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Abstract: Polyacrylamide hydrogels formed by free radical polymerisation were formed by entrap-
ping anthracene and 4-amino-1,8-naphthalimide fluorescent logic gates based on photoinduced
electron transfer (PET) and/or internal charge transfer (ICT). The non-covalent immobilisation of the
molecules in the hydrogels resulted in semi-solid YES, NOT, and AND logic gates. Two molecular
AND gates, examples of Pourbaix sensors, were tested in acidic aqueous methanol with ammonium
persulfate, a strong oxidant, and displayed greater fluorescence quantum yields than previously
reported. The logic hydrogels were exposed to aqueous solutions with chemical inputs, and the
fluorescence output response was viewed under 365 nm UV light. All of the molecular logic gates
diffuse out of the hydrogels to some extent when placed in solution, particularly those with secondary
basic amines. The study exemplifies an effort of taking molecular logic gates from homogeneous
solutions into the realm of solid-solution environments. We demonstrate the use of Pourbaix sensors
as pE-pH indicators for monitoring oxidative and acidic conditions, notably for excess ammonium
persulfate, a reagent used in the polymerisation of SDS-polyacrylamide gels.

Keywords: hydrogel; polyacrylamide; fluorescence; photoinduced electron transfer; internal charge
transfer; molecular logic gate

1. Introduction

Hydrogels are three-dimensional macromolecular polymers consisting of a network of
cross-linked polymer chains with large amounts of water tightly held within the polymer
structure [1]. The polymer network is permeable to water and allows for the diffusion
of gases and liquids. The polymeric structure has a high porosity and soft consistency
analogous to the texture and flexibility of biological tissues [2]. These properties make
hydrogels advantageous for biomedical products such as contact lenses, biosensors, and
tissue engineering [3]. The first hydrogels were developed by Wichterle and Lím over half a
century ago [4]. Interest in these remarkable materials remains strong for the development
of drug delivery devices, chromatographic packing, and electrophoresis gels [5].

Polyacrylamide hydrogels are used routinely in sodium dodecyl sulphate (SDS)-
polyacrylamide gel electrophoresis (PAGE) for separating proteins and DNA [6]. The
hydrogels are formed by free radical polymerisation of acrylamide (monomer) and N,N′-
methylene-bis-acrylamide (cross-linker) by vinyl addition typically using TEMED (N,N,N′,N′-
tetramethylethylenediamine) as the catalyst and ammonium persulfate (APS) as the initiator
in water. During the polymerisation process, the persulfate generates free radicals that
react with the monomer and the cross-linker forming a porous material with cavities able
to encapsulate sensor molecules (Figure 1).
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Figure 1. The concept of a sensor (chemosensor, logic gate) encapsulated within a pore of a cross-
linked water-compatible polymer matrix (top). The polymer is synthesised from acrylamide (mon-
omer) and N,N′-methylene-bis-acrylamide (cross-bridge) using APS and TEMED to form the poly-
acrylamide hydrogel (bottom). 

In addition to acting as an oxidant, ammonium persulfate acts as a buffer between 
pH 8 and 10 (pKa (NH4+) = 9.2). At lower pH, TEMED (pKa1 = 8.97) becomes protonated, 
which slows the initiation process as the unprotonated form is required for initiating 
polymerisation. A practical concern during SDS-PAGE studies is that excess persulfate 
may cause the oxidation of proteins and nucleic acids, especially sulfhydryl-containing 
compounds [6]. Hence, a fluorescent method for monitoring excess persulfate could be 
useful to biochemists and protein scientists. An alternative procedure uses riboflavin (vit-
amin B2) as the free radical source after activation with light and oxygen to initiate 
polymerisation. A major advantage of this latter approach, known as photochemical 
polymerisation, is that riboflavin is active at a lower concentration range of 10 ug mL−1. 
However, a disadvantage of this method is that it takes much longer for complete 
polymerisation to occur—up to 8 h versus 60 min by the TEMED/APS combination. 

