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Abstract
This study investigated the effects of the pharmacological manipulation of noradrenergic activities on dopaminergic pheno-

types in aged rats. Results showed that the administration of L-threo-3,4-dihydroxyphenylserine (L-DOPS) for 21 days signifi-

cantly increased the expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT) in the striatum and substantia

nigra (SN) of 23-month-old rats. Furthermore, this treatment significantly increased norepinephrine/DA concentrations in the

striatum and caused a deficit of sensorimotor gating as measured by prepulse inhibition (PPI). Next, old rats were injected

with the α2-adrenoceptor antagonist 2-methoxy idazoxan or β2-adrenoceptor agonist salmeterol for 21 days. Both drugs

produced similar changes of TH and DAT in the striatum and SN. Moreover, treatments with L-DOPS, 2-methoxy idazoxan,

or salmeterol significantly increased the protein levels of phosphorylated Akt in rat striatum and SN. However, although a

combination of 2-methoxy idazoxan and salmeterol resulted in a deficit of PPI in these rats, the administration of 2-methoxy

idazoxan alone showed an opposite behavioral change. The in vitro experiments revealed that treatments with norepinephrine

markedly increased mRNAs and proteins of ATF2 and CBP/p300 and reduced mRNA and proteins of HDAC2 and HDAC5 in

MN9D cells. A ChIP assay showed that norepinephrine significantly increased CBP/p300 binding or reduced HDAC2 and

HDAC5 binding on the TH promoter. The present results indicate that facilitating noradrenergic activity in the brain can

improve the functions of dopaminergic neurons in aged animals. While this improvement may have biochemically therapeutic

indication for the status involving the degeneration of dopaminergic neurons, it may not definitely include behavioral improve-

ments, as indicated by using 2-methoxy idazoxan only.
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Abbreviation
ARs: adrenoceptors; BDNF: brain-derived neurotrophic factor;
CBP/p300: cAMP-responsive element (CRE)-binding protein-
binding protein/p300; ChIP: chromatin immunoprecipitation
assay; DA: dopamine; DAT: dopamine transporter; DBH: dop-
amine β-hydroxylase; ECL: enhanced chemiluminescence;
FBS: fetal bovine serum; FC: frontal cortex; HATs: histone
acetyl transferases; HDAC2: histone deacetylases 2; HDAC5:
histone deacetylases 5; HPLC: high-performance liquid chro-
matography; HP: hippocampus; i.p.: intraperitoneal injection;
LC: locus coeruleus; L-DOPS: L-threo-3,4-dihydroxyphenyl
serine; NE: norepinephrine; p-Akt: phospho-RAC-alpha
serine kinases; PBS: phosphate-buffer saline; PD:
Parkinson’s disease; PPI: prepulse inhibition; SDS: sodium

lauryl sulfate; SN: substantia nigra; TH: tyrosine hydroxylase;
VTA: ventral tegmental area.
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Summary Statement
The present study employs pharmacological manipulations to
enhance noradrenergic activities in aged rats to observe their
effects on dopaminergic phenotypes. The results demon-
strated that these treatments significantly increased the expres-
sion of these phenotypes, possibly through an epigenetic
mechanism.

Introduction
In the brain, the noradrenergic and dopaminergic cell bodies
are mainly located in the locus coeruleus (LC) and substantia
nigra (SN)/ventral tegmental area, respectively. These consti-
tute the principal source of the noradrenergic and dopaminer-
gic neuronal projection in the brain. It has been reported that
aging causes a structural and functional decline in both central
noradrenergic and dopaminergic systems. It is logical that
degeneration of one would affect the other, because both neu-
rotransmitters are on the same biosynthesis pathway. For
example, human postmortem analyses showed an age-related
reduction of LC neurons (Chan-Palay & Asan, 1989; Lohr &
Jeste, 1988; Manaye et al., 1995; Tomonaga, 1983;
Vijayashankar & Brody, 1979). Animal studies also showed
that age-associated LC neuronal loss was observed in mice
(Leslie et al., 1985; Sturrock & Rao, 1985; Tatton et al.,
1991). Similarly, in human postmortem brains, nigral dopami-
nergic neurons were lost at a rate of 5%–10% per decade
(Fearnley & Lees, 1991; Ma et al., 1999), culminating in def-
icits of 30%–80% at advanced ages (Haycock et al., 2003;
Rudow et al., 2008). Animal studies have also showed an
age-related decline of dopaminergic cell bodies in the SN
and striatal dopaminergic terminals in rats (Felten et al.,
1992; Himi et al., 1995; Sabel & Stein, 1981). As a conse-
quence of age-related biochemical and functional decline in
both systems, the norepinephrine (NE) and dopamine (DA)
deficiency in the aged brain has been used as an index for
aging. In addition, there is a reduced expression of dopamine
β-hydroxylase (DBH), tyrosine hydroxylase (TH) and DA
transporter (DAT) in the aged brain (Chan-Palay & Asan,
1989; Cruz-Muros et al., 2009; van Dyck et al., 2002).

It is now well accepted that there is a biochemical and
functional correlation between noradrenergic and dopaminer-
gic neuronal systems. While an integrity of the noradrenergic
neuronal system would provide neuronal protection on dopa-
minergic neurons such as facilitating the survival of dopami-
nergic neurons, a declined noradrenergic system would
attenuate or weaken the functional processing of the dopami-
nergic nigro-striatal tract (Delaville et al., 2011; Hassani et al.,
2020; Isaias et al., 2011). For instance, in animals treated with
the dopaminergic toxin MPTP, damaged LC caused by lesion
or pretreated with the neurotoxin resulted in a more severe
loss of dopaminergic neurons in the SN compared to controls,
which was accompanied by prominent motor deficits (Fornai
et al., 1996; Mavridis et al., 1991; Srinivasan & Schmidt,

2003; Yao et al., 2015). On the other hand, if the synthesis
of NE is augmented, or NE reuptake inhibitors were used,
MPTP-induced damage in dopaminergic neurons was
reduced (Kilbourn et al., 1998; Rommelfanger et al., 2004),
accompanied by an alteration in motor performance (Kreiner
et al., 2019). Therefore, it seems to be feasible that if the nor-
adrenergic system is augmented in aged brain, it may be neuro-
protective toward the degeneration of the dopaminergic system.

It is well known that NE plays a prominent role in neuronal
survival, differentiation, and plasticity and participates in
brain repair mechanisms. There has been converging evidence
showing that the manipulation of the LC-NE system through
increasing central NE levels, or reducing NE metabolism, is
beneficial in the control of the progression of aging in the
NE and DA systems. For example, the administration of
L-threo-3,4-dihydroxyphenylserine (L-DOPS), a NE precur-
sor, to animals protects neurons against cell damage
(Biaggioni & Robertson, 1987; Lee et al., 1994; Yamagami
et al., 1998) and facilitates behavioral recovery (Kato et al.,
1987b; Kikuchi et al., 2000). Alpha-2-adrenoceptors (ARs)
exert a tonic inhibitory control on adrenergic transmission
(Kable et al., 2000; Trendelenburg et al., 1999). Their block-
ade can lead to the activation of LC-derived adrenergic pro-
jections to facilitate noradrenergic modulatory effects over
dopaminergic neurons (Donaldson et al., 1975; Nutt et al.,
1994; Srinivasan & Schmidt, 2004). This manipulation
exerts a protective role upon dopaminergic neurons via the
noradrenergic network innervating the SN (Gobert et al.,
2004; Martel et al., 1998; Srinivasan & Schmidt, 2004).
Similarly, β2-AR agonists that directly or indirectly interact
with the receptor to induce the release of endogenous cate-
cholamine including NE (Peterson et al., 2014). Therefore,
these pharmacological manipulations can be a possible way
to enhance the physiological and functional ability of the
central noradrenergic neurons.

