
Research Article
Genomic and Immunological Characterization of Pyroptosis in
Lung Adenocarcinoma

Yaobo Song,1 Zhen Qu,2 Hu Feng,3 Long Xu,4 Yajie Xiao ,5 Zhikun Zhao,5

Dongfang Wu ,5 Chao Sun,5 Xinglong Fan ,6 and Dongmei Zhou 1

1Department of Medical Oncology Ward, Yantaishan Hospital, Yantai 264001, China
2Department of Oncology, No. 970 Hospital, Yantai, 264001, China
3Department of Oncology, Weihai Municipal Hospital, Weihai, Shandong 264200, China
4Department of Oncology, General Hospital of Northern )eater Command, Shenyang 210100, China
5Department of Clinical Translational Medicine, YuceBio Technology Co., Ltd., Shenzhen 518000, China
6Department of )oracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University,
Qingdao 266035, China

Correspondence shouldbeaddressed toXinglongFan;xinglongfan2007@126.comandDongmeiZhou; zhoudongmei68@163.com

Received 12 April 2022; Accepted 19 May 2022; Published 27 July 2022

Academic Editor: Mingjun Zheng

Copyright © 2022 Yaobo Song et al. 0is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pyroptosis is a programmed cell death that may either promote or hinder cancer growth under different circumstances.
Pyroptosis-related genes (PRGs) could be a useful target for cancer therapy, and are uncommon in lung adenocarcinoma (LUAD).
0e expression profiles, mutation data and clinical information of LUAD patients were included in this study. A pyroptosis-
related prognostic risk score (PPRS) model was constructed by performing Cox regression, weighted gene co-expression network
analysis (WGCNA), and least absolute shrinkage and selection operator (LASSO) analysis to score LUAD patients. Somatic
mutation and copy number variation (CNV), tumor immunity, and sensitivity to immunotherapy/chemotherapy were compared
between different PPRS groups. Clinical parameters of LUAD were combined with PPRS to construct a decision tree and
nomogram. Red module was highly positively correlated with pyroptosis. Seven genes (FCRLB, COTL1, GNG10, CASP4, DOK1,
CCR2, and AQP8) were screened from the redmodule to construct a PPRSmodel. Significantly lower overall survival (OS), higher
incidence of somatic mutation and CNV, elevated infiltration level of the immune cell together with increased probability of
immune escape were observed in LUAD patients with higher PPRS, and were more sensitive to Cisplatin, Docetaxel, and
Vinorelbine. We constructed a new PPRS model for patients with LUAD. 0e model might have clinical significance in the
prediction of the prognosis of patients with LUAD and in the efficacy of chemotherapy and immunotherapy.

1. Introduction

Pyroptosis is a type of cell death programmed caused by the
family of proteins known as Gasdermin, which results in cell
enlargement, dissolution of plasma membranes, fragmen-
tation of chromosomes, and release of intracellular pro-
inflammatory molecules, thereby triggering inflammation
and immune responses [1–3]. 0e relationship between
cancer and pyroptosis is a prominent subject in immunology
at present. Pyroptosis has a crucial role in enhancing or
inhibiting several cancers types, including breast cancer,
gastric cancer, esophageal cancer, cervical cancer [4]. In

addition, cancer cell pyroptosis can be induced during
cancer therapy, including chemotherapy, the treatment by
small molecule drugs, and nanodrugs [5]. Recent studies
focused on those affecting pyroptotic inflammasomes and
promoting pyroptosis molecules, which are expected to be
effective targets for the treatment of different cancers [4].

In non-small cell lung cancer (NSCLC) cell lines, sim-
vastatin was found to suppress cancer cell proliferation and
migration through inducing pyroptosis [6]. Especially, the
gasdermin D (GSDMD) and gasdermin E (GSDME) are two
important executioners in the pyroptosis mechanism in-
duced by cancer therapy [7]. A number of pyroptosis core
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proteins are associated with prognosis of many cancer types
such as hepatocellular carcinoma, colorectal cancer, gastric
cancer, and lung cancer [3]. Gao et al. discovered that
knocking down GSDMD could restrict NSCLC cell growth
both in vitro and in vivo, and GSDMD overexpression was
significantly associated with poor prognosis in lung ade-
nocarcinoma (LUAD) [8].

