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Abstract

Lactic acid bacteria are Gram-positive bacteria used throughout the world in many industrial

applications for their acidification, flavor and texture formation attributes. One of the species,

Lactococcus lactis, is employed for the production of fermented milk products like cheese,

buttermilk and quark. It ferments lactose to lactic acid and, thus, helps improve the shelf life

of the products. Many physiological and transcriptome studies have been performed in

L. lactis in order to comprehend and improve its biotechnological assets. Using large

amounts of transcriptome data to understand and predict the behavior of biological pro-

cesses in bacterial or other cell types is a complex task. Gene networks enable predicting

gene behavior and function in the context of transcriptionally linked processes. We recon-

struct and present the gene co-expression network (GCN) for the most widely studied L. lac-

tis strain, MG1363, using publicly available transcriptome data. Several methods exist to

generate and judge the quality of GCNs. Different reconstruction methods lead to networks

with varying structural properties, consequently altering gene clusters. We compared the

structural properties of the MG1363 GCNs generated by five methods, namely Pearson cor-

relation, Spearman correlation, GeneNet, Weighted Gene Co-expression Network Analysis

(WGCNA), and Sparse PArtial Correlation Estimation (SPACE). Using SPACE, we gener-

ated an L. lactis MG1363 GCN and assessed its quality using modularity and structural and

biological criteria. The L. lactis MG1363 GCN has structural properties similar to those of the

gold-standard networks of Escherichia coli K-12 and Bacillus subtilis 168. We showcase

that the network can be used to mine for genes with similar expression profiles that are also

generally linked to the same biological process.

Introduction

Lactococcus lactis MG1363 is a worldwide studied plasmid-free derivative of the dairy starter

strain NCDO712 [1]. Several genomes of L. lactis strains, including MG1363, have been

sequenced to completion [2–4] and many regulons of L. lactis MG1363 are well characterized
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[5,6]. Still, the functions of many genes in its genome remain poorly understood. Reliable pre-

diction and assignment of gene function remains a challenge deeply rooted in computational

biological methods such as gene annotation and comparative genomics. Another option for

gene prediction and function assignment is to construct gene co-expression networks (GCNs)

[7–9]. A GCN is a graphical structure consisting of genes (depicted as nodes) and co-expres-

sion relationships, depicted as edges. The most connected nodes are the hubs, which generally

correspond to genes encoding transcription factors (TFs) that drive the expression of the

genes to which they are connected. Co-expression networks are used to characterize gene

neighborhood relationships (commonly referred to as guilt-by-association) [10], which can be

used to identify genes/proteins with similar functions and/or physical interactions [11]. A bio-

logically meaningful network should be highly structurally organized, with clusters of genes

(or modules) and genes connecting those clusters [12–15].

For reconstructing a GCN, Pearson or Spearman correlation coefficients are the most

widely used measures of association to quantify gene co-expression [16,17]. Reconstruction of

co-expression networks involves determining associations between genes based on their

expression profiles. Studies on uncovering directional regulatory effects often focus on small-

sized networks (with less than 200 genes). Several methods exist to infer activation and repres-

sion mechanisms in networks, but this is not the focus of our work here [11,18]. Inter- and

intra-modular connections within a network complicate determining module boundaries

[19]. Inter-modular connections are edges that connect genes belonging to different modules

and intra-connections refer to edges that link genes within the same module. The presence of

more connections within, rather than between, modules enables reliable module detection due

to increased modularity (Q) of a network [20]. In addition to the Pearson or Spearman correla-

tion approaches to reconstruct co-expression networks, other popular methods are GeneNet

[21], SPACE [22], WGCNA [23] and ARACNE [24]. The choice of which of these methods to

use for network reconstruction can be influenced by various factors, such as data size or

whether one needs to infer regulatory directions between genes. For instance, Allen et al. [25]

found that, for small networks consisting of less than 100 genes, GeneNet and SPACE out-per-

form the WGCNA and ARACNE approaches. Each network reconstruction method has its

strengths and weaknesses [26,27]. Bayesian Network-based approaches like BNArray [28], B-

course [29], Bayesian Network Toolbox [30] and Werhli’s BN implementation [31] perform

relatively poorly for large networks [25]. Data quality and dimension, network size and robust-

ness of the used reconstruction method all affect the quality of the network [32], while lowly

expressed genes are known to introduce bias and reduce network accuracy [33].