In the present study, several pharmacological manipulations
on the noradrenergic system were used to explore their poten-
tially beneficial roles for the dopaminergic system in old
animals. These treatments include the administration of
L-DOPS, α2-AR antagonist 2-methoxy idazoxan, and a long-
acting β2-AR agonist salmeterol to aging (18 months) as well
as aged (23 months) rats for the goal of whether they increase
the expression of dopaminergic phenotypes in the brain and
improve behavior related to dopaminergic activity. All of
these pharmacological manipulations were also analyzed on
auditory sensorimotor gating as measured by prepulse inhibi-
tion (PPI), which is a behavioral task with a strong relationship
to integrity of the dopaminergic system (Geyer et al., 2001;
Mansbach et al., 1988; Swerdlow et al., 1994). Furthermore,
in vitro experiments were performed to explore the potential
epigenetic mechanisms underlying effects of NE on the expres-
sion of dopaminergic phenotypes. The present study suggests
that pharmacological manipulations strengthening noradrener-
gic activity can successfully protect against dopaminergic neu-
rodegeneration in aged brains.
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Materials and Methods

Animals and Treatments
Experiments were carried out in male and female Fischer 344
rats (RRID: RGD_10395235) at the age of 18 or 23 months.
These rats were purchased from Envigo Inc. (Indianapolis, IN,
USA) and maintained on a 12-h on-and-off lighting schedule
with access to standard rodent chow and water ad libitum. All
experimental procedures were performed in accordance with
the East Tennessee State University Animal Care and Use
Committee guide established by the NIH Guide for the Care
and Use of Laboratory Animals (Council, 2011). After an
acclimation period of seven days, all rats were randomly
divided into different experimental groups.

One set of experiments focused on L-DOPS treatment.
Considering that L-DOPS has been shown to effectively
restore NE deficiency in DBH−/− mice (Thomas et al., 1998;
Thomas & Palmiter, 1997), it is also likely effective in restoring
NE deficiency in aged rats. In this experiment, a dose of
200 mg/kg L-DOPS was injected daily (i.p.) to 23-month-old
rats for 21 days, followed by behavioral and biochemical anal-
yses. Each rat was simultaneously administered with bensera-
zide (10 mg/kg, i.p.), an L-aromatic amino acid
decarboxylase inhibitor to reduce peripheral conversion of
L-DOPS to NE, as it cannot pass through the blood–brain
barrier (Kato et al., 1987b; Lee et al., 1994) for the same
period. A separate group of 23-month-old rats was treated
with vehicle+ similar doses of benserazide as the control.

In a different set of experiments, α2-AR antagonist
2-methoxy idazoxan or β2-AR agonist salmeterol was admin-
istered to both 18 (representing aging) and 23-month-old (rep-
resenting aged) rats. Generally, the blockade of α2-ARs leads
to the activation of LC-derived adrenergic projections.
Similarly, long-acting β2-AR agonists can either directly or
indirectly interact with the receptor to induce the release of
endogenous catecholamine including NE (Peterson et al.,
2014). The α2-AR antagonist 2-methoxy idazoxan was
selected based on the fact that it is five times more selective
for α2-ARs, lacks binding to imidazoline receptors, and has
considerably less intrinsic activity at α2-ARs than most of
the putative α2-AR antagonists (Clarke & Harris, 2002). In
addition, it was reported that the chronic administration of sal-
meterol resulted in neuroprotective effects on dopaminergic
neurons (Maris et al., 2004; Qian et al., 2011; Semkova
et al., 1996). Therefore, 2-methoxy idazoxan (2.5 mg/kg,
daily, i.p.) and salmeterol (1 mg/kg, daily, i.p.) were injected
to 18- and 23-month-old rats for 21 days in the present study.
The control (18- or 23-month-old rats) received an equivalent
amount of the vehicle for the same period.

Cell Cultures
MN9D cells (RRID: CVCL_M067) are a dopaminergic cell
line (Choi et al., 1991). They were grown in Dulbecco’s

modified Eagle’s medium, which is supplemented with heat
inactivated 10% fetal bovine serum, plus antibiotics penicillin
(100 U/ml) and streptomycin (100 µg/ml) (all from
Gibco-Invitrogen, Carlsbad, CA, USA). These cells were main-
tained at 37 °C in a humidified atmosphere with 5% CO2 as pre-
viously reported by our laboratory (Zhu et al., 2019). These cells
were used for quantitative real-time polymerase chain reaction
(qPCR), western blotting, and chromatin immunoprecipitation
assay (ChIP) assays. For all experimental groups after cell har-
vesting, trypan blue exclusion was used to measure the cell via-
bility, which was > 95% for all experimental cells.

RNA Isolation and qPCR Analysis for mRNA
of TH and DAT
The method is similar to those reported previously (Deng et al.,
2016; Huang et al., 2015). Briefly, RNAzol reagent (Molecular
Research Center, Inc., Carlsbad, CA) was used to extract total
RNAs from dissected brain tissues or cultured cells, followed
by using the superscript III First-Strand Synthesis Kit
(Applied Biosystems/Life technologies, Forster City, CA,
USA) to convert cDNAs based on the manufacturer’s instruc-
tion. The SYBR green Platinum Quantitative PCR supermix
(Invitrogen, Carlsbad, CA, USA) in Stratagene Mx3000P
(Agilent Technologies, Santa Clara, CA, USA) was used to
conduct qPCR. The primers for q-PCR were as follows: rat
TH: 5′- GCAGCCCTACCAAGATCAAACC-3′ and 5′-CG
CTGGATACGAGAGGCATAGT-3′; rat DAT: 5′-GCTGCG
TCACTGGCTGTTGC-3′ and 5′-CTGTCCCCGCTGTTGTG
AGGT; rat β-actin: 5′-AGATTACTGCCCTGGCTCCTA-3′

and 5′- AGGATAGAGCCACCAATCCAC-3′; mouse cAMP-
responsive element (CRE)-binding protein-binding protein/
p300 (CBP/p300): 5′- TGGAAGAACTGCACACGACA-3′

and 5′-GAGTCCTCATCTGCTGGTGG-3′; mouse ATF-2:
5′-TCCTCCGGGGCTAGTTTGTA-3′ and 5′-CTCGTTGGT
AAAACGCTGGC-3′; mouse histone deacetylases 2 (HDAC2):
5′-CTATCCCGCTCTGTGCCCTA-3′ and 5′-TCGAGGATG
GCAAGCACAAT-3′; mouse HDAC5: 5′- CCGGGAACCA
TCCTTGGAAA-3′ and 5′-GTGGGAGGGAATGGTTGAG
G-3′. All measurements were performed in triplicate. The
2−ΔΔCTmethod (Livak&Schmittgen, 2001) was used to calculate
the relative amount of mRNA expression levels of TH/DAT by
normalization and comparison to those of β-actin (ΔCt).

