
����������
�������

Citation: Park, J.-W.; Kim, J.-M.; Noh,

J.H.; Kim, K.-A.; Chung, H.; Kim, E.;

Kang, M.; Park, J.-Y.

Pharmacokinetics of a Fixed-Dose

Combination Product of

Dapagliflozin and Linagliptin and Its

Comparison with Co-Administration

of Individual Tablets in Healthy

Humans. Pharmaceutics 2022, 14, 591.

https://doi.org/10.3390/

pharmaceutics14030591

Academic Editors: Barna Vasarhelyi

and Gellért Balázs Karvaly

Received: 28 January 2022

Accepted: 3 March 2022

Published: 8 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Pharmacokinetics of a Fixed-Dose Combination Product of
Dapagliflozin and Linagliptin and Its Comparison with
Co-Administration of Individual Tablets in Healthy Humans
Jin-Woo Park 1,2,3 , Jong-Min Kim 1 , Ji Hyeon Noh 1, Kyoung-Ah Kim 1, Hyewon Chung 4 , EunJi Kim 5,
Minja Kang 5 and Ji-Young Park 1,*

1 Department of Clinical Pharmacology and Toxicology, Korea University College of Medicine,
Korea University Anam Hospital, Seoul 02841, Korea; parkzinu@korea.ac.kr (J.-W.P.);
jmk157@korea.ac.kr (J.-M.K.); njh2535@korea.ac.kr (J.H.N.); kakim920@kumc.or.kr (K.-A.K.)

2 Department of Neurology, Korea University Medical Center, Seoul 02841, Korea
3 Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine,

Nashville, TN 37232, USA
4 Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul 08308, Korea;

hyewonchung@korea.ac.kr
5 HK Inno.N, Corporation, Seoul 04551, Korea; eunji.kim24@inno-n.com (E.K.); minja.kang@inno-n.com (M.K.)
* Correspondence: jypark21@korea.ac.kr; Tel.: +82-02-920-6288

Abstract: Dapagliflozin, a selective sodium–glucose co-transporter-2 inhibitor, and linagliptin, a
competitive, reversible dipeptidyl peptidase-4 inhibitor, are commonly prescribed antidiabetic medi-
cations in general clinics. Since there are several merits to combining them in a fixed-dose combination
product, this study investigated the pharmacokinetic equivalence between the individual component
(IC) and fixed-combination drug product (FCDP) forms of dapagliflozin and linagliptin. A random-
ized, open-label, single-dose crossover study was conducted. All participants (n = 48) were randomly
allocated to group A (period 1: ICs, period 2: FCDP) or group B (period 1: FCDP, period 2: ICs), and
each group received either a single dose of IN-C009 (FCDP) or single doses of both dapagliflozin
and linagliptin. There was no statistically significant difference found between the pharmacokinetic
variables of FCDP and IC. The values of estimated geometric mean ratios and the 90% confidence
interval for both maximum concentration and area under the plasma drug concentration–time curve
were within the range of 0.8–1.25 for both dapagliflozin and linagliptin. The results of the clinical
study demonstrated comparable pharmacokinetic characteristics between IC and FCDP forms of da-
pagliflozin and linagliptin. The combined use of dapagliflozin and linagliptin was safe and tolerable
in both formulations.

Keywords: dapagliflozin; linagliptin; fixed-dose combination products; bioequivalence

1. Introduction

Dapagliflozin and linagliptin are commonly used medications for the treatment of
type-2 diabetes mellitus (T2DM) [1–3]. Dapagliflozin acts by selectively inhibiting sodium–
glucose co-transporter-2 (SGLT-2) protein in the kidneys, thereby reducing renal glucose
reabsorption and increasing the glucose excretion via urine [3,4]. Dapagliflozin is absorbed
rapidly and reaches a maximum concentration (Cmax) within 2 h. It has a half-life (t1/2) of
8.1–12.2 h, and approximately 65% of dapagliflozin is metabolized by uridine diphosphate
glucuronosyltransferase 1A9 [1,5]. Due to its insulin-independent effects, dapagliflozin is
used in combination with several other classes of antidiabetic medications [6–9].