Here, we present the L. lactis MG1363 gene co-expression network based on data from the

NCBI Gene Expression Omnibus (GEO) database [34] and discuss its structural properties in

comparison to two gold-standard bacterial networks, namely those of Bacillus subtilis 168 and

Escherichia coli K-12. We expect this L. lactis MG1363 GCN to provide an excellent basis for

data mining and a template for designing further experiments. Such experiments would partic-

ularly be focused on sub-networks or on the functional analyses of specific genes of interest.

Methods

Transcriptome and regulon data sources

Transcriptome data used for the L. lactis MG1363 GCN reconstruction was obtained from the

NCBI GEO database (http://www.ncbi.nlm.nih.gov/), Table A in S1 File. The GEO accession

numbers of the 64 experiments used are given in the header of this table and give access to the

detailed descriptions of the experiments. The raw data was Lowess-normalized and scaled as

described in [35]. The resulting normalized signals were used for the network reconstruction.

Lactococcus lactis gene co-expression network
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To ensure a fair comparison between samples, experiments were grouped by (i) the growth

medium used (GM17 or G-CDM, a rich and a chemically defined medium, respectively, con-

taining 0.5% glucose), and (ii) the growth phase from which the samples were taken, namely

early-, mid-, late-exponential or stationary phase, or based on ranges in culture optical density

(OD). The processed data encompassed 64 conditions, after computing the median expression

values per replicate and excluding datasets with genes with noisy expression. Downstream

analysis of the data was performed using T-REx [36].

Biological network reconstruction

The L. lactis MG1363 networks were generated in R language v3.0.2. Network structural prop-

erties were analyzed using R’s igraph package (version 1.0.0) and visualized in Cytoscape

v3.2.0 [37]. Network density, modularity, average path length, diameter and number of

detected modules were calculated for five methods, namely Pearson correlation, Spearman

correlation, GeneNet, SPACE and WGCNA. We compared the networks thus generated and

ranked them for performance. Networks generated using the Pearson or Spearman correlation

coefficients were assessed by comparing the results of the degree distribution of the networks

resulting from these two approaches to those of the power-law distribution [38,39]. To gener-

ate networks with the other three methods, the association parameters were varied. Only net-

works generated using specific regions of threshold parameters were considered for further

analyses; hence, GCNs with (i) very high connectivity, (ii) low modularity, and (iii) very sparse

connectivity (only a few hundred genes) were discarded. To examine the structural robustness

of the L. lactis MG1363 network, a probabilistic random edge addition was performed using

the approach described in [40]. A topological overlap matrix showing the degree to which

directly linked nodes are connected was created to perform this analysis. In the WGCNA

approach, we used a soft threshold approach on the adjacency matrix [23], which is a deriva-

tive of the topological matrix. Since the performance and reliability of network module detec-

tion methods are known to vary [25,41], we used at least four approaches to partition the

networks, namely Walk-trap [42], Fast-Greedy [43], Infomap community [44] and label prop-

agation [45].

Data for regulatory network reconstruction of E. coli K-12 were obtained from regulonDB

(http://regulondb.ccg.unam.mx/menu/download/datasets/index.jsp) [46], those for the recon-

struction of the B. subtilis 168 regulatory network from the SubtiWiki database (http://

subtiwiki.uni-goettingen.de/) [47]. Gene-set enrichment analysis (GSEA) was performed

using the Genome2D web-server (http://genome2d.molgenrug.nl/). The summarized work-

flow is presented in Fig 1.

Analysis of enriched network motifs

The detected network modules were subjected to DNA sequence motif enrichment analysis.

We used MEME version 5.0.3 (http://meme-suite.org/) [48,49] for all network modules with at

least four genes. Upstream regions of all genes within each module were extracted and used for

the motif enrichment analysis (http://genome2d.molgenrug.nl/). The MEME search for motifs

with a length between 6 and 16 bp was done on the upstream intergenic region, which are of

variable length. Only the best motif of each cluster is reported—excluding the RBS motifs. Sub-

sequently, the selected motifs we screened against the prokaryote TFBS database of PRODO-

RIC Release 8.9 (using the TomTom Motif Comparison Tool (Version 5.0.4) of the MEME

suite with default setting).