Western Blotting Analysis
Western blotting was used to measure the protein levels of
TH, DAT, and p-Akt in brain striatum, SN, and hippocampus
(HP) of rats, as well as those of ATF-2, CBP/p300, HDAC2,
and HDAC5 in cultured cells. All measurements were per-
formed in triplicate. Briefly, the sample buffer containing
sodium lauryl sulfate (SDS), β-mercaptoethanol, and protease
inhibitors was used to lyse the dissected tissues or cultured
cells, which were then briefly homogenized and centrifuged
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(1,000g). Supernatants were transferred to new tubes, and
protein assay was performed. Equal amounts of sample pro-
teins were loaded on 10% or 15% SDS-polyacrylamide
gels, followed by electrophoresis and transfer processing.
Samples were transferred to a polyvinylidene difluoride mem-
brane (Millipore, Bedford, MA, USA) and incubated to
primary antibodies after blocking in TBS/0.1% Tween-20/
5% milk. The primary antibodies are listed as follows:
anti-DAT from rabbit (1:400 dilution, Cat# ab5990, RRID:
AB_305226, Abcam, Cambridge, MA, USA); anti-TH from
mouse (H-16, 1:1,000 dilution, Cat# AMAb91112, RRID:
AB_2665805, Sigma-Aldrich, Saint Louis, MO, USA);
anti-phosphor-RAC-alpha serine kinases (p-Akt) (ser473)
from rabbit (1: 2,000 dilution, Cat# S473, ab47261, RRID:
AB_867561, Abcam, Cambridge, MA, USA); anti-Akt from
rabbit (Cat# 9272, 1: 1,000 dilution, RRID: AB_329827);
anti-ATF-2 from rabbit (1: 1,000 dilution, D4L2X, Cat#
350331, RRID: AB_2799069); anti-CBP/p300 from mouse
(1: 1,000 dilution, D8Z4E, Cat# 86377, RRID:
AB_2800077); anti-HDAC2 from rabbit (1: 1,000 dilution,
D6S5P, Cat# 57156, RRID: AB_2756828); and
anti-HDAC5 from rabbit (1:1,000 dilution, D1J7V, Cat#
20458, RRID: AB_2713973). All antibodies against Akt,
ATF-2, CBP/P300, HDAC2, and HDAC5 were purchased
from the Cell Signaling Technology, Danvers, MA, USA.
The secondary antibodies against rabbit or mouse were then
probed to these membranes after washing. Enhanced chemilu-
minescence (ECL, Amersham; Piscataway, NJ, USA) was
applied to visualize the protein bands and detected by G:
Box Imaging (Fyederick, MD, USA). The same blot was
stripped and re-exposed to anti-β-actin antibody by similar
steps. All signals of the protein of interest and β-actin were
analyzed by Image J (RRID: SCR_003070).

Measurement of NE/DA by High-Performance Liquid
Chromatography (HPLC)
NE/DA levels were measured by HPLC as has been reported
previously (Fan et al., 2020). The dissected brain striatum was
sonicated, followed by homogenization in a buffer that
included perchloric acid (0.2 M), ascorbic acid (1×
10−7 M). A 2 µg/ml concentration of dihydroxybenzylamine
was added to the buffer as the internal standard for catechol-
amine. After centrifugation (10,000g, 4 °C, 5 min), the
sample supernatants were further filtered through nylon dis-
posable syringe filters (0.2 µm) and stored at −80 °C until
measured on HPLC. The protein assay was also performed
in this preparation with the goal being to define the concentra-
tion of NE/DA in this preparation of the striatum tissue.

To assay the NE/DA levels in tissue preparation through
HPLC, we followed the procedures as reported before (Fan
et al., 2020). Briefly, the HPLC was equipped with an
Ultrasphere ODS reverse-phase column (Beckman). The
mobile phase consisted of 4% acetonitrile, 0.1 M sodium
nitrate, 0.08 M sodium dihydrogen phosphate, 0.2 mM

sodium octyl sulfate, and 0.1 mM EDTA at pH 2.7. A 20-µl
supernatant aliquot was injected directly into the HPLC
column. The samples were eluted isocratically and detected
using a Hitachi D-2500 Chromato-Integrator. The NE/DA
in the supernatants was identified by matching their elution
times and sensor ration measures to those of the internal
standard, and their concentrations were calculated by compar-
ing peak areas to those of known standards. Resulted amounts
are presented as pg/mg proteins, because this preparation was
from the tissue homologies from brain tissues and their
amounts should be defined in whole preparation.

Sensorimotor Gating Apparatus
PPI is a neurological phenomenon in which an animal acquires
the ability to inhibit a startle response through the temporal
contiguous presentation of a weak auditory prepulse (73, 76,
and 82 dB) presented immediately before a startling pulse stim-
ulus (120 dB). The procedures used for this task are based on
previous work from a collaborator’s laboratory (Gill et al.,
2020). For all sensorimotor gating behavioral testing, the
Startle Monitor II apparatus and software was used (Kinder
Scientific, Poway, CA). Rats were placed in a stainless-steel
dome (height= 8 cm) that was attached to a platform (11 cm
wide× 15 cm long) mounted on a stainless-steel ellipse in a
sound-attenuating chamber (28 cm high× 30 cm wide×
36 cm depth). The animal response was recorded and measured
(in Newtons, N) within a 250-millisecond (ms) window imme-
diately following stimulus presentation through a computer
interface. On each day of testing, all chambers were calibrated
according to the instructions provided with the software.
Calibration was based on the animal’s weight once the
animal was placed into the enclosure. Each animal was behav-
iorally tested in the same apparatus over the three days of PPI
testing. If calibration needed to be performed, an error message
appeared in the software that does not allow the animal to be
tested until calibration was completed.

PPI methods: PPI was administered for three consecutive
days, which started one day after 21-day drug treatment.
After being placed into a stainless dome on each daily
session, rats were given a 5-min habituation period with
only the background noise (70 dB) presented, followed by
the pulse, prepulse, and no stimulus trials. A pulse trial was
a 120 dB startle pulse administered alone. A prepulse trial
was an auditory stimulus that was 3, 6, or 12 dB above the
70 dB background noise (i.e., 73, 76, and 82 dB) followed
250 ms later by the 120-dB startle pulse. A no stimulus trial
was a trial in which no stimulus is given. All animals under-
went 60 randomized trials that included a total of 20 pulse,
10 no stimulus, and 30 prepulse trials (10 trials of each 73,
76, and 82 dB). For all prepulse trials, percent PPI was calcu-
lated with the following equation: 100 – ([mean prepulse
response /mean pulse response] × 100). A mean of perfor-
mance on the prepulse trials over these consecutive three
days was statistically analyzed. A functional improvement in
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behavior was interpreted as a statistically significant increase in
PPI percentage on the three prepulse auditory intensities ana-
lyzed as compared to control groups. The response on pulse
trials, when the startle stimulus was presented alone, was also
analyzed.