Fluorescent chemosensors and logic gates have been featured in hydrogels for a va-
riety of applications [7–12]. McCoy developed hydrogels with luminescent pH-modulated 
(YES logic gate) Eu(III)-based quinoline cyclens [13]. A fluorogenic polyacrylamide sensor 
embedded with 6,7-dihydrocoumarin was used as a turn-off sensor (NOT logic gate) for 
the nerve agent diethylchlorophosphate [14]. Borisov demonstrated photoinduced elec-
tron transfer (PET)-based optical sensors for K+ [15,16], Na+ [17], CO2 [18], and H+ [18,19] 
in polyurethane hydrogels. Thapa reported PET-based crown ethers for sensing Ba2+ in 
polyacrylamide [20]. Gunnlaugsson described p(HEMA-co-MMA) lanthanide-based hy-
drogel as a H+, F−-driven logic circuit with IMPLICATION, NOR, and TRANSFER func-
tions with dual fluorescence and phosphorescence modes [21]. Nandi communicated a 
riboflavin-methyl cellulose hydrogel as a semi-solid H+,T-driven AND logic gate (T = tem-
perature) [22]. We hypothesise that molecules able to perform logic-based computations 
[23] could be useful tools for developing smart materials for a variety of applications. 

In this study, we embed fluorescent molecules 1-6 (Figure 2) based on photoinduced 
electron transfer and/or internal charge transfer in polyacrylamide hydrogels. The hydro-
gels embedded with 1–6 function as YES [24], NOT [25], and AND [26,27] logic gates. 

Figure 1. The concept of a sensor (chemosensor, logic gate) encapsulated within a pore of a
cross-linked water-compatible polymer matrix (top). The polymer is synthesised from acrylamide
(monomer) and N,N′-methylene-bis-acrylamide (cross-bridge) using APS and TEMED to form the
polyacrylamide hydrogel (bottom).

In addition to acting as an oxidant, ammonium persulfate acts as a buffer between
pH 8 and 10 (pKa (NH4

+) = 9.2). At lower pH, TEMED (pKa1 = 8.97) becomes protonated,
which slows the initiation process as the unprotonated form is required for initiating poly-
merisation. A practical concern during SDS-PAGE studies is that excess persulfate may
cause the oxidation of proteins and nucleic acids, especially sulfhydryl-containing com-
pounds [6]. Hence, a fluorescent method for monitoring excess persulfate could be useful
to biochemists and protein scientists. An alternative procedure uses riboflavin (vitamin B2)
as the free radical source after activation with light and oxygen to initiate polymerisation.
A major advantage of this latter approach, known as photochemical polymerisation, is that
riboflavin is active at a lower concentration range of 10 ug mL−1. However, a disadvantage
of this method is that it takes much longer for complete polymerisation to occur—up to 8 h
versus 60 min by the TEMED/APS combination.

Fluorescent chemosensors and logic gates have been featured in hydrogels for a vari-
ety of applications [7–12]. McCoy developed hydrogels with luminescent pH-modulated
(YES logic gate) Eu(III)-based quinoline cyclens [13]. A fluorogenic polyacrylamide sensor
embedded with 6,7-dihydrocoumarin was used as a turn-off sensor (NOT logic gate) for
the nerve agent diethylchlorophosphate [14]. Borisov demonstrated photoinduced electron
transfer (PET)-based optical sensors for K+ [15,16], Na+ [17], CO2 [18], and H+ [18,19]
in polyurethane hydrogels. Thapa reported PET-based crown ethers for sensing Ba2+

in polyacrylamide [20]. Gunnlaugsson described p(HEMA-co-MMA) lanthanide-based
hydrogel as a H+, F−-driven logic circuit with IMPLICATION, NOR, and TRANSFER
functions with dual fluorescence and phosphorescence modes [21]. Nandi communi-
cated a riboflavin-methyl cellulose hydrogel as a semi-solid H+,T-driven AND logic gate
(T = temperature) [22]. We hypothesise that molecules able to perform logic-based compu-
tations [23] could be useful tools for developing smart materials for a variety of applications.