To date, several bioinformatics-based studies have
identified pyroptosis-related genes (PRGs) in specific can-
cers. Chen et al. developed a risk model consisting of 6 PRGs,
which can successfully be used to evaluate the survival and
prognosis of hepatocellular carcinoma and distinguish the
risk and predict the immune infiltration and treatment ef-
ficiency of HCC [9]. Recent reports provide a novel PRGs
signature to predict breast cancer patients’ tumor immune
microenvironment and prognosis [10]. Zhou’s study iden-
tified a group of PRGs that can effectively predict ovarian
cancer patients’ response to chemotherapy and immuno-
therapy [11]. Luo et al. screened seven possible biomarkers
to predict the prognosis of patients with colorectal cancer
and provide therapy recommendations for these patients
[12]. Lung cancer is a leading cause of cancer-related deaths
[13], with lung adenocarcinoma (LUAD) accounting for
40% of the incidence of all lung cancer cases [14]. 0e role of
PRGs depends on the type of cancer, and few PRGs have
been found in LUAD. 0erefore, PRGs play an important
role in LUAD.

By performing PRGs bioinformatics analysis, we in-
vestigated the LUAD genetic variation on the basis of PRGs
in the present research. 0e pyroptosis-related prognostic
risk score (PPRS) model was developed based on the least
absolute shrinkage and selection operator (LASSO) and
Weighted gene co-expression analysis (WGCNA) regression
analysis. 0e features of differential mutation, biological
process, immune infiltration, immunotherapy, and che-
motherapy response between PPRS groups were studied. In
addition, PPRS was combined with clinicopathological
features in the construction of a decision tree and nomogram
to optimize the predictive accuracy of the risk of LUAD.

2. Materials and Methods

2.1. Data Collection and Processing. 0e workflow of this
study was shown in Figure S1. We obtained the expression
profile of gene data, copy number variation (CNV), and
somatic mutation data of the treated primary LUAD samples
from 0e Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). After preprocessing, 500 primary
LUAD samples remained in the TCGA cohort. Two other
independent LUAD cohorts, GSE31210 and GSE72094, were
obtained from the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/). After preprocessing, 226
samples and 398 samples remained in the GSE31210 and
GSE72094 cohorts.

2.2. Acquisition and Genomic Mutation Analysis of PRGs.
We obtained 27 PRGs from Molecular Signature Database
(MSigDB) [15] (https://www.gsea-msigdb.org/gsea/msigdb/)

by searching for “REACTOME PYROPTOSIS.” 0e somatic
mutation in LUAD tissue was shown by waterfall map by R
software “maftools” [16]. Comparison of CNV difference of
27 PRGs was examined by Kruskal-Wallis test.

2.3. )e Relation between Pyroptosis Score and LUAD
Prognosis. Based on the expression level of 27 PRGs, the
pyroptosis score of each sample in LUAD was quantified by
ssGSEA and arranged in ascending order. 0e relation of
pyroptosis score, clinical features (including T stage, age, N
stage, M stage, sex, survival status, and clinical stage) with
overall survival was evaluated by multivariate and univariate
Cox regression analysis. Pyroptosis score in different clinical
features was analyzed by Wilcoxon test or Kruskal-Wallis
test.

2.4. WGCNA. With the R package “WGCNA,” a gene co-
expression network was developed [17] using gene ex-
pression value in the identification of the co-expression gene
module. First, the scale-free topology fit index for 1 to 30
powers was computed using the “pickSoft0reshold”
function. According to blockwiseModules, automatic block
module detection was performed. When the independence
degree reached 0.8, the appropriate power value was de-
termined, and the module’s minimum number of genes was
set to 30. Subsequently, highly related modules were merged
to form a novel module (parameters: deepSplit� 2, min-
ModuleSize� 30, height� 0.25). 0e highly related modules
were merged into a new module (parameters: height� 0.25,
deepSplit� 2, minModuleSize� 30). 0e correlation be-
tween eigengene module and PRGs was used to estimate the
module-pyroptosis association to identify pyroptosis-related
gene modules.