ChIP
The previous studies from this laboratory reported that in dop-
aminergic MN9D cells treated with NE, an increased H4 acet-
ylation (Zhu et al., 2019) and the methylation of H3 in the TH
promoter measured by ChIP assays (Fan et al., 2020).
Although a significant alteration in H3 acetylation was not
found, a tendency toward an increase was observed (unpub-
lished data). These results indicated that NE-induced
increases in TH expression are related to chromatin remodel-
ing on the TH promoter. As an extension of those studies,
more in vitro experiments were performed to further investi-
gate the details related to NE-induced changes in histone acet-
ylation of the TH promotor. A ChIP assay was performed as
described previously (Zhu et al., 2019) using an EZ-Magna
ChIPTM A kit (Millipore Biotechnology, Billerica, MA,
USA) based on the manufacturer’s instructions. Briefly, lysed
cells were processed for sonication at 4 °C to get approximately
200–500 bp size chromatins. After centrifugation, supernatants
in sheared chromatin were immunoprecipitated, respectively,
using rabbit monoclonal antibodies anti-CBP/p300 (1:250 dilu-
tion, Cat# MA1-16622, RRID: AB_568668), polyclonal
anti-HDAC2 (1:250 dilution, Cat# PA1-861, RRID:
AB_2118520), or polyclonal anti-HDAC5 (1:250 dilution,
Cat# PA1-41117, RRID: AB_2116776) (all from
ThermoFisher, Grand Island, USA), or normal rabbit IgG pro-
vided in the kit. DNA amounts in different samples were mea-
sured before immunoprecipitation. Then, PCR amplification
was performed from purified DNA of both the immunoprecip-
itated and pre-immune (pre) samples using the following
primers F: 5′-CCAGTGAGA-GGGCTTCTA-3′ and R:
5′-CACCTGCCTCTGAATCAC −3′, which recognize the
−340 to +1 bp region of the TH promoter. ChIP-PCR-derived
DNA was also electrophoresed through 2% agarose gels and
stained with ethidium bromide.

Statistics
All experimental values were shown as the mean±SEM. The
number of replicates is enumerated in the figure legends (N= x/
group). While the number indicates the replicates of cultured
cells separated for each group, it also shows the number of
animals in a given group in the animal experiment. Statistical
significance in the experiments related to administration of
2-methoxy idazoxan or salmeterol and in vitro investigations
(Figures 8 and 10) was determined using one-way analysis of
variance (ANOVA, SigmaStat, Systat Software Inc.,
Richmond, USA), followed by Student–Newman–Keuls’ mul-
tiple comparisons post hoc test. In experiments using L-DOPS

(Figures 1 and 2), mRNA assay for ATF-2, CBP/p300,
HDAC2 and HDAC5 in MN9D cells treated with NE
(Figure 8A), and ChIP assays (Figure 9) where treatments
were compared to a single control group, student t-test was
used. For the behavioral tests of PPI, a two-way repeated
measure ANOVA was performed, with drug treatment group
and levels of prepulse auditory intensity as the two factors.

Results

Effects of Administration of L-DOPS on Dopaminergic
Phenotypes in Aged Rat Brains
To examine the effects of L-DOPS on the expression of the
dopaminergic phenotype in the brain, L-DOPS (200 mg/kg)
was administered (daily, i.p.) to rats at the age of 23 months
for 21 days. Rats were immediately sacrificed after behavior
tests and brains were taken for biochemical analysis. Each
rat was also simultaneously administered with benserazide
for the same period (10 mg/kg, i.p.). As shown in Figure 1,
administration of L-DOPS significantly increased mRNA
and protein levels of TH (Figure 1A, t8= 2.78, p< .05;
Figure 1C, t8= 5.21, p < .01) and DAT (Figure 1B, t8=
3.56, p< .05; Figure 1D, t8= 2.98, p< .05) in the SN region
of aged rats. However, in the striatum there was only an
increased protein level of TH (Figure 1C, t8= 2.79, p < .05),
and there were no significant alterations for mRNA of TH
and DAT (Figure 1A and B, all p > .05), as well as protein
levels of DAT (Figure 1D, p> .05). Furthermore, the admin-
istration of L-DOPS markedly enhanced protein levels of
TH in the frontal cortex and HP (Figure 1E, FC: t8= 3.37, p
< .05; HP: t8= 4.99, p < .01).

In a separate experiment, all groups including controls and
treated rats were sacrificed on the 22nd day after drug treat-
ment and the striatum was dissected for further analyses of
NE and DA concentrations through HPLC. As shown in
Figure 2A, NE and DA levels in the striatum were signifi-
cantly increased (for NE: t8= 5.07, p< .01; for DA: t8=
3.16, p < .05) as compared to corresponding controls. PPI is
presented as a function of decibel level of the control and
L-DOPS groups in Figure 2B. A two-way ANOVA revealed
a significant main effect of drug (F1,12= 10.81, p < .017), and
a significant drug× prepulse interaction (F1,12= 4.39, p<
.037). Post hoc analyses revealed that treatment with
L-DOPS resulted in a deficit in PPI on both 73 and 76 dB pre-
pulse trials, although this effect was not present on 82 dB pre-
pulse trials (Figure 2B).

Effects of Administration of 2-Methoxy Idazoxan and
Salmeterol on the Expression of Dopaminergic
Phenotypes in Old Rat Brains
First, the mRNAs of TH and DAT in the SN from rats at the
age of 18 and 23 months were measured. As in the aged rats
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injected with L-DOPS there was no a significant alteration for
the mRNAs of TH and DAT in the striatum (Figure 1A and
B), therefore, in this experiment using 2-methoxy idazoxan
and salmeterol, mRNAs of TH and DAT in the striatum
were not measured. In Figure 3, fold difference is presented
as a function of 18- and 23-month-old rats. A one-way
ANOVA analysis revealed that administration of 2-methoxy
idazoxan and salmeterol significantly enhanced the mRNAs
of TH and DAT in the SN (for 18 months: F3,23= 3.67, p<
.05 for TH; F3,23= 3.99, p < .05 for DAT; for 23 months:
F3,23= 3.91, p < .05 for TH; F3,23= 4.01, p < .05 for DAT).
However, there was no additive effect when rats were injected
with both drugs together. We did not analyze the difference
between 18- and 23-month-old rats.

The results of TH and DAT protein levels for the SN, stria-
tum, and HP are presented in Figure 4, with the band density
presented as a function of treatment groups for 18-month-old
rats. TH and DAT protein levels in the SN are presented in
Figure 4A and B, respectively. A one-way ANOVA revealed
a significant main effect of group for TH (F3,23= 4.25, p <
.05) and DAT (F3,23= 3.87, p < .05) in the SN. Post hoc anal-
yses revealed that the administration of salmeterol or
2-methoxy idazoxan plus salmeterol significantly increased
TH in the SN. However, regarding DAT, all three groups,
treatments with 2-methoxy idazoxan, salmeterol, and their
combination, markedly increased DAT in the SN. The
protein levels of TH and DAT in the striatum are presented
in Figure 4C and D, respectively. A one-way ANOVA
revealed a significant main effect of group for TH in striatum
(F3,23= 4.12, p < .05), as well as DAT in the striatum (F3,23=
5.23, p < .01). All three groups, 2-methoxy idazoxan, salme-
terol, and their combination, demonstrated significant
increases of TH as well as DAT in the striatum. The protein
levels of TH and DAT in the HP are presented in Figure 4E
and F, respectively. A one-way ANOVA revealed a signifi-
cant main effect of group for TH (F3,23= 3.54, p< .05) and
DAT (F3,23= 4.89, p< .05) in the HP. Post hoc analyses
revealed that treatment with 2-methoxy idazoxan or salme-
terol alone increased TH in the HP, but their combination
was not significantly changed as compared to the controls.
Treatments with salmeterol alone or the combination of
2-methoxy idazoxan+ salmeterol significantly increased
DAT protein levels, as compared to controls.

