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A, Acer AF, Demir S, Şahin A, Erol
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Purpose: In vivo confocal microscopy (IVCM) is a noninvasive, reproducible, and
inexpensive diagnostic tool for corneal diseases. However, widespread and effortless
image acquisition in IVCM creates serious image analysis workloads on ophthalmol-
ogists, and neural networks could solve this problem quickly. We have produced a
novel deep learning algorithm based on generative adversarial networks (GANs), and
we compare its accuracy for automatic segmentation of subbasal nerves in IVCM images
with a fully convolutional neural network (U-Net) based method.

Methods: We have collected IVCM images from 85 subjects. U-Net and GAN-based
image segmentation methods were trained and tested under the supervision of three
clinicians for the segmentation of corneal subbasal nerves. Nerve segmentation results
forGANandU-Net-basedmethodswere comparedwith the cliniciansbyusingPearson’s
R correlation, Bland-Altman analysis, and receiver operating characteristics (ROC) statis-
tics. Additionally, different noises were applied on IVCM images to evaluate the perfor-
mances of the algorithms with noises of biomedical imaging.

Results: The GAN-based algorithm demonstrated similar correlation and Bland-Altman
analysis results with U-Net. The GAN-based method showed significantly higher
accuracy compared to U-Net in ROC curves. Additionally, the performance of the U-Net
deteriorated significantly with different noises, especially in speckle noise, compared to
GAN.

Conclusions: This study is the first application of GAN-based algorithms on IVCM
images. The GAN-based algorithms demonstrated higher accuracy than U-Net for
automatic corneal nerve segmentation in IVCM images, in patient-acquired images and
noise applied images. This GAN-based segmentation method can be used as a facilitat-
ing diagnostic tool in ophthalmology clinics.

Translational Relevance: Generative adversarial networks are emerging deep learning
models for medical image processing, which could be important clinical tools for rapid
segmentation and analysis of corneal subbasal nerves in IVCM images.

Introduction

WhenMarvin L. Minsky designed the first confocal
microscopy in 1957, he had no idea how his invention

revolutionized his father’s profession, ophthalmology.1
The three-dimensional nature of biological structures is
always a major challenge in medical imaging and laser
scanning confocal microscopy (LSCM), also known as
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in vivo confocal microscopy (IVCM). IVCM is one
of the most successful imaging techniques for three-
dimensional biological structures in clinical settings.
After the late 1980s when the first LSCM was intro-
duced, special attention has grown toward LSCM in
developing new methods and applications, especially
in medicine.2 After the clinical approval of the US
Food and Drug Administration, IVCM has started
to be used in ophthalmology clinics for diagnosis
of corneal diseases.3 The main advantage of LSCM
is its noninvasive, reproducible, and easily applica-
ble nature, which utilizes light rather than a physical
technique in sectioning the specimen.4 Because of this
structural advantage, IVCM enables detailed assess-
ment of sensory nerve anatomy in the dermis and
cornea.5,6

The cornea is the most innervated tissue of the
human body.7 Innervation of the cornea is made by
subbasal corneal nerves, which penetrate from the
periphery to the center of the cornea and create a
plexus between Bowman’s layer and the basal epithe-
lium.8 They have significant roles in the homeosta-
sis of the cornea, like temperature, tactile sensation,
and nociception.9 Besides corneal diseases, various
metabolic and neurological diseases affect corneal
subbasal nerve plexus negatively.10 IVCM is an excel-
lent diagnostic tool to observe corneal structure
without any invasive procedure. Especially, morpho-
logical assessment of the subbasal nerve plexus of the
cornea with IVCM guides clinicians about inflamma-
tory and neurodegenerative processes which affect the
cornea.8 IVCM imaging of the corneal subbasal nerve
changes is essential for all corneal diseases, for instance,
keratitis, keratoconus, corneal dystrophies, and dry eye
disease.11 Moreover, IVCM imaging of corneal nerves
helps to assess peripheral neuropathies caused by
various metabolic conditions, such as type-1 diabetes
or chemotherapy-induced peripheral neuropathies.12,13
The corneal subbasal nerve plexus is also an impor-
tant indirect indicator of central neurodegeneration
in multiple sclerosis (MS), Parkinson’s disease, and
various dementias.14–16