2.5. PPRS Was Constructed to Assess the Different Risks of
LUAD. 0e hub gene of the module was identified by the
gene expression of the pyroptosis-related module together
with the Pearson correlation analysis on the pyroptosis
score. 0e hub genes not substantially correlated with the
survival of patients with LUAD (P> 0.05) were removed by
performing univariate Cox regression analysis. 0e genes
showing close correlation with the prognosis of LUAD
patients were selected in performing LASSO and multi-
variate Cox regression analysis. Finally, the screened genes
were utilized as variables in constructing the model:
pyroptosis-related prognostic risk score
(PPRS) � 􏽐Coefficient(mRNAi)∗Expression i. Notably, i
refers to the final screened genes.

2.6. Functional Enrichment Analysis. According to the risk
score of the median, the samples were separated into two
groups, namely the low-risk group and the high-risk group.
0e R software package “GSVA” was utilized to compute
each sample’s ssGSEA score in various functions, and the
Pearson correlation with PPRS was analyzed for the LUAD
samples in TCGA cohort. Furthermore, gene set enrichment

2 Journal of Oncology

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/


analysis (GSEA) was performed for two groups based on
candidate gene sets in the Hallmark database [15].

2.7. Determination of Immune Score and Stromal Score.
0e ESTIMATE algorithm [18] was run to estimate immune
score, stromal score, and ESTIMATE score in the TME,
where ESTIMATE score was the combined score of immune
score and stromal score.

2.8. Evaluation of ImmuneCell Infiltration. CIBERSORT is a
gene expression-based universal deconvolution algorithm
that can conduct an estimation of the relative proportion of
22 types of immune cells from tissue gene expression profiles
[19]. CIBERSORT (https://cibersort.stanford.edu/) algo-
rithmwas used to assess the relative abundance of 22 types of
immune cells in 3 LUAD cohorts. Moreover, the differences
in the infiltration levels of immune cells between low-risk
and high-risk groups were evaluated by performing the
Wilcoxon rank-sum test.

2.9. Response Analysis regarding Immunotherapy and
Chemotherapy. Based on the data of immune checkpoints
obtained from HisgAtlas database [20], the differences
between low-risk and high-risk groups in their expression
levels got analyzed by performing the Wilcoxon test. 0e
potential clinical effects of immunotherapy in our defined
risk group were evaluated by TIDE (http://tide.dfci.
harvard.edu/). Additionally, on the basis of the informa-
tion retrieved from the Genomics of Drug Sensitivity in
Cancer (GDSC) database, sample sensitivity to four
commonly used clinical chemotherapeutic drugs was
predicted. 0e IC50 determined by R packet “pRRophetic”
was used as the comparison index among risk groups.

2.10. Establishment of the Decision Tree and Nomogram.
According to the clinical characteristics of LUAD samples in
the TCGA cohort such as age, sex, M Stage, N Stage, T stage,
Stage and PPRS, decision tree was developed using the R
packet “rpart”. By Combining these clinical features and
PPRS, a nomogram was constructed. 0e model’s perfor-
mance was then evaluated based on the DCA using the
ggDCA package.

2.11. Statistical Analysis. 0e significant differences in OS
between the twoPPRS groupswere observed by performing the
Kaplan-Meier survival analysis and log-rank test. 0e “time-
ROC” software was used to generate ROC. Wilcoxon test was
used for the comparison between the two groups. All drawings
and statistical analyses were carried out using the R software (R
Foundation for Statistical Computing, v.4.0.0). Double-tailed
P< 0.05 was considered to be of statistical significance.

