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Abstract: Antimicrobial resistance has been steadily increasing in prevalence, and combination
therapy is commonly used to treat infections due to multidrug resistant bacteria. Under certain cir-
cumstances, combination therapy of three or more drugs may be necessary, which makes it necessary
to simulate the pharmacokinetic profiles of more than two drugs concurrently in vitro. Recently,
a general theoretical framework was developed to simulate three drugs with distinctly different
half-lives. The objective of the study was to experimentally validate the theoretical model. Clinically
relevant exposures of meropenem, ceftazidime, and ceftriaxone were simulated concurrently in a
hollow-fiber infection model, with the corresponding half-lives of 1, 2.5, and 8 h, respectively. Serial
samples were obtained over 24 h and drug concentrations were assayed using validated LC-MS/MS
methods. A one-compartment model with zero-order input was used to characterize the observed
concentration-time profiles. The experimentally observed half-lives corresponding to exponential
decline of all three drugs were in good agreement with the respective values anticipated at the
experiment design stage. These results were reproducible when the experiment was repeated on a
different day. The validated benchtop setup can be used as a more flexible preclinical tool to explore
the effectiveness of various drug combinations against multidrug resistant bacteria.

Keywords: pharmacokinetics; pharmacodynamics; experimental therapeutics; antimicrobial agents

1. Introduction

The widespread use of antibiotics for decades has led to the emergence of antimicro-
bial resistance, which presents a significant threat to global public health. In 2019, the CDC
reported that there are over 2.8 million infections and 35,000 deaths from antibiotic-resistant
bacteria each year in the U.S. alone [1]. It is predicted that, in 30 years, antibiotic-resistant
infections will be the leading cause of death globally [2]. Infections caused by many
multidrug-resistant bacteria are now untreatable because effective antibiotics are not avail-
able. The development of new antibiotics has not kept pace with the rate which bacteria
are developing resistance to antibiotics currently available. Experts at the CDC are calling
this the “post-antibiotic era” and are urging the development of new therapies capable of
treating antibiotic-resistant infections [1].

The in vitro activity against a pathogen over time is most commonly determined using
constant concentrations of an antibiotic (i.e., static models). By using constant dilution
of an isovolumetric system and repeated dosing, a fluctuating concentration-time profile
mimicking clinical dosing in humans can be produced (i.e., dynamic models). This would
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allow more clinically relevant insights to be gained, guiding early drug development and
transition to in vivo/clinical investigations [3]. With a more sophisticated experimental
setup, the dynamic model can be further modified to mimic two antibiotic exposures simul-
taneously, where the elimination half-lives of the individual antibiotics are distinctively
different [4]. This framework has been the “gold standard” of the field for more than
three decades, and has been used by multiple investigator groups to evaluate combination
therapy [5–17].

With an increasing demand of testing antibiotic combinations against multidrug re-
sistant pathogens, a more advanced experimental setup is necessary. Multiple (three or
more) antibiotics with different mechanisms of action and elimination half-lives may have
to be used together in unique situations. We have previously reported a mathematical
framework to mimic the concentration-time profiles of more than two antibiotics simulta-
neously [18], which significantly extended the prior “gold standard” for two antibiotics.
For three antibiotics with different elimination half-lives, two experimental designs (i.e.,
serial or parallel) are possible. The serial design was experimentally validated earlier. In
this study, we report the experimental validation of the parallel design. For the purpose
of illustration, the pharmacokinetics of meropenem, ceftazidime, and ceftriaxone were
simulated concurrently in an in vitro hollow-fiber infection model.

2. Results
2.1. Ceftriaxone Assay Performance

The performance of the modified assay was deemed satisfactory. A typical chro-
matogram and the linear range of the assay are both shown in Figure 1. By using standard
concentrations of 1, 8, 64 mg/L, the intra-day and inter-day variability were <3.9% and
<5.6%, respectively.
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Figure 1. Performance of the ceftriaxone assay showing: (a) Elution of ceftriaxone (red) and ertapenem (blue, IS—internal
standard) in a representative chromatogram; (b) Linear range of the mass spectrometry signals (r2 = 0.999).