The effects of these two drugs on protein levels of TH and
DAT in 23-month-old rats are presented in Figure 5.
Generally, the administration of 2-methoxy idazoxan or sal-
meterol to 23-month-old rats produced resembling effects
on TH and DAT in the SN and striatum as in 18-month-old
rats (TH in the SN: F3,23= 4.14, p< .05; TH in the striatum:
F3,23= 5.12, p < .05, Figure 5C; DAT in the SN: F3,23=
4.85, p < .05, Figure 5B; DAT in the striatum: F3,23= 3.78,
p < .05, Figure 5D), except for that in 23-month-old rats treat-
ment with salmeterol did not increase TH protein levels in the
SN (Figure 5A). However, in the HP, there was an enhance-
ment of TH protein levels caused by these two drugs (F3,23

= 3.69, p < .05), but there were no significant changes in
DAT. Similarly, no additive effect was observed when
2-methoxy idazoxan combined with salmeterol (Figure 5E).

In addition, PPI tests were performed in 18- and
23-month-old rats. As shown in Figure 6A, in 18-month-old
rats, the treatment with 2-methoxy idazoxan produced an
improvement in PPI at 73 and 76 dB prepulse intensities
as compared to controls. Nevertheless, the treatment of sal-
meterol alone and combination of 2-methoxy idazoxan and
salmeterol produced a significant deficit in PPI across 73,
76, and 82 dB prepulse levels. A two-way repeated mea-
sures ANOVA revealed a significant main effect of group
(F3,32= 6.11, p < .002). In 23-month-old rats, the treatment
of salmeterol only produced a deficit in PPI at the 73-dB
prepulse trial. Treatment with 2-methoxy idazoxan pro-
duced an improvement at the 73 and 82 dB prepulse inten-
sity in PPI compared to controls. In addition, similar to
18-month-old rats, the combined treatment of 2-methoxy
idazoxan and salmeterol demonstrated significant PPI defi-
cits compared to controls at all 73, 76 and 82 dB prepulse
intensity. A two-way repeated measures ANOVA revealed
a significant main effect of group (F3,15= 4.17, p < .02,
Figure 6B).

Effects of Administration of L-DOPS, 2-Methoxy
Idazoxan, and Salmeterol on Phosphorylated-Akt
(p-Akt) Protein Levels in Old Rat Brains
Proteins levels of p-Akt and Akt were measured in these
samples by western blotting. P-Akt and Akt densitometry
results were normalized to corresponding loading control
β-actin, and the ratio of p-Akt/Akt was used as the final
results. Figure 7A presents p-Akt as a function of brain
area of 23-month-old rats after treatment with L-DOPS. A
t-test revealed that L-DOPS treatments produced a signifi-
cant increase of p-Akt in both the striatum and SN after 21
days of treatment (both p < .05). Figure 7B and C presents
p-Akt levels in both the striatum and SN for 18 months as
a function of treatment groups. A one-way ANOVA on
p-Akt in the striatum revealed a significant main effect of
group (F3,23= 3.85, p < .05) and SN (F3,23= 4.14, p < .05).
Post hoc analysis showed that 2-methoxy idazoxan and sal-
meterol alone, as well as their combination produced signifi-
cant increases of p-Akt in the striatum and SN in
18-month-old rats, except for 2-methoxy idazoxan in the
striatum. Figure 7D and E presents p-Akt levels in the stria-
tum and SN for 23-month-old rats as a function of group.
There was a significant main effect for both the striatum
(F3,23= 3.45, p < .05) and SN (F3,23= 3.08, p < .05). Post
hoc tests revealed that only the combination of 2-methoxy
idazoxan+ salmeterol increased p-Akt in the striatum for
23-month-old rats, whereas all three drug groups (alone
and combination) produced increases in p-Akt in the SN of
rats at 23 months of age.
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Figure 1. Expression of TH and DAT in brain regions of aged rats after injection of L-DOPS. A and B: mRNAs of TH and DAT in the

striatum and SN measured by qPCR (N= 5/group). C and D: protein levels of TH and DAT in the striatum and SN measured by western

blotting (N= 5/group). E: TH protein levels in the FC and HP measured by western blotting (N= 5/group). Upper panels in C, D, and E are

representative micrographs of western blotting. Lower panels in C, D, and E are quantitative analysis of their protein levels in these regions

of aged rats. * p< .05, ** p< .01, compared to the control. Abbreviations: Con: controls; FC: frontal cortex; HP: hippocampus; L-DOPS:

injection with L-DOPS; SN: substantia nigra; TH: tyrosine hydroxylase.
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NE-Induced Increases in TH Expression May Be
Mediated Through the Epigenetic Mechanisms
It has been reported that histone acetylation is regulated by the
activities of histone acetyltransferases (HATs) and histone
deacetylases (HDACs). In addition, CBP/p300 as a HAT is
related to gene transcription (Colvis et al., 2005; Korzus
et al., 2004; Peixoto & Abel, 2013; Yuan & Gambee,
2001). ATF-2 is also an intrinsic HAT (Kawasaki et al.,
2000). Therefore, CBP/p300 and ATF-2, representatives of
HATs, as well as HDAC2 and HDAC5, representatives of
HADCs, were measured in this experiment. First, MN9D
cells were exposed to 300 nM NE for 2 days and mRNA
levels were measured by qPCR. Figure 8A depicts fold
change in mRNAs as a function of HATs (ATF-2 and CBP/

p300) and histone deacetylases HDAC2 and HDAC5. A
student t-test analysis showed that mRNA levels of ATF-2,
CBP/P300, HDAC2, and HDAC5 in the cells exposed to
NE revealed a significant group main effect with NE, demon-
strating higher levels of ATF-2 (t8= 3.72, p < .05) and CBP/
p300 (t8= 5.72, p< .01), as well as lower levels of HDAC2
(t8= 3.48, p < .05) and HDAC5 (t8= 6.14, p < .01), as com-
pared to controls, respectively. For measuring protein levels
of these HATs and HDACs, MN9D cells were exposed to
100–500 nM NE for two days. Western blot analysis
(one-way ANOVA) revealed that while 300 nM NE signifi-
cantly increased protein levels of ATF-2 (F3,219= 3.78, p<
.05, Figure 8B), 300 and 500 nM NE increased CBP/p300
protein levels (F3,19= 4.32, p < .05, Figure 8C). In contrast,
300 or 500 nM NE markedly reduced protein levels of
HDAC2 and HDAC5 (F3,19= 4.52, p < .05 for HDAC2;
F3,19= 3.57, p < .05 for HDAC5; Figure 8D and E).

Next, ChIP assays were performed using antibodies
against CBP/p300, HDAC2, and HDAC5. As shown in
Figure 9, t-test revealed that treatments with 300 nM NE for
two days caused an increased binding of CBP/300 antibody
to the TH promoter (p< .01) and a reduced binding of
HDAC2 (p < .01) and HDAC5 (p < .01) antibodies to the
TH promoter (Figure 9A). With normal rabbit IgG, there
was no binding of the TH promoter. In addition, quantitative
real-PCR confirms these reductions of levels of HDAC2 and
HDAC5 in NE-treated samples over the control cells (lower
panels in Figure 9B and C).

One more experiment was carried out to identify which
isoforms of HDACs affecting the bind to the TH promoter
after NE treatment. Based on the above results, MN9D cells
were exposed to vehicle, 300 nM NE, and NE plus the
HDAC inhibitors (1 mM sodium butyrate; this dose has
been reported to completely block HDACs) (Gao et al.,
2013; Yuan et al., 2013) for two days, and ChIP assays was
performed thereafter. As shown in Figure 10, NE-induced
H3 or H4 acetylation in the TH promoter was significantly
enhanced by treatment with HDAC inhibitor sodium butyrate
(for H3: F2,11= 6.39, p< .01; for H4: F2,11= 5.31, p< .01), as
compared to the NE only group, confirming the HDAC inhib-
itor role on NE-induced histone acetylation.