3. Results

3.1. PRGs Expression and Genetic Differences in LUAD.
We investigated the presence of somatic mutations in PRGs
from0e Cancer Genome Atlas (TCGA, on the web: https://

portal.gdc.cancer.gov/)-LUAD samples. Of the 565 LUAD
samples from TCGA, 300 PRGs were mutated.0e results in
the waterfall showed that TP53 had the highest mutation rate
(90%), followed by CASP5 (4%), TP63 (4%), CASP1 (3%),
and GSDME (3%) (Figure 1(a)). To determine whether these
mutations affected the survival and biological function of
LUAD, the OS of PRGs wild type and PRGs mutant samples
were compared, and we observed no significant change of
OS between them (Figure 1(b)).0e results of GSEA analysis
showed that compared with PRGs wild type samples, E2F
targets, MYC targets, G2M checkpoint, mitotic spindle,
mTOR signaling, and DNA repair were significantly acti-
vated, whereas the p53 pathway was significantly inhibited in
PRGs mutant samples (Figure 1(c)). CNV was detected in 27
PRGs, and CNV occurred in all of them, among which the
copy number amplification in GSDMD, CHMP6, CHMP4C,
CHMP4A, and TP6 was the most obvious, and only copy
number loss occurred in CHMP2A and IRF1 (Figure 1(d)).
To study whether the change of copy number had an effect
on the expression of 27 PRGs, we analyzed the expression of
PRGs in copy number amplification group, copy number
deletion group, and copy number no significant change
group, and found remarkable differences in the expression
levels of these 17 PRGs among three groups (Figure 1(e)). In
the 27 PRGs, apart from CASP4, CHMP6, CHMP7,
GSDMD, and TP63, the other 22 PRGs were expressed
differentially at a significant level between primary tumor
and paracancerous samples (Figure 1(f)).

3.2. Pyroptosis Is the Main Factor )reatening the Survival of
Lung Adenocarcinoma. We ranked the pyroptosis scores of
each sample obtained by single sample gene set enrichment
analysis (ssGSEA), analyzed the correlation with different
clinical features, and found that pyroptosis scores were sig-
nificantly correlated with N stage and survival state, and that
the proportion of dead LUAD samples increased with the
increase of pyroptosis scores (Figure S2A). We performed the
multivariate and univariate Cox analyses to explore the in-
fluence of each pyroptosis score and clinicopathological
characteristic on the prognosis of patients with LUAD.
According to the results, it was observed that the prognosis of
patients with LUAD was affected by the T stage, pyroptosis
score, and N stage in an independent manner (Figure S2B and
S2C). Moreover, the OS duration of the samples with low
pyroptosis scores determined based on pyroptosis score
grouping was remarkably longer compared to samples expe-
riencing high pyroptosis scores (Figure S2D). TCGA-LUAD
samples were stratified in accordance with several clinical
features including Tstage, N stage, survival status, clinical stage,
M stage, sex, and age. From the results, it was found that the
scores of pyroptosis were different at a significant level among
the samples exposed to different survival conditions (either
dead or alive), different N stage (N1–N4) and different clinical
stage (stage I–IV) stratification, respectively (Figure S2E).

3.3. Identification of the Modules Associated with Pyroptosis.
We firstly clustered LUAD samples in the TCGA cohort to
detect outliers (Figure 2(a)). 0e independence degree
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Figure 1: Genetic and expression variations of PRGs in TCGA cohort. (a) 0e waterfall diagram shows the somatic mutations of 27 PRGs
from the LUAD sample of TCGA. (b) Kaplan-Meier survival plot of two groups with mutant and wild type (WT) PRGs. (c) GSEA of
hallmark pathways by comparing mutant group to WT group in LUAD samples. (d) 0e CNV fraction of PRGs in LUAD samples. (e)
Comparison of CNV difference in 27 PRGs in LUAD samples. (f ) Comparison of expression of 27 PRGs between normal and LUAD
samples. Log-rank test was performed in (b). Kruskal-Wallis test was performed in (e) and Wilcoxon test was performed in (f). ns, no
significance. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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Figure 2: Continued.
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reached 0.85 and the soft threshold power was equal to 4,
indicating a strong average connectivity (Figure 2(b)). 0e
dynamic tree cut package generated a tree map of gene
clusters and showed 55 modules, each of which was colored
differently. (Figure 2(c)). Figure 2(d) presented the number
of genes belonging to each module. Module-pyroptosis
correlation analysis displayed that there was a positive
correlation between red module with pyroptosis (r� 0.42,
P< 1e − 5) (Figure 2(e)). 0e module membership (MM)

showed a positive correlation with gene significance (GS) for
genes pyroptosis in this module (Figure 2(f )).