Lactococcus lactis gene co-expression network
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Results and discussion

Construction of L. lactis MG1363 gene co-expression networks (GCNs)

Publicly available DNA microarray data on L. lactis MG1363 was used as input for gene net-

work reconstruction. Prior to this, data exploratory analysis was performed to compare the

distributions of the normalized mean and median expressed signals (Fig A, panel A in S1 File)

and the density distributions of the Pearson correlation coefficients and Spearman correlation

coefficients (Fig A panel B in S1 File). These two plots have similar density distributions except

for a shift in the center of the measure of central tendency, namely the mean and median val-

ues. Overall, they provide an overview of the distribution of the correlation coefficients and

indicate the quantity of high, medium and low correlation values. A summary of parameters

resulting from the comparison of the structural properties of the L. lactis MG1363 co-expres-

sion networks to those of the gold-standard networks of E. coli K-12 [46] and B. subtilis 168

[47] is shown in Table B in S1 File.

We iteratively evaluated the performance of five network reconstruction methods, namely

Pearson correlation, Spearman correlation, GeneNet, SPACE and WGCNA. For computing

the adjacency matrix, we used a soft-power threshold value of 5. This value was determined

based on the lowest power for which the scale-free model fits the data. Network structural

properties such as the number of edges and the module sizes were compared to those of the

gold-standard networks. For non-randomly connected biological networks, high modularity is

a key indicator of high structural robustness (Fig B in S1 File) [50]. Modular GCNs have hubs

in each module, which represent genes for TFs that are crucial for regulation of the genes in

the network (Fig B in S1 File). Using the five network reconstruction methods, we searched for

modular GCNs with a ratio between the number of edges to the number of genes (ne/ng)
approximating those of the E. coli K-12 and B. subtilis 168 networks. Using this ratio criterion,

we generated an L. lactis MG1363 GCN for each of the five methods. The number of lowly

connected genes in the L. lactis MG1363 networks was marginally higher than those in the

Fig 1. Workflow of gene co-expression network (GCN) reconstruction using different methods.

https://doi.org/10.1371/journal.pone.0214868.g001

Lactococcus lactis gene co-expression network
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gold standards. To obtain a high modularity (Q� 0.80) in the networks, a stringent parameter

threshold of r� 0.80 was used for the Pearson correlation or Spearman correlation and the

WGCNA. A lower threshold parameter (ρ� 0.70) was required for SPACE (Fig B panel C in

S1 File, see also equation A3 in S2 File) and WGCNA (Fig B panel D in S1 File) to prevent a

significant reduction of genes and edges in the network, which would result in a very sparse

network. More on modularity and community structures in networks can be found in the

work of Newman [51]. A further analysis shows that SPACE and WGCNA yield less dense and

less modular networks than those generated by Pearson or Spearman correlation (Table C in

S1 File). This is deduced from the ratio ne/ng and from the network modularity Ԛ [41,52].

SPACE yielded networks with modules of various sizes and on the lower bound the networks

had on average a value of ne/ng of about 6.5 (Table C in S1 File). This is a decent value since

many connected genes in a network do not have a regulatory function and most TFs only reg-

ulate a few genes [53]. By considering networks corresponding to the plots in Fig B in S1 File

and using only networks of approximately the same size (about the same number of genes and

edges), the resultant GCNs from using the Pearson correlation coefficients or Spearman corre-

lation coefficients were more densely connected and less modular than those obtained from

the other three methods, especially for max(Ԛ)� 0.50 (Fig B in S1 File). Previous studies have

shown that using different network reconstruction methods on the same dataset may yield

varying network structures [21,22]. In our case, using the Pearson correlation coefficient or

Spearman correlation coefficient of 0.90 leads to a near scale-free behavior of the obtained net-

works (Fig B panel C in S1 File Fig).

The structural connectivity of the L. lactis MG1363 GCN generated using SPACE (Fig 2)

was fitted with the power law distribution model (Supplementary Material, S2 File). This

model did not support the GCNs obtained using Pearson correlation or Spearman correlation

(Figs C and D in S1 File). Using a less stringent threshold parameter results in a large and

densely connected network Fig E in S1 File. The term ρ in Fig F in S1 File enables pruning of

the adjacency matrix to remove spurious weak and non-significant edges between genes [54].