The ground-breaking properties of IVCM imaging
also bring along its limitations. Widespread and
frequent use of IVCM leads to a vast quantity of
images to analyze, extensive time periods for manual
segmentation and labeling of images, and increased
subjective evaluation between ophthalmologists.17–20
Automated segmentation and analysis of IVCM
images can easily solve these significant problems in
the clinical decision making process.21–23 Even with
novel image acquisition methods and image process-
ing programs, inter-rater variability in manual image
segmentation and analysis of IVCM images persist

as a significant problem that can be solved with
automated segmentation methods.24 However, conven-
tional segmentation algorithms are not feasible for
clinical applications because of the uneven illumina-
tion and noisy nature of IVCM images of the cornea
and their high error rates compared to other clinical
diagnostic tests.25

Deep learning-based methods have shown to be
successful in various tasks in medical imaging analy-
sis.26–28 A fully convolutional neural network (U-Net)
architecture is one of the most commonly used deep
learning architectures used for medical image segmen-
tation.29–33 U-Net has also been shown to improve
the performance of medical image segmentation by
concatenating feature maps in the upsampling path
with the corresponding cropped feature map in the
downsampling path via skip connection.34 Convolu-
tional neural networks (CNNs) are the backbones of
the U-net architectures, and they have been shown
to achieve performances close to human experts in
the analysis of medical images. CNNs recently have
become effective in various medical imaging tasks,
including classification, segmentation, and registration
and image reconstruction.27,35–41 Generative adversar-
ial networks and their extensions have also provided
solutions to many medical image analysis problems,
such as image reconstruction, segmentation, detection,
or classification.42–45 Furthermore, generative adver-
sarial networks (GANs) have been shown to segment
the images well and resolve the scarcity of the labeled
data in the medical field with the help of generative
models.

In this study, we concentrate on the segmentation
of the subbasal nerves in confocal microscopy images
using deep learning methods. A corneal nerve segmen-
tation network (CNS-Net) has previously been estab-
lished with CNN for corneal subbasal nerve segmenta-
tion in IVCM.46 Supervised learning has been success-
fully applied to trace corneal nerves in IVCM using
clinical data automatically.47,48 Deep convolutional
neural network architectures for the automatic analy-
sis of subbasal nerves have been used.49

The purpose of this study is to establish a generative
adversarial network for automated corneal subbasal
nerve fiber (CNF) segmentation and evaluation within
IVCM.GANs are specific deep learning structures that
have recently attracted extensive attention.50 GANs
consist of two separate networks, which are generators
and discriminators, and they have proved to be able
to produce images which are similar to original ones.
The original GANs use random noise data as input,
whereas conditional GANs (CGANs) integrate input
images as a conditioning variable. Thus, this allows the
network to act as a picture-to-picture translator.51,52
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We compare this GAN-based method with the U-
net network, which is a widely applied network struc-
ture for image segmentation.34 Last, we have applied
different types of noise on IVCM images to simulate
realistic noise often encountered in the ophthalmology
clinics and demonstrate performance changes in differ-
ent neural network-based methods.

Methods

In Vivo Confocal Microscopy Image
Acquisition

This study was approved by the local medical
ethics committee and adhered to the tenets of the
World Medical Association Declaration of Helsinki.
After written informed consent was obtained from
all subjects, a complete ophthalmological exami-
nation was performed and both corneas were
photographed with an in vivo confocal microscopy
(Heidelberg Retinal Tomography 3 Rostock Cornea
Module, Heidelberg Engineering GmbH, Heidelberg,
Germany).

In this study, the main purpose was the comparison
of U-Net and GAN-based algorithms on automatic
segmentation of corneal subbasal nerves in the IVCM
images. Because of this, the healthy subjects and the
patients with chronic ocular surface problems (periph-
eral neuropathy, meibomian gland dysfunction, etc.)
were randomly included to simulate clinical settings.
All subjects were surveyed regarding eye dryness,
burning, aching, epiphora, and contact lens to remove
the effects of any other factor on the subbasal nerve
plexus. The subjects who did not meet with specified
conditions were excluded from the study.

