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ABSTRACT
BACKGROUND: To gain more insight into the biological factors that mediate vulnerability to display externalizing
behaviors, we leveraged genome-wide association study summary statistics on 13 externalizing phenotypes.
METHODS: After data classification based on genetic resemblance, we performed multivariate genome-wide
association meta-analyses and conducted extensive bioinformatic analyses, including genetic correlation
assessment with other traits, Mendelian randomization, and gene set and gene expression analyses.
RESULTS: The genetic data could be categorized into disruptive behavior (DB) and risk-taking behavior (RTB) factors,
and subsequent genome-wide association meta-analyses provided association statistics for DB and RTB (Neff =
523,150 and 1,506,537, respectively), yielding 50 and 257 independent genetic signals. The statistics of DB, much
more than RTB, signaled genetic predisposition to adverse cognitive, mental health, and personality outcomes.
We found evidence for bidirectional causal influences between DB and substance use behaviors. Gene set
analyses implicated contributions of neuronal cell development (DB/RTB) and synapse formation and transcription
(RTB) mechanisms. Gene-brain mapping confirmed involvement of the amygdala and hypothalamus and
highlighted other candidate regions (cerebellar dentate, cuneiform nucleus, claustrum, paracentral cortex). At the
cell-type level, we noted enrichment of glutamatergic neurons for DB and RTB.
CONCLUSIONS: This bottom-up, data-driven study provides new insights into the genetic signals of externalizing
behaviors and indicates that commonalities in genetic architecture contribute to the frequent co-occurrence of
different DBs and different RTBs, respectively. Bioinformatic analyses supported the DB versus RTB
categorization and indicated relevant biological mechanisms. Generally similar gene-brain mappings indicate that
neuroanatomical differences, if any, escaped the resolution of our methods.

https://doi.org/10.1016/j.bpsgos.2021.09.007
Externalizing psychopathologies are highly common in the
general population (1–4), and expressions of externalizing
behavior including bullying, violence, delinquent activities, risk
taking, and other related actions have a negative impact on
individual prospects, local communities, and our society as a
whole (5). It is therefore vitally important to gain more insight
into the underlying (neuro)biological processes to understand
why some individuals are more susceptible to displaying
externalizing behaviors than others.

Externalizing symptoms generally co-occur substantially
(6), which suggests commonalities in their etiologies (3,7).
This is supported by indications for common genetic and
environmental risk factors based on twin family studies
(8–11) and evidence for shared brain substrates from
neurobiological studies (12–14). There is also evidence for
causal relationships, particularly between substance use and
(other) externalizing symptoms (15), a topic of high relevance
for public health.

To broaden our understanding of common genetic and
neurobiological backgrounds that underlie the co-occurrence
of different externalizing behaviors, we leveraged publicly
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available genome-wide association study (GWAS) summary
statistics on lifetime cannabis use (16), antisocial behavior (17),
aggressive behavior (18), four item indicators of angriness and
irritability from UK Biobank (19), and attention-deficit/
hyperactivity disorder (ADHD) diagnosis (20). Furthermore,
we added five items from a recent study on the genetics of risk
tolerance (21). The 13 included datasets are summarized in
Table 1.

Using these data, we first identified clusters of traits with
high genetic resemblance that together comprise the higher-
order externalizing behavior dimension. Subsequently, the
GWAS data of the clusters were meta-analyzed using N-
weighted meta-analysis (22). To characterize the genetic in-
formation in the meta-analyzed data, we evaluated the genetic
relationships of the clusters with other phenotypes. In addition,
for an identified cluster characterized by disruptive-type be-
haviors, we tested for causal relationship with smoking and
alcohol consumption using bidirectional Mendelian randomi-
zation (MR). Previous studies have not been able to uncover
the causal nature and direction of the relationship between
disruptive behaviors (DBs) and smoking and alcohol use, two
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1. GWAS Summary Statistics Included in the
Multivariate Genome-wide Association Meta-analysis

Phenotype Sample Size Source

Aggression 18,988 Pappa et al. (18)

Angry Outbursts 71,196 Sudlow et al. (19)

Extreme Irritable 157,357 Sudlow et al. (19)

Irritability 501,652 Sudlow et al. (19)

Irritable for 2 Days 202,883 Sudlow et al. (19)

ADHD 53,293 Demontis et al. (20)

Antisocial Behavior 25,781 Tielbeek et al. (17)

General Risk Tolerance 466,571 Karlsson Linnér et al. (21)

Drinks per Week 414,343 Karlsson Linnér et al. (21)

Ever Smoker 518,633 Karlsson Linnér et al. (21)

Number of Sexual Partners 370,711 Karlsson Linnér et al. (21)

Automobile Speeding Propensity 404,291 Karlsson Linnér et al. (21)

Lifetime Cannabis Use 184,765 Pasman et al. (16)

ADHD, attention-deficit/hyperactivity disorder; GWAS, genome-
wide association study.
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major risk factors for morbidity and mortality. Finally, biological
annotation analyses were performed to identify associated
brain regions and cell types.

