinoma syndrome, in

which bone abnormalities include polydactyly, rib anomalies, ectopic

ossification, spina bifida and others.117–119 Genome-wide association

studies (GWAS) have shown that Hh signalling is an important regular

of human height.120 GWAS have also revealed Shh as an important

regulating gene for polydactyly.121 Jean et al. found that Hh signalling

is upregulated in patients with progressive osseous heteroplasia

(POH).92 POH was previously found to be caused by a null mutation

of GNAS, which encodes Gas.
122–125 Gas transduces signals from G

protein-coupled receptors (GPCRs). The main symptom of POH is

progressive ankylosis and growth retardation caused by ectopic ossi-

fication from mesenchymal progenitor cells.122–123 In Prrx-1-cre,

Gnasfl/2, Prrx-1-cre and Gnasfl/fl mice, Jean et al. studied the under-

lying mechanism of POH. The authors demonstrated that Hh signal-

ling activation is sufficient and necessary to cause heterotopic

ossification and that Gas inhibits Hh signalling through cAMP and

PKA.92 In normal soft tissues, Hh signalling must be rigorously sup-

pressed by Gas to prevent bone formation. Xuelian He et al. also

indicated that Gas inhibits Hh signalling to prevent medulloblas-

toma,126 which shows that understanding the mechanisms underlying

bone diseases has a broad impact in other fields such as brain tumour

formation. Tiet and Alman identified that disruption of the Ihh-

PTHrP feedback loop and upregulating Hh signalling results in car-

tilaginous neoplasms such as enchondromas and osteochondromas

during childhood.127 In addition, Hh signalling has been reported

to play a role in promoting osteoblast differentiation128–132 and
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proliferation89 and to inhibit adipocyte differentiation,133 which

implies that Hh signalling can regulate bone density and might

become a target for the treatment of patients with osteoporosis.

Given the multiple important roles of Hh signalling in bone develop-

ment and homeostasis, it is not surprising that disruption of Hh

signalling causes many bone diseases.

SUMMARY

The Hh signalling pathway is critical for embryonic bone develo-

pment as well as bone remodelling throughout postnatal life.

Disruption of Hh signalling causes severe bone diseases. Enhancing

Hh signalling in bone fracture patients may improve the bone repair

process. Applying Hh inhibitors may have a promising effect in treat-

ing POH. In addition, due to the genetic relationship between Hh and

Wnt/b-catenin signalling, maintaining the appropriate level of Hh and

Wnt/b-catenin signalling is critical in bone formation. Extreme

expression of Hh and Wnt/b-catenin signalling results in either insuf-

ficient bone formation in skeleton-like osteoporosis or ectopic ossi-

fication in soft tissues. Furthermore, given that Hh is downregulated

in postnatal bones,134 it may be associated with age-related bone dis-

eases. Therefore, a better understanding of the functional mechanisms

of Hh signalling in bone might have an important clinical impact.
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