Discussion
This study examined the effects of pharmacological manipula-
tions of noradrenergic activities on the expression of dopami-
nergic phenotypes in the brain. Aging and aged rats were
administered with either the NE precursor L-DOPS, a α2-AR
antagonist, or β2-AR agonist for 21 days. Neurochemical mea-
surements showed that the administration of L-DOPS signifi-
cantly increased mRNA and protein levels of TH and DAT
in the SN, as well as DAT protein in the striatum, and markedly
enhanced NE and DA concentrations in the striatum. The injec-
tion of the α2-AR antagonist 2-methoxy idazoxan and β2-AR
agonist salmeterol similarly enhanced the expression of TH

Figure 2. Effects of treatment with L-DOPS on NE/DA levels in

the striatum (A) and behavior in aged rats (B). A: Injection of

L-DOPS increased NE/DA concentrations in the striatum measured

by HPLC (n= 5/group). B: Injection of L-DOPS resulted in a deficit

in PPI compared to controls at 73 and 76 dB prepulse intensities (N
= 6/group). * p< .05, ** p< .05, compared to the control.

Abbreviations: DA: dopamine; L-DOPS:

L-threo-3,4-dihydroxyphenylserine; NE: norepinephrine; PPI:

prepulse inhibition; 73, 76, and 82 dB: prepulse trials.
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and DAT in these brain regions of 18- and 23-month-old rats.
Behaviorally, the NE precursor L-DOPS, which results in
increases of dopaminergic tone, resulted in PPI deficits at
both 73 and 76 dB in 23-month-old rats, which is sensible,
because PPI deficits typically result when dopaminergic tone
is increased (Swerdlow et al., 2000). In addition, different
AR-related NE drugs generated different behavioral effects
on the PPI tasks. While the α2-AR antagonist 2-methoxy ida-
zoxan significantly increased PPI levels, β2-AR agonist salme-
terol alone or a combination of both drugs resulted in a deficit
in PPI at 18 and 23 months of age. Moreover, there was a mark-
edly enhanced protein level of p-Akt, an important protein
kinase to mediate the neurotrophic effects of NE in the brain.
In vitro experiments further confirmed NE-induced histone
acetylation on the TH promoter to facilitate the transactivation
of TH gene. The present study extends our previous reports that
an improvement of noradrenergic activity has a beneficial effect
on the dopaminergic activity and function, which expands our
understanding of the link between the LC-NE and DA systems
during the progression of aging.

L-DOPS is an artificial amino acid and has been clinically
used for the treatment of orthostatic hypotension (Suzuki
et al., 1981). In the present study, L-DOPS was administered
to aged rats for 21 days. The results showed that this treatment
dramatically increased mRNA or protein levels of dopaminer-
gic phenotypes in the striatum or SN, and improved sensorimo-
tor gating, which is related to dopaminergic signaling. Several
explanations can be postulated for L-DOPS effects observed
here. First, the effect of L-DOPS on dopaminergic phenotypes
can be a result of the pharmacological effects of NE, as
L-DOPS can convert to NE both peripherally and centrally
through decarboxylation by the aromatic L-amino acid decar-
boxylase (Bartholini et al., 1975; Inagaki & Tanaka, 1978). It
was reported that the systemic administration of L-DOPS pro-
duced a prolonged increase in extracellular levels of NE or its
metabolite, 3-methoxy-4-hydroxy-phenylglycol levels in the
brain (Brannan et al., 1990; Kato et al., 1987a; Kikuchi et al.,
2000; Tohgi et al., 1993) or in the cerebrospinal fluid (by 5-
to 75-fold) (Tohgi et al., 1990, 1993). In DBH−/− mice, after
multiple injections of L-DOPS, NE levels were increased to

Figure 3. Effects of treatments with 2-methoxy idazoxan and salmeterol on mRNAs of TH and DAT in the SN from rats at ages of 18 (A)

and 23 (B) months (N= 6/group). * p< .05, compared to the control. Abbreviations: DAT: dopamine transporter; Rx: 2-methoxy idazoxan,

Sal: salmeterol; SN: substantia nigra; TH: tyrosine hydroxylase.
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Figure 4. Effects of treatments with 2-methoxy idazoxan and salmeterol on protein levels of TH and DAT in the brain regions of

18-month-old rats. The administration of 2-methoxy idazoxan and salmeterol increased these protein levels in the SN (A and B), striatum (C

and D), and HP (E and F) of rats measured by western blotting (all N= 6/group). The upper panels in each figure show autoradiographs

obtained by western blotting. The lower panels in each figure show the quantitative analysis of band densities. * p< .05, ** p< .01, compared

to the control. See legends of Figures 1 and 3 for abbreviations.
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Figure 5. Effects of treatments with 2-methoxy idazoxan and salmeterol on protein levels of TH and DAT proteins in brain regions of

23-month-old rats. The administration of 2-methoxy idazoxan and salmeterol increased these protein levels in the SN (A and B), striatum (C

and D), and HP (E) of rats measured by western blotting (all N= 6/group). The upper panels in each figure show autoradiographs obtained

by western blotting. The lower panels in each figure show quantitative analysis of band densities. * p< .05, ** p< .01, compared to the

control. See legends of Figures 1 and 3 for abbreviations.
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not be significantly different from normal controls in the frontal
cortex and brain stem regions (Thomas et al., 1998). In addi-
tion, the injection of L-DOPS to animals protects neurons
against cell damage (Biaggioni & Robertson, 1987; Lee
et al., 1994; Yamagami et al., 1998) and facilitates behavioral
recovery (Kato et al., 1987b; Kikuchi et al., 2000). Clinical
trials revealed that L-DOPS effectively facilitates motor recov-
ery and restores neurological deficits (Fukada et al., 2013;
Ogawa et al., 1985; Tohgi et al., 1993; Yoshida et al., 1989).
Second, identical to the previous report that L-DOPS increased
extracellular levels of DA and 5-hydroxytryptamine (5-HT)
(Maruyama et al., 1994), the present study demonstrated

increased DA levels in the striatum. Third, the results observed
in the present study may also indicate the involvement of brain-
derived neurotrophic factor (BDNF), as BDNF can be a main
mediator for the trophic signal derived from noradrenergic
afferents (Fawcett et al., 1998). It is well known that
L-DOPS increased nerve growth factor synthesis (Lee et al.,
1994) and increased BDNF protein and mRNA expression in
the cortex and HP (Kalinin et al., 2012), suggesting that an
increased BDNF could provide trophic support for LC
neurons, which also is related to its mechanism of neuroprotec-
tion. Thus, the present study provides the evidence that
L-DOPS can be potentially useful to improve aging-related
noradrenergic declines, which is coincident with the fact that
L-DOPS has been applied to the patients of Parkinson’s
disease and alleviated L-DOPA-refractory symptoms (Kondo,
1993; Tohgi et al., 1993).