Linagliptin is a competitive, reversible dipeptidyl peptidase (DPP)-4 inhibitor that
increases the levels of active glucagon-like peptide-1 (GLP-1) [10]. GLP-1, an incretin
hormone secreted by the small intestine, regulates blood glucose levels by stimulating
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glucose-dependent postprandial insulin secretion and inhibiting glucagon secretion. Be-
cause it is rapidly degraded by DPP-4, the use of DPP-4 inhibitors eventually increases
the GLP-1 levels and prevents high blood glucose levels [11–13]. The Cmax of linagliptin is
reached within approximately 90 min, and a steady-state level is reached within 4 days at a
therapeutic dose (5 mg) [12]. Linagliptin is a known substrate for the cytochrome P450 3A4
enzyme and P-glycoprotein (P-gp) in humans, and its oral bioavailability is approximately
30% [12].

The combined use of dapagliflozin and linagliptin for managing T2DM is reasonable
and attractive because of their different but complementary mechanisms of action and
separate paths of degradation (i.e., metabolism), thereby avoiding possible drug interac-
tions, which is important for harnessing drug pharmacodynamics and reducing the risk of
unexpected adverse events [14–17]. Compared with a DPP-4 inhibitor, the combined use of
SGLT-2 inhibitor and DPP-4 inhibitor is significantly associated with a decrease in glycemic
control, body weight, and systolic blood pressure, and their advantages have already been
proven for both initial combination and stepwise approaches [14,15]. However, the FCDP
for dapagliflozin and linagliptin have not yet been tested.

Therefore, this study aimed to evaluate the pharmacokinetics and safety of the fixed-
combination drug products (FCDPs) of dapagliflozin (10 mg) and linagliptin (5 mg), which
were developed to reduce the burden of requiring multiple tablets and thus increasing
compliance in healthy participants [18].

2. Materials and Methods

Sixty-three healthy male volunteers (age, 19–45 years; body weight > 50 kg) agreed to
participate in the study and signed a written informed consent form. Only male partici-
pants were recruited to avoid the potential risk of pregnancy [19]. The participants were
considered healthy after a detailed physical examination by physicians involving 12-lead
electrocardiographs (ECG), vital sign assessments, and laboratory evaluations, including
blood chemistry, hematology, and urinalysis. The exclusion criteria were a history or
evidence of hepatic, renal, gastrointestinal, or hematological abnormalities; hepatitis B,
hepatitis C, syphilis, or HIV infection; a history of hypersensitivity to dapagliflozin and/or
linagliptin; clinically significant allergic disease; alcohol or drug abuse; heavy smoking
(more than 10 cigarettes per day); and use of any medication within 30 days before the start
of the study that may have affected the study results. The study protocol was approved
(IRB No.2019AN0538, clinicaltrial.gov; NCT05066516) by the Institutional Review Board
of Anam Hospital, Korea University Medical Center (Seoul, Korea), and all procedures
were conducted following the principles described in the Declaration of Helsinki and Good
Clinical Practice guidelines.