In this study, we embed fluorescent molecules 1-6 (Figure 2) based on photoinduced
electron transfer and/or internal charge transfer in polyacrylamide hydrogels. The hy-
drogels embedded with 1–6 function as YES [24], NOT [25], and AND [26,27] logic gates.
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Molecules 1–3 are single-input gates with a H+ input, and 4 is a single-input gate with a Na+

input. Molecules 5 and 6 are demonstrated as H+ and S2O8
2− double-input AND gates.

The latter are examples of Pourbaix sensors, which are responsive to pH and potential
(pE) [28]. In past studies, we used Fe3+ as the oxidant, for example, with ferrocenyl-
pyrazoline INHIBIT logic gates [29]. Recently, we substituted APS for Fe3+ as the oxidant
and observed a significant fluorescence enhancement, a 10-fold increase, from a Φf from
1.8% to 19.2% [30]. Herein, we share new results on Pourbaix sensors 5 and 6 with APS as
the oxidant in the solution. Furthermore, we propose and explore the possibilities of using
Pourbaix sensors as fluorescent tools for monitoring ammonium persulfate (NH4)2S2O8 in
polyacrylamide hydrogels.
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for hydrophobicity and Na+, such as Toyo’oka’s 4-N-(4′-aminomethylbenzo-15-crown-5)-
7-nitro-2,1,3-benzoxadiazole, would complement this study nicely [32]. 

Molecules 5 and 6 are green and blue-emitting Pourbaix sensors with λFlu at 526 nm 
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Figure 2. The molecules studied in cross-linked polyacrylamide hydrogels.

2. Results and Discussion
2.1. Homogeneous Solution Studies

Molecules 1–3 are yellow-emitting fluorescent pH indicators [24]. The compounds
function by an excited internal charge transfer (ICT) state with a dipole moment of 10 D.
In the UV–vis spectra, isosbestic points are evident at 441 nm, 440 nm, and 393 nm. The
molecules emit at ca. 540 nm with fluorescent quantum yields (Φf) of 0.47, 0.58, and 0.50 in
water. The excited state pKas are 9.3, 9.0, and 9.0, so the compounds are protonated in water.
Of the group, 3 is the most sensitive, with a 500-fold enhancement, while 1 and 2 have more
modest enhancements of eight and thirteen-fold. These compounds were selected because
of their solvatochromic properties as they emit different colours depending on the solvent
polarity: blue in hexane, green in diethyl ether, and yellow in water [24].

Molecule 4 is a blue-emitting Na+ indicator [25]. In 1:1 (v/v) methanol/water, there
is a maximum of 345 nm in the UV–vis absorbance spectrum. No isosbestic point is
observed on titration with Na+, which is ideal for a photo-induced electron transfer sensor.
Initially, the molecule is weakly fluorescent with a λFlu of 406 nm and ΦF of 0.02. Upon
titration of Na+, binding occurs at the benzo-crown ether with a pβNa+ of 0.81 and the
emission of the Na+-bound molecule becomes diminished and undetected by the naked
eye with a ΦF of 0.0029. Consequently, 4 functions as an on-off switch or a NOT logic
gate. For sensing purposes, off-on switches or YES logic gates, such as Heagy’s 4-sulfon-1,8-
naphthalic anhydride analogue tend to be more appreciated [31]. Bi-functional fluorescent
turn-on probes for hydrophobicity and Na+, such as Toyo’oka’s 4-N-(4′-aminomethylbenzo-
15-crown-5)-7-nitro-2,1,3-benzoxadiazole, would complement this study nicely [32].

Molecules 5 and 6 are green and blue-emitting Pourbaix sensors with λFlu at 526 nm
and 395 nm [25,26]. The excited state pKas of 5 and 6 are 6.6 (1:1 MeOH/water) and 7.8
(water) [26]. The Φf in acidic solutions are 0.086 and 0.018 in methanol/water and methanol,
respectively, based on Fe3+ as the oxidant. A goal of this study was to evaluate the AND
logic function of our Pourbaix sensors using APS as the oxidant. Ammonium persulfate
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is a much stronger oxidant than Fe3+ with an oxidation potential of E◦ = +2.1 V versus
E◦ = +0.77 V. Advantageously, APS readily dissolves in water across the pH scale and is
transparent and colourless in the UV–visible region, unlike Fe3+, which has a tendency to
hydrolyse to insoluble Fe(OH)3 above pH 4 and absorbs to some extent in the UV region.
APS also transfers two-mole equivalents of electrons and the oxidation product is sulphate,
a relatively inert anion. A summary of the photophysical parameters of 1–6 is tabulated in
Table 1.