Smaller ρ values correspond to increased numbers of enriched gene classes, which is indicated

by the total number of significantly enriched Gene Ontology (GO) terms (Fig F panels C and

D in S1 File). In these plots, we observed a near-linear relationship with a curve that is similar

to that observed between the values of ρ and ψ1, where ψ1 is the average number of GO

terms per module with at least one significantly enriched GO term (Supplementary Material,

Fig 2. Bench-marking L. lactis MG1363 SPACE network to gold-standards. A: Degree distribution plot for the E.

coli K-12 network (black circles). E. coli K-12 (+ edges) represents degree distributions of the network with random

edge addition (green triangles). The x-axis shows the log-degree distribution (k); y-axis shows the log-probability of the

degree distributions. B: The same as in A for the B. subtilis 168 and B. subtilis 168 (+ edges) plots. The criterion for

edge addition is described in S2 File. The degree distribution of the L. lactis MG1363 network is plotted as grey squares

in panels A and B. The red dotted lines show the power-law fit to the degree distributions of the L. lactis MG1363

network.

https://doi.org/10.1371/journal.pone.0214868.g002
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S2 File). Overall, for the network inference, we used the five methods mentioned above to gen-

erate networks and subsequently compared and ranked their performances (Table D in S1

File). The results show that SPACE and the WGCNA performed best in the network recon-

struction while GeneNet generated the least GO-enriched networks.

Network module detection

Modules were detected for all networks generated using the five network reconstruction meth-

ods. The plots for ρ versus ψ2 (Fig F panels C and D in S1 File) show that larger ψ2 values corre-

spond to the region of the parameter 0.68� ρ� 0.8. Here ψ2is the proportion of the total

number of significant Fisher’s exact tests (FETs) to the total number of modules with at least

one significant GO term—irrespective of the significance of the p-value for the FET. The deci-

sion of which region in the plots corresponds to a good network is based on how large the ψ1

and ψ2 values on the vertical axis are and also on the total number of significantly enriched

GO terms. This implies that only a specific choice of parameter values results in optimal

enrichment of the gene sets in the modules (Fig G in S1 File) of an L. lactis MG1363 network.

Therefore, we selected a range of parameter values and assessed them with respect to ability to

yield good quality networks (shaded regions Fig B panels A to E in S1 File; Fig F panels B, D

and F in S1 File). Unlike Walk-trap [42], Fast-Greedy [43] and the Infomap community [44]

module detection methods, label propagation [45] shows a dip at ρ� 0.7 (Fig F panel C and D

in S1 File)–which is indicative of a portioned network with only a few lowly enriched modules

(low ψ2 values) and is attributed to this particular method. Label propagation was relatively

slow in partitioning the networks and did not yield modules with the most enriched gene sets.

The networks with enriched modules that have the best partitioning were generated using the

Walk-trap approach, which was our method of preference after the comparisons. We used it to

detect modules in the L. lactis MG1363 GCNs because it was computationally faster and

cheaper and yielded better results (Fig F panels C and D and Fig G in S1 File).

Structural properties: L. lactis MG1363 and gold-standard networks

To explore the structural differences between the L. lactis MG1363 networks and the gold-

standard networks, random edges were simulated and added to the E. coli K-12 and B. subtilis
168 networks without altering their structural properties (Fig 2). We used the probabilistic

random edge addition approach for the edge simulations [55] (S2 File). The E. coli K-12 and

B. subtilis 168 networks were generated on the basis of literature-validated directed regulatory

effects (TFs and their targets). These directed networks were represented as co-expression net-

works by ignoring the directional regulatory effects and only maintaining edges between

genes. The addition of random edges to the gold-standard networks was aimed at explaining

any differences in the degree distributions of the E. coli K-12 and B. subtilis 168 networks to

that of the finally selected L. lactis MG1363 network, that obtained using SPACE. Fig 2 shows a

comparison of the networks of all three organisms. Overall, both the E. coli K-12 and B. subtilis
168 networks are less densely connected than that of L. lactis, even after the addition of ran-

dom edges (Fig 2A and 2B). The degree distribution plots for the E. coli K-12 (+ edges) and B.

subtilis 168 (+ edges) networks both shift to the right towards the degree distribution line of

the L. lactis MG1363 network, indicating that differences exist in certain regulatory mecha-

nisms in the organisms. Both the E. coli and B. subtilis 168 networks show long-tailed distribu-

tions, revealing the presence of TFs such as sigma factors that regulate many targets (typically

over 100 genes) [46]. A long tail was absent in the L. lactis MG1363 network (compare Fig 2A,

2B and Fig B in S1 File); the large sub-networks (regulons) of the pleiotropic regulators CodY

and CcpA of L. lactis [6,56] do reside in the short tail.