This study was conducted as a randomized, open-label, single-dose crossover study.
All participants were randomly allocated to group A (period 1: individual components
(ICs), period 2: FCDP) or group B (period 1: FCDP, period 2: ICs). Each group was
administered a single dose of IN-C009 (FCDP, dapagliflozin 10 mg/linagliptin 5 mg) (HK
Inno.N, Corporation, Seoul, Korea) or co-administered a single dose of dapagliflozin
(Forxiga® 10 mg, AstraZeneca, Cambridge, UK) and linagliptin (Trajenta® 5 mg, Beringer-
Ingelheim, Ingelheim, Germany) after at least 10 h of overnight fasting. After the 28-day
washout period, the participants received the other treatment (group A: IN-C009; group
B: dapagliflozin and linagliptin). All medications were biopharmaceutical classification
system (BCS) III drugs with high solubility and low permeability. The in vitro dissolution
behavior of the formulation was tested in four different pH conditions (pH 1.2, pH 4.0,
pH 6.8, and aqueous water) and the results were comparable in both ICs and FCDP (greater
than 80% dissolution in 30 min). For FCDP, microcrystalline cellulose and copovidone were
used as major excipients. The doses of dapagliflozin and linagliptin used in this study
were commercially used and the currently recommended dose for the control of T2DM
was used. Previous studies have demonstrated no possible food effect on linagliptin and
dapagliflozin; therefore, the food effect was not assessed in this study [20,21].

clinicaltrial.gov
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On day 1 (the day of each drug administration), serial blood samples were drawn
immediately before (0 h) and 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 6, 8, 12, 24, 48, and 72 h
after each dosing to assess the pharmacokinetics of each drug. The collected samples were
centrifuged (at 1977× g, 4 ◦C) for 15 min, and the extracted plasma samples were stored
frozen at −60 ◦C until they were analyzed. Plasma dapagliflozin and linagliptin concen-
trations were determined using high-performance liquid chromatography with tandem
mass spectroscopy (LC–MS/MS) described elsewhere, with minor modifications, follow-
ing the Korea Ministry of Food and Drug Safety and US Food and Drug Administration
guidelines [22,23].

For dapagliflozin analysis, 100 µL plasma was added to a glass tube containing an
internal standard (10 µL of 1 mg/mL dapagliflozin-d5) and 1 mL methanol. The samples
were vigorously vortexed and centrifuged at 10,770× g for 3 min. Next, 100 µL of the
upper layer was transferred to a polypropylene tube with 10 µL of internal standard
(dapagliflozin-d5, Toronto Research, Toronto, ON, Canada) and 300 µL of acetonitrile.
After vigorous vortexing and centrifugation at 2191× g for 1 min, 200 µL of the upper
layer was transferred to another polypropylene tube with 200 µL of ammonium acetate
(0.1%, w/v). A 20 µL aliquot of the solution was finally injected into the LC–MS/MS
system; 0.1% ammonium acetate and methanol were used for the mobile phase. The
gradient elution mode was applied (methanol proportion ranging between 57.5% and
90% in 5 min) with a constant flow rate of 0.4 mL/min. Dapagliflozin was quantified
using the multiple reaction monitoring (MRM) mode. The produced transitions were
m/z 426.47→ 166.84 for dapagliflozin and m/z 431.50→ 166.85 for dapagliflozin-d5. The
linear function of dapagliflozin concentration ranged from 1 to 400 ng/mL with regression
correlation coefficients of the calibration curves (R) greater than 0.999. The intra-day and
inter-day CV values were below 15%. The lower limit of quantification (LLOQ) using this
method was 1 ng/mL.

Linagliptin-13C-d3 (TLC Pharmaceutical Standards Ltd., Newmarket, ON, Canada)
was used as the internal standard, and 100 µL of plasma was added to a glass tube
containing the internal standard (10 µL of 1 mg/mL linagliptin-13C-d3) and 1 mL methanol.
The samples were vigorously vortexed and centrifuged at 10,770× g for 3 min. Next,
100 µL of the upper layer was transferred to a polypropylene tube with 10 µL of the
internal standard and 400 µL of methanol. After vigorous vortexing and centrifugation at
2191× g for 1 min, 100 µL of the upper layer was transferred to another polypropylene
tube containing 300 µL of formic acid in distilled water (0.1%, w/v). A 20 µL aliquot of
the solution was finally injected into the LC–MS/MS system; 0.1% ammonium formate
in distilled water and acetonitrile was used as the mobile phase. The gradient elution
mode was applied (acetonitrile percentage ranging between 25% and 90% in 4 min) with
a constant flow rate of 0.3 mL/min. Linagliptin was quantified using MRM mode. The
produced transitions were m/z 473.18→ 420.20 for linagliptin and m/z 477.20→ 420.20
for linagliptin-13C-d3. A linear function of linagliptin concentration ranged from 0.04 to
25 ng/mL with regression correlation coefficients of the calibration curves (R) greater than
0.999. The intra-day and inter-day CV values were <15%. The LLOQ with this method was
0.04 ng/mL.