All subjects underwent corneal IVCM to analyze the
total fiber length of the corneal subbasal nerve plexus
(CNFL). Before the examination, two drops of local
anesthetic (Oxybuprocaine hydrochloride 0.4%) and a
drop of lubricant (Carbomer 2 mg/g liquid gel) were
applied to both eyes. The IVCM images were taken
in Heidelberg Retinal Tomography 3 Rostock Cornea
Module. Each image size was 384 × 384 pixels, which
covers 400 μm × 400 μm area on the cornea. The full
thickness of the central cornea was scanned using the
section mode. The duration of the examination was
approximately 5 minutes for each eye. Three images
per eye were selected, and a total of 510 images from
85 subjects were segmented by 2 blinded experienced
graders (authors E.Y. and A.Y.T.). The segmented
images were selected for deep learning methods by
one blinded experienced IVCM expert (author A.S.) to
validate corneal subbasal nerve segmentation. Graders

made all image segmentation using ImageJ software
(NIH, Bethesda, MD, USA; http://imagej.nih.gov/ij).
NeuronJ, which is the most commonly used semi-
automated nerve analysis plug-in of ImageJ, was used
to quantify nerve fibers. All visible nerve fibers were
traced in the image, and their total length was calcu-
lated as μm. After manual segmentation of IVCM
images by three blinded graders, raw IVCM images
and their nerve tracing masks were uploaded to the
IVCM image database without any patient information
(Fig. 1). Five hundred five (505) of 510 IVCM images
had been uploaded with segmentation masks for deep
learning. Five (5) of 510 IVCM images were excluded
from the study due to several artifacts.

Design of Neural Networks for IVCM Image
Analysis

The downsampling and upsampling blocks consist
of 2 convolutional layers with a kernel size of 3× 3 and
ReLU activations for U-Net (Fig. 2). The input IVCM
image sizes were 384 × 384 in this study. At the end of
the pipeline, the final convolutional layer was activated
with the logistic (sigmoid) function. Two networks’
gradual improvement at each epoch was conducted at
the end of the training process for GAN. The genera-
tor was trained to produce the real images (segmented
neurite maps), and the discriminator was trained to
differentiate the real ones (the ground-truthmaps) from
those generated by the generator. The generator was
expected to become a predictor within an error rate
when the IVCM image was given as input. The CGAN
Network structure is shown in Figure 3.

A similar approach was previously applied to retinal
fundus images to predict vessel maps, where the
network structure was named V-GAN.53 Various types
of a discriminator for generative adversarial networks,
such as whole image (an ImageGAN), a single-pixel
(a PixelGAN), or an NxN patch size (a PatchGAN),
could be selected.51 The discriminator tries to evalu-
ate the truthfulness of the generated region of the
image in all these types. A patch size of 3 × 3 was
evaluated in this study. A modified version of U-Net
was constructed for the generator part of GAN.53 The
generator and the discriminator (PatchGAN) network
structures are presented in Figure 4 and Figure 5,
respectively.

The Dataset and The Training Process

The dataset was constructed with 505 image pairs
taken from 85 patients. Each image pair consisted of
an input IVCM image and a corresponding neurite

http://imagej.nih.gov/ij
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Figure 1. Example IVCM images and masks for U-Net and GAN-based segmentation methods.

Figure 2. U-Net structure.

binary map image. The latter was created from .ndf
files annotated by experts in the laboratory using the
NeuronJ plugin of the ImageJ suite. The dataset was
further divided into two subsets: training and testing.
The distribution was randomly conducted, and the
test group had 102 image pairs whereas the training
group had 403. The selection in dividing the images
into groups was based on individuals and not images
to ensure that the network was tested on images
not similar to the ones used in the training process.

Training dataset input images were augmented with
several image operations, including flipping horizon-
tally, contrast, gamma, and brightness adjustments to
increase the variance in the input space. Any augmen-
tation function was randomly applied or not applied
at each update step (i.e. with each batch in every
epoch), with a probability of 0.5 from a uniform
distribution.

The networks and training processes were utilized
with the TensorFlow framework. The Adam optimizer
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Figure 3. General Conditional Generative Adversarial Network structure used in the study. Blue mask generated by the generator is
concatenated with the input image and labeled as fake, while the green mask is obtained by experts and labelled as real.

function with an initial learning rate of 0.0002 and a
beta value of 0.5 is run while the learning rate was
decreased over time with a scheduler. InGAN training,
both the generator and the discriminator were updated
at each iteration step. The training was conducted
on a single NVIDIA Tesla V100 GPU card (approx-
imately 0.2 image per second) and loss curves for
training and validation loss over epochs were gener-
ated to examine over-fitting issues54 (Supplementary
Fig. S1).