METHODS AND MATERIALS

Phenotype Selection

Based on the disinhibited externalizing spectrum described by
Krueger et al. (1), we collected GWAS summary statistics for 13
externalizing phenotypes (Table 1). Only samples with a
European/North-American ancestry (23) were included (see
Supplement 1).

Identification of Genetic Factor Structures

To identify genetic factor structures among the 13 included
phenotypes, we first applied linkage disequilibrium score
regression (LDSC) (24,25) to compute pairwise genetic corre-
lations (rg) (see Supplement 1).

Second, knowing the genetic correlations, we examined
relationships using hierarchical clustering with (1 2 rg) as ge-
netic distance measures between phenotypes and with
linkage based on Ward’s method (26). We followed the
Calinski-Harabasz criterion to indicate the optimal number of
clusters (27).

Third, in addition to hierarchical clustering, we applied factor
analysis on the GWAS summary statistics using genomic
structural equation modeling (28) (see Supplement 1).

Multivariate N-Weighted Genome-wide Association
Meta-analysis

Univariate GWAS summary statistics were separately com-
bined for identified factors using N-weighted genome-wide
association meta-analysis (GWAMA) (22), which is robust
against sample overlap (see Supplement 1).

Genetic Relationships With Other Traits

We computed pairwise genetic correlations using LDSC
(24,25) for our identified factors with 61 additional phenotypes
390 Biological Psychiatry: Global Open Science October 2022; 2:389–
in the following categories: mental health, cognition and so-
cioeconomic status, personality, social, substance use, car-
diovascular disease risk, physical health, anthropomorphic,
and reproduction (see Table S6 in Supplement 2 and
Supplement 1 for details).

Mendelian Randomization

For one of the identified clusters characterized by DBs, we
applied MR to test for causal relationship with substance use
behaviors (see Supplement 1).

Gene Associations

We performed gene-based analyses in MAGMA version 1.08
(http://ctg.cncr.nl/software/magma) (29) with the N-weighted
GWAMA summary statistics of the identified factors as input.
The gene test statistics are defined as the mean single
nucleotide polymorphism (SNP) association using the sum
of 2log (SNP p value).

Tissue-Type Associations

We used the gene associations of the two factors as input for a
tissue-type analysis using MAGMA version 1.08 (29). We
investigated tissue-specific gene expression values as gene
properties using 53 tissues from the Genotype-Tissue
Expression project v.7 (30) (see Supplement 1).

Gene Set Associations

We continued with competitive gene set analyses using
MAGMA version 1.08 (29) to test whether the genes in a gene
set are more strongly associated with the factor phenotypes
than the other genes in the genome (see Supplement 1).

Conditional Analyses for Tissue Types and Gene
Sets

For the significantly associated tissue types and gene sets, we
performed conditional analyses using MAGMA version 1.08
(29) to evaluate redundancy between associations (see
Supplement 1).

Stratified LDSC of Tissue Types

We applied stratified LDSC to investigate which tissues and
cell types are enriched for the identified factors (see
Supplement 1).

Stratified LDSC of Local Gene Expression Across
the Human Brain

To identify brain regions where genes relevant for externalizing
behavior factors are differently expressed, we computed
stratified LD scores based on differential gene expression,
using data from 3707 gene expression measurements across
211 different brain regions (31) (see Supplement 1).

Stratified LDSC of Brain Cell Types

We obtained a matrix of gene counts for single nuclei (n =
14,963) from the prefrontal cortex and hippocampus of multi-
ple human donors studied by Habib et al. (32). We subse-
quently determined the differential expression of genes in
seven types of brain cells: GABAergic (gamma-aminobutyric
acidergic) interneurons, excitatory neurons, astrocytes,
399 www.sobp.org/GOS
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oligodendrocytes, microglia, endothelial cells, and neural stem
cells (32) (see Supplement 1).

