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Abstract

A recent shift in managing insect resistance to genetically engineered (GE) maize consists of mixing non-GE seed with GE
seed known as ‘‘refuge in a bag’’, which increases the likelihood of predators encountering both prey fed Bt and prey fed
non-Bt maize. We therefore conducted laboratory choice-test feeding studies to determine if a predator, Harmonia axyridis,
shows any preference between prey fed Bt and non-Bt maize leaves. The prey species was Spodoptera frugiperda, which
were fed Bt maize (MON-810), expressing the single Cry1Ab protein, or non-Bt maize. The predators were third instar larvae
and female adults of H. axyridis. Individual predators were offered Bt and non-Bt fed prey larvae that had fed for 24, 48 or
72 h. Ten and 15 larvae of each prey type were offered to third instar and adult predators, respectively. Observations of
arenas were conducted at 1, 2, 3, 6, 15 and 24 h after the start of the experiment to determine the number and type of prey
eaten by each individual predator. Prey larvae that fed on non-Bt leaves were significantly larger than larvae fed Bt leaves.
Both predator stages had eaten nearly all the prey by the end of the experiment. However, in all combinations of predator
stage and prey age, the number of each prey type consumed did not differ significantly. ELISA measurements confirmed the
presence of Cry1Ab in leaf tissue (23–33 mg/g dry weight) and S. frugiperda (2.1–2.2 mg/g), while mean concentrations in H.
axyridis were very low (0.01–0.2 mg/g). These results confirm the predatory status of H. axyridis on S. frugiperda and that
both H. axyridis adults and larvae show no preference between prey types. The lack of preference between Bt-fed and non-
Bt-fed prey should act in favor of insect resistance management strategies using mixtures of GE and non-GE maize seed.
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Introduction

Genetically engineered (GE) plants, modified to resist insect

pests via expression of various Bacillus thuringiensis Berliner (Bt)

toxins, have been successfully commercialized in several countries

[1]. Since 1996, GE maize (Zea mays L.) has been the most widely

grown Bt crop in the U.S., primarily due to its efficacy against the

European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera:

Crambidae) [2,3]. Recent approvals for Bt maize in Brazil suggest

adoption rates among growers will also be high, because of the

widespread damage caused by Lepidoptera pests such as the fall

armyworm, Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctui-

dae), a pest responsible for significant losses (17 to 39%) in maize

production [4–7]. Since commercialization of Bt maize in 2008,

Brazil has increased its rate of biotech crop production more than

any other country worldwide; a record 4.9 million ha increase,

equivalent to an annual increase of 20% [1].

The focus of the present study was to assess the risk of potential

adverse effects of GE maize on non-target arthropods. Previous

studies have shown that Cry proteins of Bt expressed in GM plants

can be acquired by non-target herbivores and predators, but in tri-

trophic interactions, herbivore consumption of Cry proteins has

not negatively affected the survival or other life history parameters

of the third trophic level, such as heteropterans [8,9] and lady

beetles [10]. In addition, consideration must be given to insect

resistance management (IRM). As the use of GE maize expands

and the technology of transgenic crops evolves, IRM must also

evolve to provide sustainable crop pest management [11,12].

To mitigate the risk of Bt resistance evolution in insect pests, the

U.S. Environmental Protection Agency has required farmers to

plant non-Bt maize refuge areas. For O. nubilalis in the U.S., for

example, non-Bt maize refuges had to be planted within 0.5 miles

of the Bt maize [13]. In recent years, primarily due to the concerns

of resistance in the western corn rootworm, Diabrotica virgifera

virgifera (LeConte) (Coleoptera: Chrysomelidae), a new refuge

strategy was developed consisting of a mixture of Bt and non-Bt

seed resulting in a random mix of non-Bt plants within a Bt maize

field [11]. This mixture of Bt seed with low proportions of non-Bt
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seed in seed bags or in planters (e.g., 5–10% non-GE) is referred to

as ‘‘refuge in a bag’’ [11]. By integrating pests more evenly

throughout a field, seed mixtures may facilitate the persistence of

natural enemies within maize fields better than the current refuge

strategy [11,14], with a potential impact on resistance develop-

ment [15]. In such a setting, the co-occurrence of Bt-fed and non-

Bt-fed herbivores will be greater than ever, increasing the

likelihood that predators in the field will actually be confronted

with a choice between Bt-fed and non-Bt-fed prey.