2.2. Pharmacokinetic Simulations

Individual drug concentrations observed ranged from 72% to 135% (median 112%) of
the target values. The correlation between target vs. observed antibiotic concentrations
is shown in Figure 2. The concentration-time profiles observed are shown in Figure 3.
The estimated area under the curve over 24 h (AUC24) for meropenem, ceftazidime, and
ceftriaxone were 674.8, 1125.0, and 347.2 mg·h/L, respectively (all within 30% of targets).
Overall, the concurrent pharmacokinetic simulations were considered acceptable. The
results were also reasonably reproducible on different days. The 80% confidence intervals
of half-life observed on different days ranged from 0.83–1.3 h (meropenem), 0.99–3.6 h
(ceftazidime), and 7.5–10.6 h (ceftriaxone), respectively (data not shown).
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3. Discussion

Novel treatment strategies are needed to solve an urgent healthcare crisis with broad
spectrum antimicrobial resistance. Antimicrobial agent combinations are clinically used
in the routine care of patients with HIV and tuberculosis infections. Relatively speaking,
antibiotic combinations are not considered as the standard of care for many bacterial
infections. However, with a growing prevalence of infections due to multidrug-resistant
bacteria, antibiotic combinations are increasingly used by clinicians as a treatment of last
resort. A robust system to evaluate the efficacy of antibiotic combinations in vitro would
be of great value to advance medical care of these patients. Until recently, simulating more
than two distinct pharmacokinetic profiles simultaneously in a dynamic infection model
would not have been feasible. This is generally recognized as a technical gap of the field.

To simulate antibiotic exposures with three distinct elimination half-lives, we reported
two feasible experimental designs (i.e., serial or parallel). Both designs are based on the
concept of using supplemental dosing (i.e., dosing in the supplemental tank(s)) to offset
the rapid clearance implemented for the antibiotic with the shortest half-life. Theoretical
details of the concept and complete mathematical formulas for design of the experimental
setup have been described elsewhere [18]. Doses to be given are to achieve the expected
maximum concentration (Cmax) by simple proportions (i.e., Cmax = dose/volume), and
the dosing frequencies are to emulate those of the clinical dosing regimens. The serial
design is easier to set up, and it has been experimentally validated earlier [18]. On the
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other hand, the parallel design is more flexible and would allow three or more antibiotics
to be simulated concurrently with minimal modifications in experimental setup. The
parallel design can thus be considered as a step forward (from our previous serial design
work) towards an even higher level of simulation complexity and flexibility. In this study,
we focused on the experimental valuation of three antibiotics using the parallel design.
A constant dilution rate to different supplemental volumes (i.e., CLMEM = CLCAZ = CLCRO)
was used in this study. Notably, different dilution rates to a constant supplemental vol-
ume (for each antibiotic) are also possible, depending on investigator preference and
equipment availability.

The simulated pharmacokinetic profiles were reasonably satisfactory. Despite a con-
siderable difference (i.e., 8-fold), the best-fit half-lives of all three drugs were within the
target ranges. Furthermore, these observations were fairly consistent when the experiment
was performed on different days. The efficacy of specific antibiotic combination(s) against
multidrug resistant bacteria is beyond the scope of this study, but it will be the focus of
future studies once this pharmacokinetic simulation framework is established.

4. Materials and Methods
4.1. Antibiotics and Chemical Reagents

Meropenem and ceftazidime powder were obtained from Tokyo Chemical Industry
Co., Ltd. (TCI) (Portland, OR, USA). Ceftriaxone powder was purchased from Sigma-
Aldrich, Inc. (St. Louis, MO, USA). Ertapenem was provided by Merck (Rahway, NJ, USA).
Ammonium acetate was purchased from Sigma Life Sciences (St. Louis, MO, USA). LCMS-
grade ammonium hydroxide, water, and methanol were obtained from EMD Millipore
Corporation (Billerica, MA, USA).

4.2. Experimental Setup

The schematics of the experimental setup (parallel design) is shown in Figure 4. Target
maximum concentrations in the central compartment (Vcentral) were achieved by direct
drug injections (DoseMEM, DoseCAZ, and DoseCRO). Diluent was introduced to the central
compartment to dilute the drugs over time at pre-determined rates; an equal volume of
drug-containing fluid was removed from the central compartment to maintain an iso-
volumetric system. To mimic different pharmacokinetic exposures concurrently, dosing
(Dosesupp) into various supplemental compartments (Vsupp) would also be necessary.
Meropenem and ceftazidime were dosed once every eight hours, whereas ceftriaxone was
dosed only once to be consistent with clinical dosing in humans. All doses were given over
30 min.