RESULTS

Identification of Genetic Factor Structure

LDSC (Figure 1A) indicated substantial genetic correlations,
particularly among phenotypes characterized by disruptive-
type behaviors (e.g., aggression and ADHD: rg = 0.72, SE =
0.18) and phenotypes characterized by risk-taking behaviors
(RTBs) (e.g., cannabis use and number of sexual partners: rg =
0.69, SE = 0.02), with less genetic overlap between pairs of
phenotypes characterized by the different behavior types (e.g.,
aggression and cannabis use: rg = 0.03, SE = 0.13). Hierar-
chical clustering on genetic resemblance (Figure 1B) confirmed
this categorization into DBs (aggression, angry outbursts,
different measures of irritability, and ADHD) and RTBs (anti-
social behavior, general risk tolerance, drinks per week, ever
smoker, number of sexual partners, automobile speeding
propensity, and lifetime cannabis use). Exploratory factor
analysis by genomic structural equation modeling supported a
division into two phenotypic clusters by demonstrating a
substantial increase in explained variance from 34% for a one-
factor model to 53% for a two-factor model, but a much more
moderate increase to 58% for a three-factor model (Figure 1C;
Tables S1–S3 in Supplement 2). The two-factor exploratory
factor analysis model assigned similar phenotypes to each
factor as our hierarchical clustering approach. The loadings of
the two-factor model, however, did not support a clear
sent residual genetic variances and correspond to the proportion of heritable vari
ADHD, attention-deficit/hyperactivity disorder; Agg, aggression; Ao, angry outb
lifetime cannabis use; Dr, drinks per week; Irxl, extreme irritable; Ir, irritability; Ir2d,
sexual partners.
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allocation for ADHD and antisocial behavior (Table S1 in
Supplement 2). For these phenotypes, we followed the hier-
archical clustering results, assigning ADHD to factor 1 (DB) and
antisocial behavior to factor 2 (RTB).

Multivariate GWAMA

For both factors, we subsequently meta-analyzed the pheno-
type GWAS data using N-weighted GWAMA. For the DB fac-
tor, we identified 50 independent genome-wide significant
SNPs at 42 loci (Neff = 523,150) (Figure 2A; Table S4 in
Supplement 2). For RTB, we identified 257 independent
genome-wide significant SNPs at 194 genomic risk loci (Neff =
1,506,537) (Figure 2B; Table S5 in Supplement 2). The LD
score intercepts were close to 1 for both DB (intercept =
1.0167, SE = 0.0086; LDSC ratio = 0.0367, SE = 0.0156) and
RTB (intercept = 1.0031, SE = 0.0132; LDSC ratio = 0.0242,
SE = 0.0106), indicating that neither population stratification
nor sample overlap, but rather an increase of polygenic signal,
was driving the SNP associations. The SNP heritability as
defined by LDSC was 0.0396 (SE = 0.0015) for DB and 0.022
(SE = 0.0007) for RTB. The genetic correlation between DB and
RTB was 0.33 (SE = 0.02).

Genetic Relationships With Other Traits

Figure 3 and Table S7 in Supplement 2 show pairwise genetic
correlations for DB and RTB with 61 additional phenotypes.
DB, much more than RTB, showed a pattern of genetic overlap
pointing to adverse outcomes of cognition, socioeconomic
status, several mental and physical health measures, and
Figure 1. Genetic factor structure of externalizing
behaviors. (A) Genetic correlations between the
externalizing phenotypes calculated by linkage
disequilibrium score regression. (B) Hierarchical
clustering dendrogram based on genetic resem-
blance of the externalizing phenotypes. Blue repre-
sents the disruptive behavior cluster, and red
represents the risk-taking behavior cluster. (C)
Based on the results of an exploratory factor analysis
of the genetic correlations presented in panel (A), a
confirmatory factor model with two correlated ge-
netic factors was specified using genomic structural
equation modeling. In this model, the common fac-
tors account for the genetic covariation among the
externalizing traits, i.e., each of the two common
genetic factors represents variation in genetic liability
that is shared across the phenotypes that load on it.
Disruptive behavior represents shared genetic liabil-
ity among disorders characterized by disruptive
behavior, and risk-taking behavior represents the
shared liability for risk-taking behavior. One-headed
arrows connecting the common genetic factors to
the individual traits represent standard loadings,
which can be interpreted as coefficients from a
regression of the true genetic liability for the trait on
the common factor. Two-headed arrows connecting
the genetic components represent their correlations.
Two-headed arrows connecting the genetic com-
ponents of the individual traits to themselves repre-