In order to assess the robustness of the trained
networks under noisy inputs, three separate noisy
images were artificially generated and evaluated. These
were (1) Gaussian distributed noise with the standard
deviation of 0.1, (2) salt and pepper noise with the
proportion value of 0.034, and (3) speckle noise
with the standard deviation of 0.25. All noises were
randomly distributed, and the parameters were chosen
such that all of the noisy inputs had approximately
the same peak signal-to-noise ratios (PSNRs) at
20.0 according to previous literature and interna-
tional standards.55,56 The mean signal-to-noise ratio
was calculated approximately as 12.0 (Supplementary
Fig. S2).

Statistical Analysis

Intraclass correlation coefficient (ICC) was calcu-
lated from CNFL by an experienced third grader
(author A.S.) to confirm inter-rater reliability between
experts and to validate manual segmentation results of
two graders (authors E.Y. and A.Y.T.). ICC between
two graders had been found 0.97 (0.96–0.98) with
a 95% confidence interval. Segmentation procedure
repeated by experienced IVCM expert (author A.S.) in
disputed images to increase the reliability of themanual
segmentation.57

Corneal nerve fiber segmentation results of U-
Net and GAN-based algorithms were compared
with the manual segmentation results as the ground
truth. Image to image comparison results of different
algorithms analyzedwith different statistical tests for all
diagnostic parameters. Corneal subbasal nerve segmen-
tation results of U-Net and GAN-based methods were
statistically analyzed with Pearson’s R correlation for
correlation coefficient and Bland-Altman analysis for
bias calculation.58 Accuracy, sensitivity, and specificity
of U-Net and GAN-based methods were also calcu-
lated with receiver operating characteristics (ROC)
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Figure 4. Generator part of GAN structure.

Figure 5. PatchGAN structure used for the discriminator part for GAN.

from the confusion matrix. Two-sided p value < 0.05,
which was also equal to 95% confidence interval and
±1.96 standard deviation (SD) interval, was considered
statistically significant. For Pearson’s R correlation, r
> 0.80 was considered as a solid positive correlation.59
Statistical analysis results were indicated as (mean ±
SD) or the coefficient of repeatability CR (−1.96 SD
+1.96 SD), which is calculated according to the origi-
nal article of Bland and Altman published in 1986.60

Results

U-Net and GAN-Based Segmentation Results

The U-Net based segmentation method demon-
strated high levels of correlation (r = 0.883, R2 =
0.779) and low levels of bias (1.189 ± 1.929) compared
to the segmentation results of the experts (Fig. 6).
The coefficient of repeatability was also calculated
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Figure 6. Correlation (a) and Bland Altman (b) plots for U-Net structure.

Figure 7. Correlation (a) and Bland Altman (b) plots for GAN structure.

as 4.425 (3.892–5.128). These results showed resem-
blance with U-Net based DeepNerve algorithm, which
was used for corneal subbasal nerve segmentation of
macaques.49

The GAN algorithm also performed similarly to
U-Net in correlation and Bland Altman analysis for
subbasal nerve segmentation from IVCM images (Fig.
7). GAN-based segmentation of corneal subbasal
nerves in IVCM images showed high correlation
(r = 0.847, R2 = 0.717) and low levels of bias (3.279
± 2.141) compared to the results of the experts’
segmentation. In Bland-Altman’s analysis, the coeffi-
cient of repeatability was also calculated as 7.664
(6.741–8.882). It could be noticed that GAN displayed
similar performance with U-Net based algorithm for

segmentation of corneal subbasal nerves in IVCM
images.

We also observed that GAN showed significantly
higher accuracy for the segmentation of IVCM images
when ROC curves were compared for both methods.
Whereas the area under the curve for U-Net was
0.8934, the area under the curve for GAN was 0.9439
(Fig. 8). When IVCM images were compared one
by one, U-Net and GAN-based algorithms masked
similar areas in high-quality IVCM images. On the
other hand, the U-Net based segmentation method
showed a higher number of false-positive pixels
for images with artifacts (e.g. uneven illumination
and device-related noise) and distractor objects (e.g.
dendritic cells, damaged nerves, and corneal foldings)
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Figure 8. ROC curves for GAN and U-Net structures.

compared to the GAN algorithm (see Fig. 1). There-
fore, we had included three of the most common noise
types in medical imaging to the IVCM images and
then applied automatic segmentation with U-Net and
GAN-based algorithms.