3.4. PPRS Model Construction and Evaluation. 0e genes in
the red module were filtered. Specifically, the relationship
between pyroptosis score and the genes in to the red module
was investigated, and the module’s hub genes were screened
with a criterion of P< 0.01. A total of 73 genes were chosen
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Figure 2: Identification of modules related to pyroptosis by WGCNA. (a) Hierarchical clustering of the genes of LUAD samples in the
clustering analysis. (b) Analysis of network topology for various soft-thresholding powers. (c) 0e dendritic map of gene clusters generated
by the dynamic tree cut package. (d) 0e number of genes contained in each module. (e) Correlation analysis of module-pyroptosis. 0e
upper part represents the hierarchical clustering of the whole module, and the lower part represents the correlation between the module and
pyroptosis. (f ) 0e scatter plot of module membership (MM) and gene significance (GS) for pyroptosis in the red module.
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for subsequent investigation using the univariate Cox re-
gression analysis (P< 0.05, Figure 3(a) and Table S1).
Functional analysis on these screened 73 genes showed
that immune-related terms and pathways were signifi-
cantly enriched, supporting a correlation between
pyroptosis and tumor immunity (Figure S3). Among the
73 chosen genes, 10 of them retained with a minimum λ of
0.0295) by the LASSO-Cox regression model (Figure 3(b)).
7 of the 10 genes were selected to construct the model by
stepwise multivariate regression analysis. Among the 7
genes, COTL1, FCRLB, CASP4, and GNG10 were the risk
factors, whereas protective factors were CCR2, AQP8 and
DOK1 (Figure 3(c)). 0e PPRS of each LUAD sample in
TCGA was calculated and normalized according to our
defined formula (PPRS was converted to z-score). LUAD
samples were divided into high-PPRS and low-PPRS
groups based on the z-score of PPRS � 0. 0e PPRSs of the
samples were arranged in ascending order. 0e corre-
sponding survival status and the expression of 7 genes
showed that the increase of PPRS was accompanied by the
increase in the number of dead patients (Figure 3(d)). 0e
high-PPRS group in the TCGA-LUAD cohort had a lower
survival rate at the same period, according to the results of
the survival analysis (Figure 3(e)). 0e areas under the
receiver operator characteristic (ROC) curve (AUC) for
PPRS were 0.73, 0.7, and 0.66 for the 1-, 3-, and 5-year
prognosis prediction, respectively (Figure 3(f )). 0e same
analysis was performed in GSE31210 and GSE72094 co-
horts, and the difference of OS between two groups and the
efficacy of prediction were validated similarly, thereby
confirming the overall accuracy and validity of the PPRS
(Figure 3(g), 3(h)).

3.5. Genomic Mutation in PPRS Risk Group. We studied
whether PPRS was related to genomic stability, and dis-
covered that some clinical characteristics of patients be-
longing to the high-PPRS group were more in comparison
to those in the low-PPRS group, indicating that the ge-
nome of the high-PPRS group was more unstable. 0is
was performed through a comparison of the homologous
recombination defects, the number of segments, altered
fraction, the score of aneuploidy and tumor mutation
burden from both groups (Figure 4(a)). All the five ge-
nomic features were positively correlated with PPRS
(Figure 4(b)). 0e prevalence of CNV together with the
somatic mutation in the high- and low-PPRS group was
shown in the waterfall map. 0e prevalence of somatic cell
mutation, CNV amplification, and deletion in the high-
PPRS group was considerably higher than that in the low-
PPRS group (Figure 4(c)).