Lactococcus lactis gene co-expression network
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We chose the network reconstructed using SPACE and ρ = 0.68 as the most enriched and

informative network for further analysis. Some of the network modules contained hubs, which

were defined as genes connected to at least 5 other genes [19,57] (Figs H and I in S1 File). The

value ρ = 0.68 is stringent but still not all the genes in the regulons that have been studied to

date mapped in the GCN (Fig J in S1 File). Genes in the network were assigned to groups of

the same ontology (biological processes, cellular components or molecular functions). Our

final L. lactis MG1363 network generated using SPACE comprised of 94 modules, 16 of which

contained significantly enriched gene sets (for various GO terms, Table E in S1 File). Only

modules that had significantly enriched gene sets these were explored further. The 16 modules

contained a varying number of genes with the smallest ones having only two genes and the

largest 248 genes. The network is more modular than the one generated using GeneNet (Fig

3A and 3B; see also Fig F panel B in S1 File, which yielded the least modular networks from all

the methods used for the network reconstruction).

Gene-set enrichment analysis also shows that SPACE generates the best L. lactis
MG1363 network. All five network reconstruction methods were scrutinized for the gene-

set enrichment in the network modules they generate (Fig F panels A to F in S1 File) in order

to generate the L. lactis MG1363 GCN of choice. The selection was based on: (i) how closely

the resulting network structure matched those of the gold-standards, and (ii) having biologi-

cally relevant (enriched) modules. The analyses probe whether modularity and scale-free

behavior positively correlate to the biological enrichment of the gene sets in the modules of the

GCNs. The number of enriched gene sets was compared for GCNs obtained using thresholds

of different correlation parameter values and ρ. The results of the GSEA for GO terms on the

L. lactis MG1363 network modules are provided in Table E in S1 File. Module detection in the

GCNs obtained using Spearman correlation or WGCNA was performed using the Walk-trap

method. Only a few modules were significantly enriched in the Spearman correlation network

(low ψ2 values in Fig F panels A and B in S1 File compared to those in Fig F panels C to F in S1

File). This indicates a trade-off in the relationship between network connectivity (densely,

moderately and lowly connected) and enrichment for about the same number of genes.

Densely connected networks further complicate GSEA since the boundaries between modules

in such networks are fuzzy and difficult to detect, e.g. the low modularity (low Q values) for

Fig 3. L. lactis MG1363 GCN visualized in Cytoscape v3.2.0. A: GCN generated using SPACE (ρ = 0.68). Projection

of genes (shown in yellow) associated to significantly enriched GO groups in “module 0”, other genes are colored red.

The network consists of 1262 genes and 4112 edges. Only genes that satisfied the association threshold levels for

inclusion in the adjacency matrix are shown in the network. B: Example network of L. lactis MG1363 generated using

GeneNet (ω = 0.90; 2235 genes and 70386 edges). For instance, the GCN obtained using SPACE has enriched gene sets

in “module 0”, which are clustered together in the network (enriched gene sets in yellow), while the same genes are

spread out in the GeneNet network.

https://doi.org/10.1371/journal.pone.0214868.g003
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the densely connected network resulting from GeneNet (Fig B panel E and Fig C panel B in S1

File). This can also be seen for the network in Fig F panel B in S1 File, which was generated

using GeneNet. Low values of ψ1 and ψ2 indicate less enrichment of GO terms in the modules

of the networks acquired with WGCNA and Spearman correlation than those obtained using

SPACE (Fig F in S1 File). Densely connected GCNs with a low Q may have many enriched GO

terms; however, the FETs shows that only a specific range of parameter values for the Spear-

man correlation coefficient rS and ρ yield a good representation of significantly enriched net-

works (Fig F in S1 File). These results show that SPACE generates the most biologically

enriched and structurally best network (Fig F panel A in S1 File).

We integrated and mapped known operons and regulons from literature onto the L. lactis
MG1363 network reconstructed using SPACE. Thus, genes from 22 regulons were projected

on the L. lactis MG1363 GCN to assess their distribution over the different modules. The

results show that genes from the same operon and small regulons (e.g. PurR, HrcA and PyrR)

often belong to the same GCN modules (Fig 4). Genes from larger regulons such as CcpA and

CodY (Fig K in S1 File) were more broadly distributed over the network. A biological reason

might be that genes in the same regulon might not always be co-expressed.