The pharmacokinetic variables of dapagliflozin and linagliptin were estimated by
non-compartmental methods using Phoneix® Winnolin® software (version 8.1, Certara™,
Princeton, NJ, USA). The variables included were peak plasma concentration (Cmax), area
under the plasma drug concentration–time curve (AUC), time to maximal concentration,
terminal elimination half-life (t1/2), and oral clearance (CL/F). The AUC from time zero to
the last measurable concentration (AUClast) was obtained using the trapezoidal rule and
AUC from time zero to infinity (AUCinf) was calculated as AUClast + Ct/ke (Ct, the last
plasma concentration measured; ke, the elimination rate constant).

SAS statistical software (version 9.4, SAS Institute, Cary, NC, USA) was used for
statistical analyses. Mixed-effects models were used to compare pharmacokinetic variables,
using treatment, period, and sequence as fixed effects and sequence-nested subjects as
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random effects. Point estimates of GMRs and two-sided 90% CIs were calculated. The
90% CIs of GMR between 0.8 and 1.25 after comparing the log-transformed data of FCDP
and ICs were considered equivalent according to the US Food and Drug Administration
guidelines [24]. The safety and tolerability were assessed by vital signs, physical exam-
inations, laboratory tests (hematology, biochemistry, and urinalysis), and 12-lead ECGs
were assessed during the study period. Adverse events (AEs) were monitored based on the
participants’ self-reporting and general physical examinations.

3. Results

Forty-eight healthy male participants were enrolled in this study. The demographic
characteristics of the study participants are summarized in Table 1. The mean age and
weight of the participants were 27.3 years and 73.9 kg, respectively. Two participants
dropped out due to personal reasons, and a total of 46 participants completed the study. No
serious adverse events or clinically significant changes were observed through the safety
parameters during the study period. Only one adverse event was reported and resolved
spontaneously (myalgia).

Table 1. Baseline demographic characteristics.

Parameters Mean ± SD Min Max Median

Age (years) 27.3 ± 5.8 19 45 26

Weight (kg) 73.9 ± 10.2 53.5 99.7 72.6

Height (cm) 174.7 ± 5.2 161 185 175

BMI (kg/m2) 24.2 ± 2.9 18.3 29.8 25.1

The mean plasma concentration versus time profile for dapagliflozin and linagliptin
(both ICs and FCDP) are presented in Figure 1.
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When we compared the pharmacokinetic variables of dapagliflozin and linagliptin in
different formulations, no statistically significant differences were found (Tables 2 and 3).

Table 2. Pharmacokinetic parameters of dapagliflozin in different formulations.

IC FCDP

t1/2 (h) 11.34 ± 3.39 12.76 ± 3.84

Cmax (ng/mL) 161.32 ± 42.05 167.59 ± 42.09

tmax (h) 0.75 (0.5–4) 0.75 (0.5–2.5)

AUClast (ng·h/mL) 455.65 ± 92.84 465.76 ± 99.29

AUCinf (ng·h/mL) 500.34 ± 93.93 516.46 ± 98.28

CL/F (L/h) 20.67 ± 3.89 20.01 ± 3.6
Notes: All values are expressed as the mean ± SD, except for tmax, which is shown as the median (range).
Abbreviations: IC, individual component; FCDP, fixed-combination drug product; t1/2, half-life; Cmax, peak
plasma concentration; tmax, time to Cmax; AUClast, area under the plasma concentration–time curve from 0 to the
time of the last measurable concentration (72 h); AUCinf, area under the plasma concentration–time curve from 0
to infinity; t1/2, elimination half-life; CL/F, oral clearance.