3.6.EnrichmentPathwayandImmuneCharacteristics ofPPRS
Risk Group. We determined the function of PPRS and
observed that there was a positive correlation between PPRS
and cell cycle, replication of DNA, repair of nucleotide
excision, homologous recombination, and mismatch repair
and other pathways regulating cell proliferation (Figure 5(a),
Table S2). We performed a comparison on the normalized

enrichment scores (NESs) present in high-PPRS and low-
PPRS groups, and high-PPRS was significantly enriched in
MYC targets, E2F targets, G2M checkpoint, mTOR sig-
naling, DNA repair, and other pathways relative to low-
PPRS. 0ese pathways were important pathways that affect
cancer cell proliferation (Figure 5(b)). A total of 22 immune
cells types were compared between the high-PPRS group and
the low-PPRS group in TCGA-LUAD. We noted that the
differences were quite significant in the relative proportion
of resting mast cells, monocytes, M0 macrophages, resting
dendritic cells, resting memory CD4T cells, resting NK cell,
memory B cell as well as activated mast cells between the two
groups. 0e relative proportion of the M0 macrophages and
activated mast cells from the high-PPRS group were con-
siderably greater than the low-PPRS group. Moreover, the
relative proportion of the other 6 immune cells from the
low-PPRS group was found to be higher compared to that
from the low-PPRS group (Figure 5(c)). 0e Pearson cor-
relation analysis array showed that PPRS was significantly
correlated with resting memory CD4Tcells, resting dendritic
cells, M0 macrophages, monocytes, and resting mast cells
(Figure 5(d)). Furthermore, immune score, stromal score,
and ESTIMATE score were substantially lower in the high-
PPRS group in comparison to those in the low-PPRS group
(Figure 5(e)). In addition, the same tumor microenviron-
ment (TME) analysis was also carried out in GSE31210 and
GSE72094, and the results can be found in Figure S4.

3.7. PPRS canAssist in Identifying PatientsWhoCould Benefit
from Chemotherapy and Immunotherapy. To explore
whether PPRS can distinguish the response of patients with
different risks to immunotherapy and chemotherapeutic
drugs, immune checkpoint expression between the two
groups classified according to PPRS was analyzed. 0e
findings indicated that many differentially expressed im-
mune checkpoints existed in the PPRS groups of the three
LUAD cohorts, and the most representative ones were
CD274, CTLA4, and PDCD1, at least between the high- and
the low-PPRS group of the two cohorts (Figure 6(a)–6(c)).
0e levels of immune checkpoints with the highest ex-
pression in the high-PPRS group were calculated by
Figure 6(d). CD274, CTLA4, and PDCD1 were in the col-
umn. 0e scores of myeloid-derived suppressor cells
(MDSC), T cell exclusion and Tumor Immune Dysfunction
and Exclusion (TIDE) in the high-PPRS group were sig-
nificantly higher than those in the low-PPRS group. 0e
score of T cell dysfunction was considerably greater in the
group of low-PPRS (Figure 6(e)). 0ese findings indicated
that the immune escape probability was higher in the group
with high PPRS, and the potential value of immunotherapy
in this group may be lower.