Table 1. Photophysical data 1–6 from reported literature sources in solution [24–27].

Parameters 1 a 2 a 3 a 4 b 5 b 6 c

λAbs (pH 4)/nm 434 433 387 345 386 349
λFlu (pH 4)/nm 540 538 538 406 526 395

ΦFmax 0.47 0.58 0.50 0.02 0.086 0.018
pKa*, pβH+

* 9.3 9.0 9.0 − 6.6 7.8 d

a Water. b 1:1 (v/v) methanol/water c Methanol. d Taken from a model compound in water. The excited state pKa
(pKa

*) refers explicitly to binding constants in water while in solvent mixtures the designation pβH+
* is used.

Table 2 summarises the truth tables for 5 and 6 according to the possible permutations
of acid and APS chemical inputs. In the case of 5, we observe an impressive 65-fold
fluorescence enhancement between the most fluorescent state (1,1) and the second highest
(1,0). A substantially brighter emission is observed using APS rather than Fe3+ as the
oxidant in 1:1 (v/v) methanol/water with a Φf of 39.1%. With Fe3+ as the oxidant, the Φf
was limited to 8.6% (Table 1). This difference is due to the strength of APS as an oxidant
and the fact that it is colourless and transparent in solutions at millimolar concentrations.
The concentration of Fe3+ was limited to micromolar concentrations due to absorption
effects at the excitation wavelength [27].

Table 2. Truth tables for 5 in 1:1 (v/v) methanol/water and 6 in 1:4 (v/v) methanol/water with HCl
and APS as inputs and emission as the output a.

Input1
b (H+) Input2

c (S2O82−) Output 5 (Φf) Output 6 (Φf)

0 0 0 (0.001) 0 (0.0002)
1 0 0 (0.006) 0 (0.0101)
0 1 0 (0.001) 0 (0.0011)
1 1 1 (0.391) 1 (0.0834)

a 2 µM 5 and 13 µM 6, b For 5: high H+ level 10−4 M HCl. Low H+ level at 10−10 M adjusted with 0.50 M
NaOH. For 6: high H+ level 10−3 M CH3SO3H. Low H+ level at 10−10 M adjusted with TMAOH. c High and low
(NH4)2S2O8 levels 5.0 mM and 0 mM, respectively.

With 6, we first tested the AND logic behaviour in methanol using methanesulfonic
acid and APS as the oxidant. The UV–visible absorbance spectra have characteristic
anthracene peaks at 364 nm and 385 nm. The addition of acid causes a 4–5 nm red-shift
to 369 nm and 389 nm and isosbestic points at 361 nm, 368 nm, 381 nm, and 387 nm.
These observations are consistent with our published results in methanol using Fe3+ as the
oxidant [26]. We wish to highlight the enhanced Φf = 0.0834 and the 8-fold fluorescence
enhancement with APS compared to a Φf = 0.018 and a 4.5-fold enhancement with Fe3+. As
the hydrogel environment is hydrophilic, we felt obliged to also examine 6 under majority
aqueous conditions. We prepared a 1:9 (v/v) MeOH/H2O solution of 6. In the UV–vis
spectra, we noticed that the anthracene peaks were not so resolved. An emission scan of 6
excited at λex = 368 nm in the presence of 10−4 M acid and 5.0 mM APS gave the expected
peak profile at 417 nm and 424 nm. However, we also observed a broad, structureless band
between 530–650 nm with a λmax of 568 nm (Figure 3).
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B after exposure to 0.1 M HCl (beaker, right side). A yellow fluorescence is observed due to 

Figure 3. Emission spectra of 6 in 1:9 (v/v) MeOH/H2O excited at λex = 368 nm. The numbers in
parentheses are the binary input conditions, as given in Table 2.