Table 3. Pharmacokinetic variables of linagliptin in different formulations.

IC FCDP

t1/2 (h) 54.94 ± 13.6 54.29 ± 12.26

Cmax (ng/mL) 3.95 ± 1.42 4.2 ± 2.01

tmax (h) 2.5 (0.75–24) 1.5 (0.5–12)

AUClast (ng·h/mL) 155.35 ± 30.35 157.37 ± 35.9

AUCinf (ng·h/mL) 265.55 ± 78.74 267.97 ± 88.03

CL/F (L/h) 40.44 ± 10.50 40.81 ± 11.74
Notes: All values are expressed as the mean ± SD, except for tmax, which is shown as the median (range).
Abbreviations: IC, individual component; FCDP, fixed-combination drug product; t1/2, half-life; Cmax, peak
plasma concentration; tmax, time to Cmax; AUClast, area under the plasma concentration–time curve from 0 to the
time of the last measurable concentration (72 h); AUCinf, area under the plasma concentration–time curve from 0
to infinity; t1/2, elimination half-life; CL/F, oral clearance.

The mean Cmax values for dapagliflozin were 161.32 ng/mL (IC) and 167.59 ng/mL
(FCDP) and for linagliptin, 3.95 ng/mL (IC) and 4.2 ng/mL (FCDP). The mean area under
the curve (AUC)last values were also comparable for both dapagliflozin (IC: 455.65 ng·h/mL,
FCDP: 465.76 ng·h/mL) and linagliptin (IC: 155.35 ng·h/mL, FCDP: 157.37 ng·h/mL). The
estimation values of geometric mean ratios (GMRs) and 90% confidence interval (CI)
for both Cmax and AUCs were within the range of 0.8–1.25 for both dapagliflozin and
linagliptin, indicating that FCDP and IC tablets are bioequivalent (Table 4). Individual
comparisons of the pharmacokinetic parameters are presented in Figure 2. The intra-
participant coefficient of variation (CV) (%) for dapagliflozin was 20.49% for Cmax and
7.91% for AUClast, and 27.58% and 7.96% for linagliptin, respectively.
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Table 4. Point estimates and 90% CIs for log-transformed pharmacokinetic parameters (Cmax, AUClast,
AUCinf) of dapagliflozin and linagliptin IC vs. FCDP tablets.

Drugs Variable GMR (90% CI) Intra-Participant CV%

Dapagliflozin Cmax 1.0413 (0.9554–1.1349) 20.49

AUClast 1.0219 (0.9885–1.0564) 7.91

AUCinf 1.0324 (1.0010–1.0648) 7.35

Linagliptin Cmax 1.0265 (0.9141–1.1526) 27.58

AUClast 1.0062 (0.9731–1.0404) 7.96

AUCinf 0.9996 (0.9477–1.0542) 12.67
Abbreviations: IC, individual component; FCDP, fixed-combination drug product; GMR, geometric mean ratio;
CI, confidence interval; Cmax, peak plasma concentration; AUClast, area under the plasma concentration–time
curve from 0 to 72 h; AUCinf, area under the plasma concentration–time curve from 0 to infinity; CV, coefficient of
variation.
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4. Discussion

The combination treatment using dapagliflozin and linagliptin is reasonable consid-
ering their complementary effects due to the different mechanisms of action, different
metabolism, and relatively fewer adverse events, including hypoglycemia [14,25,26]. Al-
though dapagliflozin and linagliptin are substrates of P-gp transporter, several clinical
studies have already demonstrated that a combination of SGLT-2 inhibitors and DPP-4
inhibitors did not show any significant drug–drug interactions (DDI) [17,27,28]. Assuming
that linagliptin and dapagliflozin have similar chemical structures, the possibility of DDI
via P-gp may not be significant. Additionally, the Km of P-gp associated linagliptin trans-
port is 187 µM and it does not inhibit P-gp at the therapeutic levels [29]. In vitro studies
have shown that dapagliflozin is a weak substrate but not an inhibitor of P-gp [30] and its
interaction with other P-gp substrates, including linagliptin, has not yet been reported.