In the present study, α2-AR antagonist and β2-AR agonist
were used as one method to manipulate noradrenergic activ-
ity. Alpha-2-ARs exert a tonic inhibitory control on adrener-
gic transmission (Kable et al., 2000; Trendelenburg et al.,
1999). The blockade of these α2-ARs leads to the activation
of LC-derived adrenergic projections (Millan et al., 2001;
van Veldhuizen et al., 1993). Thus, it facilitates noradrenergic
modulatory effects over dopaminergic neurons (Donaldson
et al., 1975; Nutt et al., 1994; Srinivasan & Schmidt, 2004)
and exerts a protective role upon dopaminergic neurons via
the noradrenergic network innervating the SN (Gobert et al.,
2004; Martel et al., 1998; Srinivasan & Schmidt, 2004). It
was reported that 2-methoxy idazoxan could increase NE
levels in the brain (Mandel et al., 2007; Millan, 2010;
Millan et al., 2001; Qian et al., 2011; Sagi et al., 2007;
Shenoy et al., 2006; Srinivasan & Schmidt, 2004; van
Veldhuizen et al., 1993). Similarly, β2-AR agonists (long
acting) can either directly or indirectly interact with the receptors
to induce the release of endogenous catecholamine including NE
(Peterson et al., 2014). Therefore, an increased expression level
of dopaminergic phenotypes in the brain observed in the present
study can be considered as the results of activation of noradren-
ergic systems. Besides, the mechanisms underlying the gene reg-
ulation contributed by α2-AR antagonists and β-AR agonists
may similarly be related to their ability to increase neurotrophic
factors including BDNF released from adrenergic neurons
(Debeir et al., 2004; Weinreb et al., 2007). For example, salme-
terol can significantly increase BDNF concentrations in serum
and platelets when administered to patients, which was con-
firmed by in vitro study that salmeterol increased the release
of BDNF from mononuclear cells (Lommatzsch et al., 2009).
In addition, 2-methoxy idazoxan has been reported to increase
DA levels in the striatum and SN (Maruyama et al., 1994;
Srinivasan & Schmidt, 2004).

Akt, also known as protein kinase B, is a crucial mediator
of various cellular process. It is well known that the
phosphoatidylinositol-3-kinase (PI-3K)/Akt pathway is a
major mediator of cell survival signaling leading to the tran-
scription of many genes in pro-survival signal pathways

Figure 6. Effects of treatments with 2-methoxy idazoxan and

salmeterol on the PPI performance of rats at ages of 18 (A, N= 8/

group) and 23 months (B, N= 9/group). Behavior test was measured

by the PPI. * p< .05, compared to the control. See legend of Figure 3

for abbreviations.

12 ASN Neuro



Figure 7. Effects of treatments with L-DOPS, 2-methoxy idazoxan and salmeterol on protein levels of p-Akt in the brain regions of old rats

measured by western blotting (all N= 6/group). P-Akt and Akt densitometry results were respectively normalized to corresponding β-actin
and the ratio of p-Akt/Akt scores was used as the final result in each case. A: Administration of L-DOPS significantly increased p-Akt in rat

striatum and SN of 23-month-old rats. C and E: Injection of 2-methoxy idazoxan and salmeterol alone, or combination of two drugs

markedly increased p-Akt protein levels in the SN of 18- and 23-month-old rats. However, only salmeterol alone (B) or combination of two

drugs significantly increased p-Akt protein levels in the striatum of 18- or 23-month-old rats (B and D). The upper panels in each figure

show autoradiographs obtained by western blotting. The lower panels in each figure show quantitative analysis of p-Akt/Akt band densities.

* p< .05, ** p< .01, compared to the control. See legend of Figure 3 for abbreviations.
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(Brunet et al., 2001), which also mediates the neurotrophic
effects of NE (Patel et al., 2010). In the present study, the
administration of L-DOPS, 2-methoxy idazoxan, and salme-
terol significantly increased p-Akt protein levels in the stria-
tum and SN, indicating that this protein kinase is possibly
involved in the NE-induced upregulation of dopaminergic
phenotypes of old rats. Studies have shown that age-related
alterations in neuronal systems involve the modification of

signaling pathways including those associated with Akt
(Smith et al., 2005). For example, aged human tissue analyses
revealed a decreased activation of PI-3K pathway in dendritic
cells (Agrawal et al., 2008). A senescence mouse model
exhibited a greater decrease of phosphorylation of Akt in
the HP, as compared to controls (Nie et al., 2009).
Therefore, in the present study, these reduced p-Akt expres-
sion levels may also present in the brain of aging and aged

Figure 8. Effects of administration of NE on expression of ATF-2, CBP/p300, HDAC2, and HDAC5 in MN9D cells (all N= 5/group). A:

Exposure of MN9D cell to 300 nM NE for two days significantly increased mRNAs of ATF-2 and CBP/300 and reduced mRNAs of HDAC2

and HDAC5. Exposure of MN9D cells to different concentrations of NE significantly increased protein levels of ATF-2 (B), CBP/p300 (C), as

well as reduced protein levels of HDAC2 (D) and HDAC5 (E). * p< .05, ** p< .01, compared to the control. Abbreviations: Con: controls;

NE: norepinephrine.
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rats, although we did not compare them to those of normal
adult rats. Furthermore, it has been reported that treatment
with NE significantly increased phosphorylation of Akt and
activating Akt pathway in a dose- and time-dependent
manner in cultured hippocampal or cortex cells (Jiang et al.,
2014; Jiao et al., 2016; Patel et al., 2010). Akt plays a pivotal
role in transducing a variety of extracellular stimuli into a
wide range of cellular processes, including metabolisms, cell
proliferating, and gene regulations (Sale & Sale, 2008).
Increases in p-Akt resulted from those pharmacological manip-
ulations can be considered as an exacerbated cell survival via
the augmentation of PI-3K/Akt pathways activity caused by
these treatments (Chen & Russo-Neustadt, 2005, 2007).

Our previous studies demonstrated that treatment with NE
to MN9D cells increased H4 acetylation and H3 methylation
in the TH promoter (Fan et al., 2020; Zhu et al., 2019), indi-
cating that epigenetic histone modification plays an important
role in the NE-induced upregulation of dopaminergic pheno-
types. Although a significant alteration in H3 acetylation was
not found, a tendency toward an increase was observed
(unpublished data). Taking advantage of previous studies
using ChIP, more experiments regarding the histone acetyla-
tion were performed. These experiments showed that the
administration of NE to MN9D cells significantly increased
mRNA and protein levels of ATF-2 and CBP/p300, two repre-
sentatives of HATs, as well as reduced mRNA and protein
levels of HDAC2 and HDAC5, two representatives of
HDACs (Figure 8). Furthermore, ChIP assays demonstrate
that while CBP/p300 enhanced NE-induced binding in the
TH promoter, HDAC2 and HDAC5 significantly reduced
NE-induced binding in the TH promoter. The involvement of
HDACs in this regulation was confirmed by use of HDAC
inhibitor, which accelerated NE-induced binding to the TH pro-
moter. It has been reported that aging leads to the transcrip-
tional downregulation of genes involved in brain functions
such as cognition and synaptic plasticity (Lee et al., 2000; Lu
et al., 2004), which can be counteracted by modulating the
activities of histone-modifying enzymes (Peleg et al., 2016).
On the other hand, aging was accompanied by a reduced
histone acetylation at the promoter regions of genes involved
in neurotransmission (Peleg et al., 2010; Pina et al., 1988),
and an increased expression of HDAC (Chouliaras et al.,
2013). Obviously, any factors to activating chromatin remodel-
ing with increasing histone acetylation or inhibiting HADAC
would result in enhanced transcriptions of related genes to
interfere aging. Therefore, the present experiments may
provide some information to reveal the involvement of chroma-
tin remodeling in the transcriptional activation of TH gene by
NE. These data may provide some useful evidence supporting
the use of epigenetic therapy for the pharmacological interven-
tions of aging (Khan et al., 2016), as HDAC inhibitors have
shown promise as a treatment to combat the cognitive
decline associated with aging (Penney & Tsai, 2014).