Noise Simulation Results

Three different types of noises were applied on
IVCM images to simulate daily challenges in ophthal-
mology clinics for neural networks-based segmenta-
tion of IVCM images. Gaussian, salt and pepper
(S&P), and speckle type noises with 12 signal-to-noise
ratio (SNR), and 20 peak SNR levels were applied
on IVCM images. The accuracy of the U-Net signif-
icantly decreased with speckle type noise (0.818 ±
0.029) compared to the original images (0.893 ± 0.022)
and the images with other noises (0.883 ± 0.023 for
Gaussian, 0.879 ± 0.024 for S&P). For the GAN-
based method, Gaussian and S&P noises (0.915 ±
0.020 for Gaussian and 0.914 ± 0.020 for S&P) did
not decrease the accuracy of corneal subbasal nerve
segmentation significantly. However, speckle type noise
(0.878 ± 0.024) significantly decreased the accuracy of
the automatic segmentation of GAN compared to the
results without noise (0.944 ± 0.015; Fig. 9).

Discussion

In our study, we have compared U-Net and
GAN-based corneal subbasal nerve segmentation
methods in IVCM images. Although U-Net and GAN
demonstrated equal performance in correlation and
Bland Altman analyses, GAN showed significantly
higher accuracy in ROC analysis. Additionally, we
have simulated noise types, which clinicians often

encounter during medical image acquisition, by apply-
ing Gaussian, S&P, and speckle type noises with equal
SNR levels. BothU-Net andGAN-based segmentation
methods were affected at most by speckle type noise.
The decrease in U-Net based segmentation algorithm
accuracy was significantly higher than the GAN-based
segmentation algorithm in all types of noises.

Our study is the first application of GAN-based
algorithms on IVCM images, to the best of our knowl-
edge. GAN-based algorithms have been studied to
the segmentation of medical images from various
imaging modalities, such as computed tomography,61
magnetic resonance,62 x-radiation,63 and ultrasound
imaging.64 In ophthalmology, GANs are used for the
segmentation of retinal vessels in fundus images.53,65
Traditional segmentation approaches, such as graph-
cut methods, have utilized pixel-wise correspondence
over the decades with some significant caveats, includ-
ing artifacts and leakages. GANs have a potential
to bring out the best of the approaches, where the
discriminator unit is acting as a shape regulator.44
Although the effect of regularization is reported to be
more eminent with compact shapes, unlike vessels or
neurites, the discriminator’s perception size might be
set up from the whole image to a single pixel, as in the
ImageGAN, PatchGAN, and PixelGAN examples. To
regularize the network and overcome the collapses in
the training process, Li and Shen66 proposed a method
that combines CGAN with AC-GAN and introduces
a classifier loss term to their structure in the cell
segmentation task. Although a pre-processing step is
conducted in a study compared to ours, the classifi-
cation loss is shown to improve the resulting segmen-
tations. Unannotated images and the annotated ones
may also be fed into the segmentation workflow where
the former ones will help the training, leading to amore
robust discrimination process andmore accurate gener-
ated segmentation maps.67 The main disadvantage of
GAN-based algorithms is training separate networks
together. During the training of the networks, GAN
creates a zero-sum game to reach an equilibrium point
between these networks, which is intuitively in contrast
to the conventional algorithms, where the objective
function is to minimize the loss of function.68 There-
fore, several issues are observed in training of GANs,
as experienced in this study as well, including oscilla-
tions, mode collapses, diminishing, or exploding gradi-
ents.69 In order to overcome andminimize these effects,
a tedious fine-tuning approach must be followed. On
the other hand, GANs have two significant advantages
over U-Net or similar structures. Firstly, GANs let the
generator networks produce near-realistic images. In
medical imaging literature, this is efficiently utilized in
image synthesis where the number of the images of a
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Figure 9. ROC curves for U-Net (a) and GAN (b) structures with different noises.

dataset is insufficient, as in many situations in medical
image acquisition, to expand the datasets.70 Second,
GANs are more robust to artifacts and digital image
noise sources in general with the help of the discrimi-
nator enforcing the generator to produce better outputs
(e.g. segmentation maps in this case).71