Enriched network motifs

Nineteen network modules showed evidence of overrepresented motifs (Table G in S1 File).

Some genes in a module may be under the control of more than one regulator while a certain

regulator may also control the activity of genes in multiple modules (eg, CodY, Fur and LuxR).

Additionally, genes can be regulated by multiple other factors, e.g. small RNAs, RNA process-

ing or via co-factor-riboswitch interaction, which could scatter the regulon over multiple

Fig 4. L. lactis MG1363 GCN integrated with literature-predicted operons (visualized in Cytoscape v3.2.0). The

operon IDs are indicated in red, genes predicted to belong to operons are in green, and genes belonging to specific

operons based on literature information (http://genome2d.molgenrug.nl) are shown in blue.

https://doi.org/10.1371/journal.pone.0214868.g004
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modules. Most TFs control the activity of one operon and conserved motifs can only be uncov-

ered by searching the genomes of other organisms for the presence of orthologous DNA pat-

terns. In addition to motifs of the global regulators CodY and CcpA those for more specific

regulators such as CtrA, PerR and ArgR were also observed (Table G in S1 File).

Validation and use of the L. lactis MG1363 GCN generated using SPACE

To validate the biological relevance of the network modules detected in the L. lactis MG1363

GCN obtained with SPACE (ρ = 0.68), 19 network modules (Tables E and F in S1 File) with at

least 5 genes per module were used as input for GSEA. Table 1 contains a summary of these

modules and the corresponding overrepresented biological processes within each module.

Module 0 and Module 1 are relatively large and predicted to fulfill the general functions tran-

scription regulation and carbohydrate metabolism, respectively. We could associate hypotheti-

cal proteins to certain modules and predict their involvement in biological processes. For

example, the InterPro IPR017853 protein domain (Glycoside hydrolase, super-family) is repre-

sented by 3 genes in Module 1. Two of the genes encode beta-glucosidases while one gene

(llmg_0186) has no predicted function (Table F in S1 File) but has, apparently, the same

expression behavior in many experiments. Indeed, the NCBI link for llmg_0186 shows that

this gene is likely in an operon with the gene for CelB (phosphotransferase system cellobiose-

specific component IIC) and is probably involved in sugar (cellobiose) metabolism.

Conclusions

We have reconstructed and benchmarked the L. lactis MG1363 GCN using in-house and liter-

ature-derived transcriptome data. By analyzing the performance of five network reconstruc-

tion methods, namely Pearson correlation, Spearman correlation, WGCNA, GeneNet and

SPACE, the latter was shown to yield the best network for L. lactis MG1363, both by looking at

the structure of the network and at the biological content of the modules. The differences in

network structure and corresponding parameters are attributed to the methods for computing

the network adjacency matrices. Functional analyses demonstrated that the obtained network

modules have biological relevance. Examination of the L. lactis MG1363 GCN shows that

some regulons are not members of the same module, an indication that genes in such regulons

are regulated by multiple transcription factors also in this organism. A list of differentially

expressed genes obtained by DNA microarraying or RNA sequencing, or proteins acquired

Table 1. Enrichment of the most representative biological processes in the modules of the L. lactis MG1363 GCN.

Module Members Over represented function

Module 15 231 Transmembrane transport

Module 0 134 Regulation of transcription

Module 1 93 Carbohydrate metabolic process

Module 9 64 Amino acid transport

Module 2 57 Transmembrane transport

Module 7 25 Phosphoribosyltransferase-like

Module 13 23 General stress proteins

Module 27 14 Acyl-CoA N-acyltransferases

Module 33 11 DNA-binding HTH domain, TetR-type

Module 26 10 Universal stress proteins

Module 25 7 Universal stress proteins

https://doi.org/10.1371/journal.pone.0214868.t001

Lactococcus lactis gene co-expression network

PLOS ONE | https://doi.org/10.1371/journal.pone.0214868 May 22, 2019 9 / 13

https://doi.org/10.1371/journal.pone.0214868.t001
https://doi.org/10.1371/journal.pone.0214868


through proteomics experiments, can be projected on the L. lactis MG1363 GCN in order to

uncover gene/protein function.
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