0e half-maximal inhibitory concentration (IC50)
analysis of different chemotherapeutic drugs in the group of
high-PPRS and the group of low-PPRS demonstrated that
the high-risk group had a lower IC50 of Docetaxel, Cisplatin,
indicating that the high-PPRS group was more suitable for
the treatment of Cisplatin, Docetaxel, and Vinorelbine than
the low-PPRS group (Figure 6(f)).
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Figure 3: Construction and evaluation of PPRS model. (a) A total of 73 promising candidates were identified among hub genes extracted
from the red module. (b) 10 of the 73 genes were retained by application of LASSO-Cox regression model with a minimum of λ (λ� 0.0295).
(c) FCRLB, COTL1, GNG10 and CASP4 were risk factors, while DOK1, CCR2 and AQP8 were protective factors. (d) PPRSs and cor-
responding living state of the samples obtained in ascending order and expression of 7 genes of the samples. (e)0e survival rate of the high-
PPRS group and the low-PPRS group in the TCGA-LUAD cohort. (f )0e ROC curve of the PPRSmodel in the TCGA-LUAD cohort. (g) In
cohorts GSE31210, the difference in OS and predictive efficacy was validated. (h): 0e difference in OS and predictive efficacy was validated
for GSE31210 cohort. Log-rank test was conducted in (e g, and h).
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3.8. )e Combination of PPRS and Clinicopathological Fea-
tures Improved the Survival Prediction of LUAD. 0edecision
tree on the basis of clinical characteristic (M stage, sex, age, N
stage Clinical stage, and T stage) together with PPRS showed
that only T stage, PPRS, and N stage were retained in the
decision tree, and that four different risk subgroups C1–C4
were identified (Figure 7(a)). From C1 to C4, the risk increased
gradually, the patients’ OS reduced gradually, and a remarkable
difference in OS between the groups was observed
(Figure 7(b)). Among the four subgroups defined by the de-
cision tree, C1 contained only low-PPRS samples, C2 only

included high-PPRS samples, and C3 and C4 samples with
high-PPRS accounted for a large proportion (Figure 7(c)).
From C1 to C4, the proportion of patients in death status
gradually increased (Figure 7(d)). Multivariate and univariate
Cox regression analyses of all the PPRS and clinical features
indicated that the T stage, PPRS, and N stage were the inde-
pendent prognostic factors of LUAD (Figure 7(e)).

Moreover, a nomogram was constructed by combining
clinical parameters with PPRS (Figure 7(f)). 0e calibration
chart showed that the predicted OS of the nomogram fitted
well with the actual OS (Figure 7(g)). Decision curve analysis
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in TCGA-LUAD and 22 kinds of immune cells. (e) Stromal score, immune score and ESTIMATE score of high-PPRS group and low-PPRS
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(DCA) showed that nomogram was a better prognostic
indicator than other variables in clinical decision-making
(Figure 7(h)). 0e tROC analysis showed that nomogram
consistently had the highest AUC in predicting 1–5 years of
OS, indicating its strong ability to predict survival
(Figure 7(i)).

4. Discussion

0e unclear function of pyroptosis in cancer seems to be
contextual and is dependent on genetics, cell type, and the
pyroptosis induction duration [21]. 0e complex effects
regarding pyroptosis on the onset and progression of
cancer mainly included cancer cell viability inhibition,
the influence of cancer cell invasion as well as migration,
anti-tumor immunity enhancement, and chemo-
sensitivity enhancement [22]. From the present research,
we utilized ssGSEA and univariate and multivariate Cox
regression models to identify pyroptosis as the primary
risk factor for the overall survival (OS) of patients with
LUAD.

Abnormal expression of some important PRGs is often
observed in various types of cancer. However, most
studies have focused on one or two kinds of PRG, whereas
the characterization of the anti-tumor effects is usually a
result of the interaction of multiple genes in a highly
coordinated manner [11]. In this study, to better quantify
the effect of pyroptosis on LUAD, we screened pyroptosis-
related red modules by WGCNA and performed LASSO,
univariate Cox regression, and stepwise multivariate Cox
regression analysis for the purpose of incorporating seven
genes identified in the red module for constructing a PPRS
model, which can distinguish the genomic mutation and
immune characteristics of patients with different PPRS,
and the status of biological pathways. Several genes in the
PPRS model have been reported in cancer research.