Segmentation of corneal subbasal nerves in IVCM
images is still made manually by the experts in ophthal-
mology clinics. Existing automated corneal subbasal
nerve analysis software still has lower accuracy
compared to the experts in clinical applications.72
Neural networks-based algorithms are significantly
superior to the other automated corneal subbasal
nerve segmentation software, and preliminary studies
hope about clinical applications.48,73 Different types
of neural network-based methods have been used for
corneal subbasal nerve segmentation, but most of the
studies concentrated on U-Net based algorithms.46,49
Oakley et al. produced an auto-encoder and U-Net
based neural network algorithm with high accuracy
for corneal subbasal nerve segmentation in IVCM
images of macaques.49 They have implemented pre-
processing and post-processing algorithms to increase
the accuracy of U-Net based segmentation methods.
Wei et al. built a CNN-based structure for corneal
subbasal nerve segmentation in IVCM images and
tested it on patients acquired IVCM images in an
ophthalmology clinic.46 Unfortunately, this study did
not make inter-rater reliability measurement, subject
separation, and correlation analysis to increase the
reliability of the segmentation method. Our study
compared the GAN-based corneal subbasal nerve
segmentation algorithm with a similar CNN-based
algorithm of Wei et al., and we showed significantly
higher accuracy for corneal subbasal nerve segmen-
tation compared to the CNN-based method. We
applied a three-grader system and inter-rater reliabil-
ity test to increase the reliability of manual segmen-

tation of corneal subbasal nerves. We did not use
any pre-processing or post-processing algorithms to
show the actual capacity of the GAN-based segmen-
tation algorithm. In addition to them, we made subject
separation for test and training image sets and applied
common types of medical imaging noises in the exper-
iments.

In our study, the pre-processing methods for image
analysis, such as background subtraction or edge
detection algorithms, were not applied to the IVCM
images to assess the actual capacities of U-Net and
GAN-based algorithms. As with any deep learning-
based technique, such a task requires numerous train-
ing images to generalize the underlying structures to
be predicted. The more IVCM images collected and
annotated by experts, the more robust and efficient the
networks become. The model selection and adapting,
hyperparameter optimization, and convergence of the
networks are only some of the significant difficulties in
most deep learning-based studies. Particularly, GANs
are shown to be prone to some limitations in training
due to several reasons, including nonconvergence issues
where the model oscillates or never converges, vanish-
ing or exploding gradients where the discriminator
overwhelms over the generator, and mode collapses in
which the generator does not improve.74 Even though
the cohort size of the study was small compared to
other studies, GANs showed significantly better perfor-
mance than CNN based algorithms. Good perfor-
mance of the GAN based algorithms in augmented
and limited data sets has been shown in previous litera-
ture.75 Because of privacy concerns, access to biomed-
ical images for deep learning applications decreased in
recent years.76 We also applied image augmentation,
and it helped the training process with small-sized data
sets by increasing the variance within the input space.77
These augmentation operators were selected randomly
whether to apply or not at each batch step of the
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training process.78 GANswith augmentation operators
could be helpful for biomedical image analysis with a
minimal number of images for various modalities.

GAN-based algorithms promise high hopes for
biomedical imaging applications. In this first GAN
study on IVCM images, we have focused on corneal
subbasal nerve segmentation. However, applications of
GAN-based algorithms in IVCM images could not
be limited to the segmentation of the corneal nerve
plexus. GAN-based algorithms also could be used in
IVCM images of different layers of the cornea. GANs
are currently used for image reconstruction, denois-
ing, super-resolution, classification, object detection,
and cross-modality image synthesis in various biomed-
ical imaging modalities, and they also could be used
in IVCM images for similar purposes.44 Because of
their generator-discriminator reciprocal structure, they
have significantly higher success rates than the other
deep learning algorithms. Because of their structures,
GANs could be precious diagnostic tools to discrimi-
nate lesions in specific conditions with a very limited
number of images.79 In this study, we mainly focused
on its capability of segmentation for corneal subbasal
nerve plexus of the patients with ocular surface
problems and healthy subjects. In further studies, we
will investigate its capability of diagnostic classification
for various corneal nerve-related lesions and diagnos-
tic precision of various corneal pathologies in IVCM
images.

Conclusions

The conjunction of Minsky’s two important works,
IVCM and artificial intelligence, is opening new
horizons in medical imaging. Generative adversarial
networks are still in their infancy, but their applications
on various medical imaging modalities indicate great
potentials. In our study, we compared GAN with U-
Net, which is a commonly used deep learning method
for image segmentation, for segmentation of IVCM
images. Our study demonstrated the superiority of the
GAN-based algorithm for accurate segmentation of
corneal subbasal nerves compared to the U-Net based
algorithm.
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