In Brazil, the intensity of damage caused by fall armyworm is

high when natural enemies are not present in the field [16].

Entomophagous lady beetles have frequently been reported to

prey on eggs and larvae of some species of Lepidoptera, including

the fall armyworm [17]. In South America, an invasion of a

predatory coccinellid, Harmonia axyridis (Pallas) (Coleoptera:

Coccinellidae), is underway [18,19]. Established populations were

first detected in Argentina in 2001 and in Brazil in 2002 [20] and

has now been detected in at least seven Brazilian states [19]. This

coccinellid occurs in many agricultural systems where it feeds

primarily on aphids, but is also known to prey on other arthropods

including immature Lepidoptera [21]. Work has been performed

to incorporate this predator into integrated pest management

programs in maize [22–26].

The invasion of H. axyridis in Brazil may lead to increased

exposure of S. frugiperda to this new predator in different cropping

systems. However, we are not aware of previous predation studies

of H. axyridis preying on S. frugiperda. The objective of this study

was to determine if an important generalist predator, H. axyridis,

now occurring in North and South American areas of maize

production, displays a preference between prey larvae fed GE

maize (Bt) or conventional maize (non-Bt), which could in turn

potentially impact resistance development.

Results

The S. frugiperda larvae that fed on non-Bt maize leaves were

significantly larger than those fed Bt leaves. The 24-h-old prey

larvae fed non-Bt maize weighed 0.004160.000068 g (mean6SE)

and those fed Bt maize weighed 0.003860.00004 g (t = 214.03,

df = 8, p = 0.0001), 48-h old prey fed non-Bt weighed

0.006960.00075 g and those fed Bt weighed 0.004760.00016 g

(t = 22.92, df = 8, p = 0.0139), and 72-h-old prey fed non-Bt

weighed 0.007360.00033 g and those fed non-Bt

0.004160.000097 g (t = 29.44, df = 8, p = 0.0001). Despite the

differences in larval size, no significant differences or consistent

numeric trends were found between the numbers of prey

consumed for Bt and non-Bt fed larvae for any of the predator

stage by prey age combinations (Fig. 1; Table 1). However, more

time appears to have been required for H. axyridis adults to

consume older larvae (i.e., 72-h-old). By the end of the experiment

with 24- and 48-h-old larvae all third instar H. axyridis ate 20

available prey and with 72-h-old larvae the predator consumed an

average (6SE) of 19.2760.51; whereas the female adult H. axyridis

did not consume all of 30 prey available (an average of

29.5560.24, 29.160.46 or 28.860.38 larvae consumed of 24-,

48- or 72-h-old larvae, respectively).

Marking of prey larvae did not significantly affect prey

preference for predators exposed to 24-h-old prey (S = 5.5,

p = 0.3750), 48-h-old prey (S = 22.0, p = 0.8828) and 72-h-old

prey (S = 23.5, p = 0.5000). Furthermore, in arenas with Bt-fed

and non-Bt-fed prey and no predator, overall rates of cannibalism

were low (0.2560.10, 0.4760.15, 0.5460.13 larvae consumed for

24-, 48-, and 72-h-old prey, respectively) and did not differ

significantly between Bt-fed and non-Bt-fed prey that were 24-h-

old (S = 26, p = 0.5625), 48-h-old (S = 2, p = 1) and 72-h-old

(S = 0, p = 1). Therefore, neither marking nor the rates of

cannibalism were likely to have significantly influenced the results.

Bt maize leaves contained mean Cry1Ab concentrations of 23–

33 mg/g dry weight (Table 2). There was no decrease in Bt protein

detection up to 72 h after the leaves were cut from the plants.

Larvae of S. frugiperda feeding on Bt maize for 24 to 72 h contained

one order of magnitude less Cry1Ab than maize leaves (2.1–

2.2 mg/g dry weight). The values for the different feeding times

were very similar. Third instar larvae and females of H. axyridis

preying for 24 h on caterpillars from Bt and non-Bt maize in the

choice assays contained mean concentrations of 0.05–0.17 and

0.01–0.02 mg Cry1Ab/g dry weight, respectively. Those values

were near to the LOD, which was 0.03 and 0.007 mg/g dry weight

for H. axyridis larvae and females, respectively. No Cry1Ab was

detected in non-Bt leaves (LOD = 0.01 mg/g dry weight) and prey

larvae feeding on non-Bt leaves (LOD = 0.03 mg/g dry weight).