These observations are consistent with anthracene monomer and excimer emission. Ground-
state aggregates were invoked in the study of anthracene ortho-aminomethylphenylboronic and
anthraceneaminomethylphenyl sensors in 1:2 (v/v) methanol/water to explain the observa-
tion of an excimer, which is absent in methanol [33]. We thus proceeded to increase the
proportion of methanol to give a 1:4 (v/v) MeOH/H2O solution and observed the peak at
417 nm increase at the expense of a decrease in the broad band at 568 nm. Accordingly, the
monomer Φf in the presence of acid and APS in 10% MeOH is 0.0533 and in 20% MeOH
is 0.0834 (Table 2). Dilution to 30% MeOH results in the monomer emission decreasing
slightly and the tail portion of the spectrum beyond 540 nm remaining nearly identical.
Examined under a 365 nm UV lamp, the 30% MeOH solution colour of 6 with H+ and APS
is pinkish rather than blue [25], suggesting the remnants of aggregates.

2.2. Hydrogel Studies

Molecules 1–6 were embedded in the hydrogels in situ by mixing sensor solutions
with the monomers prior to polymerisation. The polyacrylamide gels were formed by
polymerisation of acrylamide and N,N′-methylene-bis-acrylamide by a free radical reaction
initiated by ammonium persulfate via vinyl addition of acrylamide at ambient temperature
in aqueous conditions. Details are available in the Section 3. The percent weight of the
cross-linker was 0.08%, providing visually transparent hydrogels [1]. In all studies with
the polyacrylamide hydrogels, the fluorescence of 1–3 was yellow, confirming that the
environment within the hydrogel is indeed hydrophilic (Figure 4).
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Figure 4. (a) Hydrogel pellets A and B (1.8 cm diameter). Sample A is a blank polyacrylamide
control (PASS 0 logic gate). Sample B is embedded with 3 and exposed to a 0.1 M NaOH solution.
(b) Sample B after exposure to 0.1 M HCl (beaker, right side). A yellow fluorescence is observed due
to protonation of the amine receptor, preventing PET. The acid solution is also fluorescent due to
diffusion of 3 from the hydrogel. The samples are irradiated with 365 nm UV light.
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In Figure 5, a distinctive blue emission is emitted from the polyacrylamide hydrogel
(left pellet). During the polymerisation of acrylamide, APS is consumed in the reaction.
However, (NH4)2S2O8 in the polymeric matrix is also detected by Pourbaix sensors 5 and 6.
Hence, we observed that on hydrogel formation, 5 is in the on state (Figure 6). Pourbaix
sensor 5 senses for the oxidising agent APS and acidity by providing a green fluorescence
output. Ideally, the fluorescence would be sustained until all the APS is consumed and
no more oxidant remains to oxidise the ferrocene moiety to the ferrocenium radical cation.
However, if excess APS remains, a green emission is still observed. Hence, in principle, the
Pourbaix sensors act as reaction indicators.
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in the beaker (right) emits blue emission due to leaching of 4 and incomplete saturation of the
benzocrown receptor.
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Figure 6. Vials D-F irradiated with 365 nm UV light in a dark cabinet. Vial D contains a hydrated
polyacrylamide hydrogel embedded with 5 in the presence of APS. Vial E contains a hydrated
hydrogel with 5, APS and 0.5 M NaOH solution, which turns off the fluorescence. Vial F contains a
dried fragment of solid polyacrylamide with 5 emitting a green fluorescence.

Steady-state and time-resolved fluorescence studies with 4-aminophthalimide indicate
that there are multiple microenvironments inside polyacrylamide hydrogels [34]. This
arises from the inhomogeneity of the gel matrix and a distribution of pore sizes. Numerous
studies indicate that the mean pore size is dependent on the amount of cross-linker, which
decreases with increasing monomer concentration [35–37]. The approximate diameter of
anthracene is 1.1 nm, and the longest axes of the amino-1,8-naphthalimide molecules 1,
4, and 5 are estimated to be no longer than 2.2 nm. Hence, the pores sizes are anticipated
to be large enough to allow these nanometre-sized molecules to diffuse about and out of
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the hydrogel. It is therefore not surprising that diffusion of the molecules was detected
on UV irradiation of the supernatant solutions resulting from the washed hydrogels and
confirmed by running fluorescence spectra on the supernatant.