Coactosin-like protein 1 (COTL1) was reported to be
high-expressed in glioma tissues in the study of Shao et al.
[23] and is closely correlated with the patient recurrence
and prognosis. Functionally, COTL1 enhances the pro-
liferation of cells in vitro and cancer growth in vivo [23]. A
study on the peripheral blood mononuclear cells based on
peripheral blood RNA-Seq indicated the GNG10 imbal-
ance in the head and neck squamous cell carcinoma,
which is related to the survival rate of patients [24]. Wang
et al. detected that overexpression of GNG10 promotes
the progression of colorectal cancer [25]. CASP4 ex-
presses caspase-4 is a classical regulatory component of
pyroptosis [26]. Secretoglobin 3A2-lipopolysaccharide
(LPS) can eliminate human colorectal cancer cells by
regulating the mechanism of CASP4-related pyroptosis
[27]. Shibamoto et al. found that CASP4 expression loss is
correlated with the unfavorable prognosis of patients with
esophageal squamous cell carcinoma [28]. CCR2 is CC
chemokine receptor 2, and CCR2 signal transduction in
cancer cells can coordinate the suppression of immune
response [29]. AQPs belong to a small membrane
transport proteins family, whose abnormal expression
plays a role in the onset and progression of several tumors
[30], such as in gastric cancer [31], cervical cancer [32],
and colorectal cancer [33]. 0ese studies showed that
these genes were tumor markers, and that the coordi-
nation between them was likely to have an impact on the
development of LUAD.

It is reported that pyroptotic can release tumor antigens
and damage-associated molecular patterns, thereby initiat-
ing adaptive immunity to enhance the efficiency of im-
munotherapy [34]. Herein, our analysis results showed that
PPRS was not only significantly related to the classical
CD274, CTLA4, and PDCD1. And MDSC, T cell exclusion,
and TIDE also had significant differences in scores in dif-
ferent PPRS groups. Pyroptotic is also related to
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Figure 6: Prediction of response to immunotherapy and chemotherapy in patients with different PPRS. (a-c) 0e expression of 21 immune
checkpoints between high-PPRS group and low-PPRS group in TCGA-LUAD (a), GSE31210 (b) and GSE72094 (c) cohorts. (d)0e relative
frequency of immune checkpoints expressed highest in the high-PPRS group. (e) Differences for samples with different PPRS in myeloid-
derived suppressor cells (MDSC), cancer associated fibroblasts (CAF), M2 macrophages (TAM.M2), T cell exclusion, T cell dysfunction,
TIDE scores. (f ) Comparison for sensitivity of Paclitaxel, Cisplatin, Docetaxel and Vinorelbine in high- and low-PPRS groups of LUAD
samples. Wilcoxon test was conducted. ns, no significance. ∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, ∗∗∗∗P< 0.0001.
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chemotherapy [35]. Recently published studies have shown
that Cisplatin induces scorch death through activating the
MEG3/NLRP3/caspase-1/GSDMD pathway in triple-nega-
tive breast cancer [36]. We observed a positive correlation
between the high-PPRS and sensitivity of chemotherapeutic
drugs Cisplatin, Docetaxel, and Vinorelbine.

5. Conclusions

In summary, our study highlighted the importance of
pyroptosis in LUAD and observed significantly different
expression patterns between normal and LUAD samples.
Importantly, we constructed a 7-gene prognostic signature
related to pyroptosis, and the signature displayed a favorable
performance in predicting LUAD prognosis. Notably, the
differences on genomic features, enriched pathways and
immune infiltration between PPRS-high and PPRS-low

groups demonstrated a potential role of seven prognostic
genes in the pyroptosis-related mechanism contributing to
LUAD prognosis. 0e signature offered a comprehensive
understanding of the correlation between immunotherapy/
chemotherapy sensitivity of LUAD patients and cell
pyroptosis. Our study provides a new insight for under-
standing pyroptosis-related mechanisms and the hope for
developing new therapeutic drugs targeting pyroptosis for
LUAD patients.

Data Availability

0e datasets used and/or analyzed during the current study
are available in [GSE31210] at [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc�GSE31210] and in [GSE72094]
at [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc�GSE72094].
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OS in the TCGA cohort. (h) DCA of the PPRS and clinicopathological features. (i) ROC curve for clinicopathological features and
nomogram. ANOVA was conducted in (c and d). Log-rank test was conducted in (e). ∗P< 0.05.
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