Discussion

With the worldwide range of H. axyridis expanding, particularly

in South America [18,19], the likelihood of this predator co-

occurring with new prey will continue to increase. An abundant

potential prey item for the lady beetle is S. frugiperda an

economically damaging pest of maize and cotton in Brazil and

South America [4–6,27,28]. The data presented here indicate that

larvae and adults of H. axyridis will prey on 24- to 72-hour-old S.

frugiperda larvae under laboratory conditions. Though considered

to be primarily an aphidophagous predator, H. axyridis has been

documented preying on eggs and larvae of several lepidopteran

species [21]. In functional response studies, adults and larvae of H.

axyridis consumed 15 first instar larvae of Danaus plexippus L.

(Lepidoptera: Danaidae) per day [29]. Overlap of the phenology of

this predator and prey species in the field should be examined

along with in field predation rates to more thoroughly assess the

level of natural pest suppression this predator may offer in newly

invaded areas.

Furthermore, this study examined whether H. axyridis shows a

preference between Bt-fed and non-Bt-fed S. frugiperda larvae. The

potential risk of Lepidopteran-resistant Bt crops to coccinellids and

other predators has received considerable attention [30–32].

Studies on coccinellids have examined population level responses

in the field [33–36]. Furthermore, potential direct impacts of

Lepidoptera-active Bt Cry toxins to coccinellids that consume

purified toxin or Bt plant tissue have been studied [10,37–40]. In

contrast, relatively little work has been conducted to examine

predator preference for prey fed Bt versus non-Bt plant tissue

[41,42].

In the present study, a sublethal effect of Cry1Ab on S. frugiperda

larvae was apparent with larvae that were fed Bt maize being

significantly smaller than those fed non-Bt maize. This finding

confirms earlier reports for S. frugiperda [7,43] and the closely

related Spodoptera littoralis (Boisduval) [44,45].

Bt maize in our study was quantified, expressing 23–33 mg

Cry1Ab/g dry weight, which corresponds to 4.1–4.6 mg/g fresh

weight. These values are comparable to published data from the

field [46]. Larvae of S. frugiperda feeding on Bt maize contained an

order of magnitude of lower concentrations of Cry1Ab than the

leaves. Furthermore, lady beetle larvae and female beetles, which

consumed both prey from Bt and non-Bt leaves, contained only

traces of the Bt protein. This confirms that Bt proteins are highly

diluted along the food chain. Comparable dilution levels have

been reported from other laboratory studies using tri-trophic
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systems of Bt plants, lepidopteran larvae and coccinellid predators

[10,40,47].

Feeding time on Bt maize apparently has no influence on Bt

concentrations in S. frugiperda larvae (Table 2). However, lady

Figure 1. Number of Bt-fed and non-Bt-fed Spodoptera frugiperda larvae consumed over time by Harmonia axyridis. Predator third
instars (A, B, C) and adult females (D, E, F). Prey larvae were 24-h-old (A, D), 48-h-old (B, E), and 72-h-old (C, F).
doi:10.1371/journal.pone.0044867.g001
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beetle larvae contained more Cry1Ab when feeding on caterpillars

that were kept longer on maize leaves (0.05, 0.10, 0.17 mg/g dry

weight for 24, 48, and 72 h, respectively). One potential

explanation could be that the larger size of older larvae allowed

the lady beetle to ingest more Bt protein. This, however, was not

observed for female lady beetles. Nevertheless, preference for

larger insects was not tested as we did not have access to a Cry1Ab

resistant colony of S. frugiperda.

The protein Cry1Ab concentrations in 4th or 6th instar S.

frugiperda larvae were approximately 40% of the Cry1Ab concen-

tration found in the Bt maize that was consumed [43]. Relatively

high levels of Cry1Ab toxin have also been found in S. littoralis,

where larvae feeding for 8 or 11 days on MON810 maize leaves

contained approximately one third of the Cry1Ab concentration in

the leaves [45]. On the other hand, neonate O. nubilalis, Agrotis

ipsilon (Hufnagel) (Lepidoptera: Noctuidae), and Helicoverpa zea

(Boddie) (Lepidoptera: Noctuidae) feeding on MON810 maize of

the same age as in the present study contained only 1–2% of the

concentration in the corresponding leaves [48].