We attempted to obtain emission spectra of 1–6 within hydrogels prepared in 10 mm
Suprasil quartz cuvettes. Although macroscopically transparent, almost no emission was
observed from the hydrogels impregnated with the molecules. For example, while an
intense fluorescence is observed from 3 in an aqueous solution, the majority of the emission
is blocked, embedded in the bulk hydrogel. The transmittance of polyacrylamide hydrogel
is dependent on its cross-linker concentration, thickness, and transmittance wavelength [1].
In future work, we will explore using thinner polyacrylamide hydrogel films [14] and
fluorescent molecular logic gates emitting at longer wavelengths [16].

3. Materials and Methods
3.1. Materials

Acrylamide (99%, Sigma-Aldrich, St. Louis, MO, USA), N,N′-methylene-bis-acrylamide
(99%, Sigma-Aldrich), N,N,N′,N′-tetramethylethylene diamine (TEMED, Merck Millipore,
Burlington, MA, USA), ammonium persulfate (APS ≥ 98%, Sigma-Aldrich), methanol
(Carlo Erba, HPLC grade, Cornaredo, Italy), hydrochloric acid (Thermo Fisher Scientific,
37.5%, Waltham, MA, USA), sodium hydroxide pellets (Thermo Fisher Scientific, Analytical
Grade), and tetramethylammonium hydroxide (TMAOH, 25% in H2O, Sigma-Aldrich)
were used as received. Molecules 1–6 were previously synthesised [24–27].

3.2. Hydrogel Synthesis

The polyacrylamide hydrogels were prepared by mixing aqueous aliquots from three
100 mL stock solutions. The first solution was A acrylamide (8.0 g, 1.1 mM) and N,N,N′N′-
methylene-bis-acrylamide (0.15 g, 10 mM) in water. The second solution B contained
(NH4)2S2O8 (1.5 g, 66 mM), and the third solution C contained TEMED (1.0 g, 86 mM).
Another solution D was prepared for the fluorescent logic gate (~10 mg, 20 µM, dissolved in
water or 1 mL of methanol). The solutions were purged with nitrogen gas to remove oxygen.
The four solutions A–D were mixed in a ratio of 5:2:1:2. The solution was poured into
5 mL beakers. The polymerised hydrogels were immersed in deionised water overnight to
remove unreacted monomers.

3.3. Instrumentation

UV–visible absorption spectra were measured with a Jasco V650 spectrophotometer
with Spectra Manager Suite® software. The parameters were set to medium response, a
1 nm bandwidth, and a scan speed of 200 nm min−1. Spectra were background subtracted
for the solvent. Samples were measured in 10 mm Suprasil® cuvettes in a parallel beam
set-up. Fluorescence spectra were recorded with a Jasco FP-8300 spectrofluorometer with
Spectra Manager Suite® software. The excitation and emission slits were 2.5 nm. The scan
rate was 200 cm−1. The pH meter was calibrated using HANNA® pH 7.01 and pH 4.01
buffers prior to any readings.

4. Conclusions

Six fluorescent molecules were embedded within polyacrylamide hydrogels and
examined as semi-solid logic gates. Molecules 1–3 are water-soluble H+-driven YES logic
gates with a high fluorescence quantum yield. Molecule 4 is a Na+-driven NOT logic
gate, and 5 and 6 are H+, S2O8

2--driven AND logic gates. All of the molecules have a
tendency to diffuse from the hydrogels into the bulk solution. To accommodate this issue,
we could covalently link the molecules directly to the polymer matrix. The use of APS
as an oxidant results in a four-fold increase in the fluorescent output of Pourbaix sensors
5 and 6 compared to previous studies using Fe3+ as the oxidant. These latest results
consolidate the potential of Pourbaix sensors as promising tools for biological and material
science applications.
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