Specific pharmacokinetic parameters to mimic the unbound concentration-time pro-
files associated with clinical dosing in humans are shown in Table 1. To validate the
pharmacokinetic profiles, serially samples (500 µL) were obtained from the circulatory loop
(part of the central volume) in duplicate 1, 2, 4, 6, 8 (pre-dose), 9, 16 (pre-dose), 17, 18, 20,
22, and 24 h after the first doses were given. The samples were stored at −80 ◦C until drug
analysis. The experiment was repeated once on a different day.

Table 1. Target pharmacokinetics and equivalent dosing in humans.

Antibiotics Cmax (mg/L) 1 Half-Life (h) AUC24 (mg·h/L) 2 Equivalent
Human Dosing

Meropenem 120 1.0 519.5 2 g
Ceftazidime 120 2.5 1298.7 2 g
Ceftriaxone 30 8.0 346.3 2 g

1 Unbound maximum concentration. 2 Meropenem and ceftazidime dosed every eight hours, ceftriaxone dosed
once daily.
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ceftriaxone, CL—clearance, V—volume, supp—supplemental; CLMEM = CLCAZ = CLCRO = 0.7 mL/min;
Vcentral = 180 mL (includes connecting tubings and the hollow fiber cartridge), Vsupp MEM = 60.6 mL,
Vsupp CAZ = 151.5 mL, Vsupp CRO = 484.7 mL; DoseMEM = 21,600 µg, DoseCAZ = 21,600 µg,
DoseCRO = 5400 µg; DosesuppMEM = 214 µg, DosesuppCAZ = 32,934 µg, DosesuppCRO = 38,227 µg.

4.3. Drug Assays and Pharmacokinetic Modeling

Antibiotic concentrations in the samples were assayed using validated liquid chro-
matography tandem mass spectroscopy (LC-MS/MS) methods. The method used to detect
meropenem and ceftazidime has been reported previously [19]. Using standard concentra-
tions of meropenem (2, 8, 32, and 128 mg/L), the intra-day and inter-day variability were
<6.9% and <11.6%, respectively. In addition, using standard concentrations of ceftazidime
(2, 8, 32, and 128 mg/L), the intra-day and inter-day variability were <7.3% and <8.7%,
respectively.

A modified method was used to assay ceftriaxone. Briefly, 20 µL of thawed sample
was added to 880 µL of water and 100 µL of ertapenem at a concentration of 320 ng/mL
as the internal standard. The samples were mixed by vortexing for 10 s before injection.
The LC-MS/MS system consisted of an Exion UHPLC (SCIEX, Framingham, MA, USA)
with a Kinetex 100 × 2.1 mm, a 5-µm EVO C18 100 Å column (Phenomenex, Torrance, CA,
USA), and a QTRAP® 5500 mass spectrometer (SCIEX, Framingham, MA, USA) equipped
with Turbo-Ion-Spray™ source. Mobile phase A consisted of 10 mM ammonium acetate
and 0.2% (v/v) ammonium hydroxide. Mobile phase B was 100% methanol. The injection
volume for ceftriaxone was 5 µL. The analyte was separated by a gradient elution at 45 ◦C,
using a flow rate of 0.3 mL/min. The gradient was as follows: 0–0.5 min, 95% A; 0.5–2.5 min,
95–10% A; 2.5–4.0 min, 10% A; and 4.0–4.2 min, 10–95% A. Multiple reaction monitoring
(MRM) scan type in positive mode was used for the mass spectrum. The transitions of
m/z 555.1→396.1 for ceftriaxone and 476.2→432.2 for ertapenem were used. The best-fit
weighing was used to calculate the slope, intercept, and correlation coefficient of the linear
regression equation. The linear range of the assay is 1–64 mg/L.

To characterize the pharmacokinetics, a one-compartmental model with zero-order
infusion input was fitted to the observed drug concentration-time profiles using ADAPT
5 [20]. The area under the curve over 24 h (AUC24) was derived by integrating the best-fit
concentration-time profile with respect to time. The simulated concentration-time profiles
were considered acceptable if the best-fit maximum concentrations and half-lives were
both within 20% of target values.
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5. Conclusions

Concurrent simulations of 3 clinically relevant antibiotic exposures were experimen-
tally validated in a pre-clinical infection model. This framework could advance the field
of antimicrobial pharmacokinetics/pharmacodynamics, and facilitate the in vitro efficacy
of additional antibiotic combinations to be investigated against different pathogens. Fu-
ture studies will extend the framework to four or more agents with different elimination
half-lives.
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