Despite sublethal effects of Bt maize on prey size and the

presence of Bt toxins in Bt-fed prey, H. axyridis showed no

preference between Bt-fed and non-Bt fed prey. In all combina-

tions of predator stage and prey age, the number of each prey type

(i.e., Bt-fed and non-Bt-fed) consumed did not differ significantly.

In a similar study, Chrysoperla carnea (Stephens) (Neuroptera:

Chrysopidae) third instars could choose between S. littoralis fed

Bt maize and S. littoralis fed non-Bt maize, the lacewing larvae

showed a preference for S. littoralis fed non-Bt maize; however, C.

carnea first and second instars showed no preference. In addition,

C. carnea first to third instars did not show a preference between

Rhopalosiphum padi (Homoptera: Aphidae) fed-Bt and non-Bt maize

[41]. In addition, Poecilus cupreus L. (Coleoptera: Carabidae)

ingested S. littoralis larvae readily and did not appear to avoid Bt

maize-fed prey [42].

Seed mixtures (‘‘refuge in a bag’’), which result in non-Bt plants

being interspersed in Bt fields, are currently being promoted for

insect resistance management (IRM). The resulting mixture of

non-Bt plants with Bt plants will result in predators being

confronted with a choice between Bt-fed and non-Bt-fed prey. If

a predator shows preference for a specific type of prey the rates of

resistance development could be impacted [15]. For example, if a

predator prefers to feed on herbivores that fed upon non-Bt plants,

then that predator might kill a disproportionate fraction of the

relatively few non-Bt exposed larvae that developed on the non-Bt

refuge plants in the field, which could affect rates of resistance

development. The results of the present study suggest that such a

behavioral mechanism to altering rates of resistance development

are not likely to exist for S. frugiperda with H. axyridis as a main

predator, but this interaction should be investigated for other

lepidopteran herbivores. Also, predator responses to varying

densities of prey on Bt and non-Bt plants have not been

investigated in the current study, but could become important in

the field.

Materials and Methods

Plant Material
Two maize hybrids were utilized in this study: a GE hybrid,

DKC-5048 RR2 (Bt) (event MON810), and conventional near

isoline, DKC-4840 (non-Bt), both from Monsanto Company. The

DKC-5048 RR2 plants express the cry1Ab gene from Bt, targeting

lepidopteran pests. The plants of both hybrids were grown under

the same environmental conditions of 2761uC, 7065% RH, and

16:8 (L: D) h cycle, in a greenhouse. Seeds were sown weekly in

one-liter pots (4 seeds per pot) filled with Metromix 582 (Sun Gro

Horticulture, Bellevue, WA) potting soil. Leaf tissue was taken

from plants between V3 and V6 growth stages [49] to feed S.

frugiperda larvae.

Plant material was taken for Cry1Ab quantification. The

samples were obtained from a middle-upper leaf of a Bt or non-

Table 1. Test statistics of prey preference for Harmonia
axyridis life stages preying on three ages of Spodoptera
frugiperda larvae fed Bt versus non-Bt maize at 3 and 6 h after
the beginning of experiments.

3 h 6 h

Experiment S* p N S* p N

A 20.5 0.982 20 27.5 0.250 14

B 29 0.822 26 19.5 0.256 16

C 54 0.169 29 13 0.519 19

D 27 0.564 20 3.5 0.699 20

E 213.5 0.625 20 1.5 0.960 20

F 31.5 0.074 20 22 0.265 20

*Wilcoxon signed rank test.
doi:10.1371/journal.pone.0044867.t001

Table 2. Cry1Ab concentrations in mg/g dry weight of maize leaves (event MON810, DKC-5048 RR2) measured at 0, 24, 48, and 72
hours after initiation of experiments, Spodoptera frugiperda larvae allowed to feed on Bt maize leaves for 24 h, 48 h, or 72 h, and
Harmonia axyridis larvae (3rd instar) and females having the choice between Bt and non-Bt maize fed S. frugiperda.