In the present study, PPI was performed to test the possible
role of the manipulation of noradrenergic activities on a

behavioral task highly related to dopaminergic activity.
Generally, PPI is an index of attentional processes, which
operationally measures sensorimotor gating (Graham, 1975).
While this task has been reported to be related to several psy-
chiatric disorders (Braff et al., 2001), it is an excellent behav-
ioral measure for older rats, because of their inability to swim
and thermos-regulate in the Morris water maze, and many
other cognitively related tasks which can be affected by per-
formance variables. Generally, PPI has been reported to be
closely linked to increases in DA and/or NE activity. For
example, animal studies showed that the direct infusion of
DA into the nucleus accumbens in rats (Swerdlow et al.,
1990) or the administration of agents that facilitate DA neuro-
transmission can reliably lead to PPI disruption (Geyer et al.,
2001; Mansbach et al., 1988; Swerdlow et al., 1994).
Similarly, the stimulation of cholinergic or glutamatergic
receptors in the LC, which activates LC neuronal firing and
elevates NE release in LC terminal regions, has also been
shown to disrupt PPI performance (Alsene & Bakshi, 2011).
PPI has been reported to be regulated by systemic manipula-
tions of NE, stimulation α1/β-ARs, depleting of α2-ARs, and
presumed augmentation of NE release (Alsene et al., 2006;
Carasso et al., 1998; Lahdesmaki et al., 2004; Swerdlow
et al., 2006). In the present study, the administration of
L-DOPS or the combination of α2-AR antagonist and β-AR
agonist significantly disrupted PPI performance. It is consis-
tent to the notion that an increased noradrenergic tone,
either through increased release of NE, or direct action at post-
synaptic adrenergic receptors, plays a crucial modulatory role
for PPI (Pudovkina et al., 2001).

In the present study, the administration of the α2-AR antag-
onist 2-methoxy idazoxan caused an increase in the startle
response magnitude of rats at the age of 18 or 23 months, an
effect contrary to those from injections of salmeterol alone or
a combination of 2-methoxy idazoxan and salmeterol on the
PPI. Interestingly, our present results are somewhat in accor-
dance with those reported previously. For example, the admin-
istration of 2-methoxy idazoxan increased (Larrauri & Levin,
2012) or had a tendency to increase (Ozcetin et al., 2016) the
prepulse intensity. Furthermore, this drug effectively counter-
acted disruption of PPI caused by amphetamine, dizocilpine
or clonidine (Larrauri & Levin, 2012; Ozcetin et al., 2016),
showing as the increased mean PPI values. The comparable
results also came from the studies that used other α2-AR antag-
onist in which the administration of atipamezole weakly
affected PPI (Lahdesmaki et al., 2004). Collectively, these
data reveal that there is a difference between biochemical and
behavioral effects regarding the administration of 2-methoxy
idazoxan, considering that 2-methoxy idazoxan did increase
brain DA levels (Grenhoff et al., 1993; Hertel et al., 1999)
and elevated DA levels in the brain have been shown to play
an essential role in PPI deficits in rats (Powell et al., 2003).
Currently, we do not have a satisfactory explanation for this dif-
ference. However, the difference in biochemical and behavioral
effects of some α2-AR antagonists including 2-methoxy
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idazoxan has consequently led to a suggestion that the antago-
nisms of the α2-ARs may not contribute to the regulation of the
PPI (Uys et al., 2017). Moreover, multiple receptors have been
shown to modulate PPI of startles, including 5-HT1A (Hertel
et al., 1999; Powell et al., 2005), 5-HT2A/2c (Larrauri &
Levin, 2010), and H1 (Roegge et al., 2007), besides the recep-
tors of DA and NE. The influence from these different receptors
may also be one possible explanation for our results.

Some limitations to the present study must be acknowl-
edged. Firstly, only 2-methoxy idazoxan and salmeterol were
tested to represent α2-AR antagonists and β2-AR agonists.

The α2-AR antagonists piribedil (Millan et al., 2001) and atipa-
mezole (Gobert et al., 2004), as well as β2-AR agonist formo-
terol (Dang et al., 2014), have a similar mechanism as both
2-methoxy idazoxan and salmeterol. More examination will
be performed in the near future. Secondly, all these pharmaco-
logic treatments here are the monotherapy. Alternatively, a com-
bination trial may be performed. For example, L-DOPS can be
administered with α2-AR antagonist 2-methoxy idazoxan, or
β2-AR agonist salmeterol. These combination treatments may
increase their synergic effects on the DA system, although
there is not any study reported so far. Finally, in the present

Figure 9. Identify the binding of the HAT & HDAC to the TH promoter by ChIP assay (all N= 4/group). Exposure of MN9D cells to NE for

two days increased CBP/p300 binding to TH promoter (A) and reduced the binding of HDAC2 (B) and HDAC5 (C) to the TH promoter.

“Input” serves as a loading control and rabbit IgG immunoprecipitation serves as a negative control. Top panel in each figures showed the

binding to the TH promoter in response to NE treatment. Low panel in each figure showed quantitative real-time PCR of the TH promoter

regions from immunoprecipitation with antibody against CBP/p300, HDAC2, and HDAC5. The fold enrichment value is shown as the

normalized ChIP signals divided by the normalized input signal. Each bar from both pictures represent data obtained from four separate

experiments (N= 4/group). ** p< .01, compared to the control. NE: treatment with 300 nM NE. Abbreviations: ChIP: chromatin

immunoprecipitation assay; HAT: histone acetyl transferase; HDAC: histone deacetylases; NE: norepinephrine; PCR: polymerase chain

reaction; TH: tyrosine hydroxylase.
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study, effects of HATs and HDACs on NE-induced histone
modification to effectively regulate TH transcription were inves-
tigated as a potential mechanism. However, this represents only
a part of the entire epigenetic regulation. Owing to scope limi-
tations, only limited HATs and HDACs were selected to be
tested. In addition, compared to HATs, HDACs are more
important, as chromatin remodeling mediated by HDACs is
closely involved in the regulation of gene transcription, and
HDAC inhibitors have shown promise as a treatment to
combat the cognitive decline associated with aging (Penney &
Tsai, 2014). Other HDACs and their possible roles in
NE-induced gene regulation may also be examined in the future.

In conclusion, the present study demonstrated that the
treatment of old rats with L-DOPS, α2-AR antagonist, or
β-AR agonist significantly enhanced the expression of dopa-
minergic phenotypes in the striatum, SN, and HP.
Coincident with their upregulations, these pharmacological

manipulations mostly resulted in a deficit in PPI compared
to controls. Furthermore, these treatments markedly increased
protein levels of p-Akt, a signaling kinase downstream of the
PI-3K/Akt pathway, indicating the involvement of PI-3K/Akt
pathways in NE-induced upregulation of dopaminergic phe-
notypes. The in vitro experiments extend our previous obser-
vations that the histone acetylation plays a role in these
regulations. Therefore, the results from the present study
would provide important information regarding the usefulness
of these pharmacologic interferences as potential disease-
modifying therapeutic agents against aging.
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