A recent study suggested that dapagliflozin may have a better outcome in reducing
heart failure in T2DM than empagliflozin (4.9 person-years in dapagliflozin vs. 9.0 person-
years in empagliflozin) [31]. Both dapagliflozin and empagliflozin have favorable effects
on heart failure; however, dapagliflozin is characterized by a longer pharmacological effect
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and lower SGLT2:SGLT1 receptor selectivity (i.e., higher selectivity of SGLT1 receptors,
thereby reducing postprandial blood glucose variations) than empagliflozin [31,32]. Among
the DPP-4 inhibitors, linagliptin has a relatively longer half-life and higher potency of
DPP-4 inhibition (approximately 90%), whereas saxagliptin has a shorter half-life (parent:
2.5 h, metabolite: 3.1 h) and lower inhibitory effect on DPP-4 (approximately 80%) [27].
Linagliptin also has an advantage over other DPP-4 inhibitors in diabetic patients with
renal impairment (kidney excretion: 5%) [33–36]. Therefore, the development of FCDP for
dapagliflozin and linagliptin is likely to have many advantages in the clinical management
of uncontrolled T2DM.

The results of this study showed that the pharmacokinetic profiles after adminis-
tration of individual dapagliflozin and linagliptin tablets were comparable to the FCDP
form. In other words, the systemic exposure to IC and FCDP forms of dapagliflozin and
linagliptin were similar in terms of Cmax and AUCs. Both treatments were well-tolerated
without significant adverse events and showed acceptable intra-subject variability [37].
The observed Cmax values for dapagliflozin were 161.32 ng/mL (IC) and 167.59 ng/mL
(FCDP), which were reached at 0.75 h for both, suggesting similar absorption profiles for
dapagliflozin in the two formulations. The extent of absorption (i.e., AUC) too was very
similar for both formulations (IC: 455.65 ng·h/mL, FCDP: 465.76 ng·h/mL). Similar results
were also obtained for linagliptin (Cmax: 3.95 ng/mL in IC and 4.2 ng/mL in FCDP, AUClast:
155.35 ng·h/mL in IC and 157.37 ng·h/mL in FCDP). These results indicate the successful
manufacture of the FCDP form of dapagliflozin and linagliptin combined [38].

FCDP is defined as a combination of more than two active chemicals in a single
pharmaceutical administration [24,38]. The advantage of FCDP is mainly cost-effectiveness
and increasing compliance by reducing the number of total medications administered at
once [39]. Inappropriately manufactured FCDPs can result in reduced effectiveness or
enhanced toxicity in routine clinical practice [40]. Although this study did not contain
pharmacodynamic data, including blood glucose levels or HbA1c, it is believed that this
FCDP should be generally comparable to its IC forms, considering that pharmacodynamic
results generally correlate with pharmacokinetic variables and there were no significant
adverse events related to the medication [41]. Indeed, the GMRs of the log-transformed
ratio for dapagliflozin were 1.0413 (0.9554–1.1349) for Cmax and 1.0219 (0.9885–1.0564)
for AUClast; those for linagliptin were 1.0265 (0.9141–1.1526) and 1.0062 (0.9731–1.0404),
respectively, which were within the predefined bioequivalence range. This showed that
ICs and FCDP exhibited comparable pharmacokinetic characteristics [24].

5. Conclusions

The results of this clinical study demonstrated similar pharmacokinetic characteristics
between IC and FCDP forms of dapagliflozin and linagliptin at commercially used dosages
of 10 mg and 5 mg, respectively. These results met the pharmacokinetic bioequivalence
criteria. The combination of dapagliflozin and linagliptin was safe and tolerable in both
formulations.
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