Time point Maize leaves S. frugiperda H. axyridis Experiment

0 h 24.961.24 (N = 10)

24 h 23.462.35 (N = 10) 2.160.29 (N = 5) 0.0560.014 (N = 10) 3rd instar A

0.0260.005 (N = 10) Female D

48 h 30.561.36 (N = 10) 2.260.16 (N = 5) 0.1060.041 (N = 10) 3rd instar B

0.0160.002 (N = 10) Female E

72 h 33.462.13 (N = 10) 2.160.34 (N = 5) 0.1760.040 (N = 10) 3rd instar C

0.0160.004 (N = 20) Female F

Non-Bt maize leaves: , LOD (0.01 mg/g DW).
Non-Bt S. frugiperda: , LOD (0.03 mg/g DW).
doi:10.1371/journal.pone.0044867.t002
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Bt plant. The leaves were cut, put in a plastic containers

(18 cm68 cm) in a growth chamber, and sampled at 0, 24, 48,

or 72 h after the being put in that container. Each sample

consisted of one leaf piece, 1 cm in diameter. Ten samples from

different Bt plants and five from non-Bt maize plants were taken

for each time point. All samples were weighed and placed into

separate 1.5-ml centrifuge tubes for each sample, and kept at

280uC for Cry protein measurement using ELISA.

Insect Material
Eggs of S. frugiperda were purchased from French Agricultural

Research (Lamberton, MN). Upon arrival, egg masses were placed

in plastic containers (18 cm68 cm) and kept in a growth chamber

at 2561uC, 7065% RH, and 16:8 (L: D) h cycle until eclosion.

The larvae were given an ad libitum supply of maize leaves for

either 24, 48 or 72 h. The same leaves remained with the larvae

for these respective periods of time. A subset of larvae was used for

determining larval mass for each feeding treatment by age group

combination. A balance (Mettler AE260 DeltaRangeH) was used

to weigh groups of larvae (Bt-fed: 5 groups of 50 24-h-old larvae, 5

groups of 40 48-h-old larvae, 5 groups of 20 72-h-old larvae; non-

Bt-fed: 5 groups of 50 24-h-old larvae, 5 groups of 40 48-h-old

larvae, 5 groups of 20 72-h-old larvae), from which mean

individual larval weights were calculated.

Third instar larvae and female adults of H. axyridis, were

obtained from a laboratory colony maintained at the University of

Minnesota. Eggs of H. axyridis were placed into Petri dishes

(1061.5 cm) in a growth chamber at 2561uC, 7065% RH with a

16:8 (L: D) h cycle. Twenty-four hours after eclosion, first instar H.

axyridis were placed individually in 661.5 cm Petri dishes, and

reared with an ad libitum supply of Ephestia kuehniella (Zeller)

(Lepidoptera: Pyralidae) eggs. Water was provided via moistened

florists foam. The predators were reared under these conditions to

the desired life stages (i.e., 6 to 24 h-old third instars and 6 to 48 h-

old adult females) for use in the bioassay. All H. axyridis were

starved for 24 h prior to initiation of the experiments.

Prey (S. frugiperda) and predator (H. axyridis) were also assayed for

Bt protein content. Five samples of larvae feeding on Bt and non-

Bt maize were taken from each prey age group (24, 48 and 72 h-

old larvae). Each sample contained approximately 30 larvae. For

the predator, 10 samples were taken from third instars that fed on

24, 48 and 72 h-old prey larvae; also 10 samples from adult

females that fed on 24 and 48 h-old larvae and 20 samples from

females that fed on 72 h-old larvae. Each predator sample

contained one specimen. All the insect material was collected

and stored in 1.5-ml centrifuge tubes at 280uC until the ELISA

assays were run.

Choice Tests
Petri dishes (661.5 cm) were used as experimental arenas and

the experiments were conducted in a climate controlled chamber

at 2561uC, 7065% RH with a 16:8 (L: D) h cycle. For the study

of choice behavior, third instar and adult females of H. axyridis,

were offered 24, 48 or 72 h-old larvae of each prey type (i.e.,

S. frugiperda fed Bt maize and S. frugiperda fed non-Bt maize) as prey.

The combinations of predator stages and prey treatments are

summarized in Table 3. Third instar H. axyridis received 10 prey

items of each type and adult H. axyridis received 15 prey items of

each type, resulting in a total of 20 or 30 prey items for a single

predator larva or adult per arena, respectively. Petri dish arenas

were sealed with parafilm to prevent escape of small larvae. To

track which prey fed on Bt or non-Bt maize, prey of one treatment

group were marked on the dorsal surface of the abdomen with a

red permanent marker (Sharpie Ultra-Fine Point Permanent

Marker, Newell Rubbermaid Office Products) just before the

beginning of each observation. Marking of Bt or non-Bt fed prey

was randomized among arenas to account for any potential effects

of the marking. Each of the 6 choice test experiments was

conducted separately, with 14 to 29 replications per experiment

(Table 3). The number of replications varied in each experiment

because larvae either molted to the next instar during the trial and

were therefore removed from the trial, or some observation

intervals were not included (e.g., 6 h) in all replications. Visual

observations of arenas were conducted at 1, 2, 3, 6, 15 and 24 h

after the start of the experiment to determine the number and type

(i.e., Bt-fed and non-Bt-fed) of prey consumed by each individual

H. axyridis.

In addition to the above mentioned randomization of the

marking of Bt and non-Bt-fed prey, the potential influence of the

permanent marker on prey preference was investigated in separate

trials carried out prior to the experiments. In each Petri dish arena

there were 10 marked and 10 unmarked larvae that were fed with

the same type of maize, either Bt or non-Bt. This test was

conducted with third instar H. axyridis, which were offered prey

that was 24 and 48 h old (10 replicates each), and prey that was

72 h old (7 replicates). Petri dish arenas and experimental

conditions were as described above.

To assess the potential for cannibalism between Bt-fed and non-

Bt-fed prey, experiments were conducted with only prey in the

arena. For these cannibalism experiments, 10 Bt-fed larvae and 10

non-Bt larvae were placed in Petri dish arenas. The cannibalism

experiment was conducted with the same time treatments than the

choice test, i.e. with 24 h (25 replicates), 48 h (15 replicates) and

72 h (10 replicates) old larvae. Prey were marked as described

above and the number and type of prey consumed by other larvae

was recorded. Petri dish arenas and conditions were as described

above.

Cry1Ab Quantification using ELISA
Samples of leaves, S. frugiperda and H. axyridis were lyophilized

and the dry weight (DW) was determined. Leaf samples were cut

into small pieces using a pair of scissors. One tungsten carbide ball

(5 mm) was added to each microreaction tube together with

phosphate-buffered saline with Tween (PBST) at a volume of

300 ml for insect samples and 500–750 ml for leaf samples. The

samples were homogenized for 3 min at 30 Hz in a Tissue Lyser II

(Quiagen, Hombrechtikon, Switzerland). After centrifugation at

130006g for 3 min, the supernatants were diluted with PBST 100

times for Bt maize leaves and 5 times for S. frugiperda samples. Non-

Bt samples and H. axyridis samples were used undiluted. The

concentrations of Cry1Ab were measured using double-antibody

sandwich enzyme-linked immunosorbent assays (DAS-ELISA)

commercially available from Agdia (Elkhart, IN). To be able to

use the kit for quantitative measurements, we prepared six

concentrations of Cry1Ab solution between 0.3 and 10 ng/ml

for building a standard curve. Purified Cry1Ab of attested purity

and quality was provided by Monsanto. The plates were processed

according to the manufacturer’s protocol. The optical density

(OD) was measured at 620nm light wavelength with a Spectra-

fluorPlus plate reader (Tecan, Männedorf, Switzerland). Cry1Ab

concentrations (in mg/g dry weight) were calculated from the

standard curve using the regression analysis. The limit of detection

(LOD) of the test system was determined based on the standard

deviation of the OD values of all non-Bt samples multiplied by 3.

Data Analysis
Analyses were performed using the SAS statistical package [50].

For each prey age class, mean larval masses of Bt and non-Bt-fed
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individuals were compared using a two sample t-test (PROC

TTEST). For each prey age class and predator stage combination

of the choice test experiment, the number of Bt-fed versus non-Bt-

fed prey consumed was compared using the Wilcoxon signed rank

test (PROC UNIVARIATE). As the consumption data were

cumulative during the analyzed time, we performed the statistical

analyses considering just two observation points from each

bioassay. The 3 and 6 hour observation points allowed enough

time for most predation to occur yet was prior to the plateau in

prey consumption. A similar Wilcoxon signed rank test was

conducted for the cannibalism and marking studies, but only for

observations at 6 h.
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