ation in liability to each individual trait that is unexplained by the two factors.
ursts; As, antisocial behavior; Asp, automobile speeding propensity; Can,
irritable for 2 days; R, general risk tolerance; Sm, ever smoker; Sx, number of
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Figure 2. Manhattan plots of the meta-analyzed
phenotype genome-wide association study data.
(A) Disruptive behavior factor. (B) Risk-taking
behavior factor. The x-axis represents the chromo-
somal position, and the y-axis represents the sig-
nificance on a 2log10 scale. Each approximately
independent genome-wide significant association
(lead SNP) is marked by a triangle (p , 5 3 1028).
SNP, single nucleotide polymorphism.
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personality. For example, DB showed a negative genetic cor-
relation with educational attainment (rg =20.34, SE = 0.02) and
income (rg = 20.44, SE = 0.04), whereas genetic correlations
for RTB with these phenotypes were close to zero. In addition,
DB was more positively correlated with depressive symptoms
(rg = 0.73, SE = 0.03) and neuroticism (rg = 0.68, SE = 0.04) and
more negatively correlated with agreeableness (rg = 20.59,
SE = 0.05) compared with RTB (depressive symptoms: rg =
0.21, SE = 0.03; neuroticism: rg = 20.09, SE = 0.005; agree-
ableness: rg = 20.12, SE = 0.05).
Causal Relationship of DB With Smoking and
Alcohol Use

We tested for bidirectional causal effects between DB (which
does not include substance use phenotypes) and measures of
smoking (33) and alcohol use (34) using MR. We focused on
these specific relationships because DBs and substance use
are particularly strongly associated, and knowledge of (the
direction of) potential causal effects has major public health
implications. When DB was the exposure variable, inverse
variance weighted analyses provided strong evidence for
causal effects such that DB increases the odds of smoking
initiation (b = 0.39, 95% CI = 0.24–0.54, p = 2.0 3 1027) and
decreases the odds of being able to successfully quit smoking
(b = 20.20, 95% CI = 20.33 to 20.07, p = .002) (Table 2;
Figure S1 in Supplement 1). Effect sizes and statistical evi-
dence for a causal relationship between DB and smoking
392 Biological Psychiatry: Global Open Science October 2022; 2:389–
initiation were broadly consistent across the different MR
methods. However, for DB to smoking cessation, the weighted
mode and MR-Egger did not support a causal relationship
(Table 2). Some evidence for pleiotropic effects was provided
by a significant Cochran’s heterogeneity test (Cochran’s Q p
value = 2.4 3 10233) (Table S8 in Supplement 2) but not
supported by the MR-Egger intercept (only DB / smoking
initiation) (Table S9 in Supplement 2). Steiger filtering and MR-
PRESSO did not affect the results and continued to support
causal effects (Tables S10–S12 in Supplement 2). No consis-
tent results were found for a causal relationship between DB
and number of cigarettes smoked per day (Table 2; Table S9 in
Supplement 2).

From DB to alcohol use disorder, there was evidence for a
causal increasing effect (inverse variance weighted analysis:
b = 0.26, 95% CI = 0.08–0.44, p = .004), which was consistent
(but weaker) in direction of effect across multiple MR methods
(Table 2). MR-Egger was not available owing to low reliability;
however, there was no heterogeneity based on Cochran’s Q
(p = .457) (Table S8 in Supplement 2). Steiger filtering and MR-
PRESSO did not change the outcome (Tables S10–S12 in
Supplement 2).

In the opposite direction, we found strong evidence for a
causal, increasing effect of smoking initiation on DB (inverse
variance weighted analysis: b = 0.17, 95% CI = 0.14–0.20, p =
9.9 3 10231), which was consistent across weighted median,
weighted mode, and generalized summary data–based MR
(MR-Egger not available). Steiger filtered analyses and MR-
399 www.sobp.org/GOS
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Figure 3. Genetic correlations with other phenotypes for disruptive behavior (blue) and risk-taking behavior (green) factors. Points represent the correlation
estimates, and lines represent the 95% confidence intervals. Significant associations, after correction for multiple testing, are marked by orange stars. ADHD,
attention-deficit/hyperactivity disorder; BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MDD, major depressive disorder;
SES, socioeconomic status.

Genetics of Externalizing Behavior
Biological
Psychiatry:
GOS
PRESSO did not change the results (Table 2; Tables S10–S12
in Supplement 2). However, there was marked evidence for
heterogeneity (Cochran’s Q p = 7.3 3 10246) (Table S8 in
Supplement 2). There was no clear evidence for causal effects
of alcohol use on DB.

Biological Annotations

Gene Associations. Genome-wide gene-based associa-
tion analysis identified 81 genes significantly associated with
DB (Table S13 in Supplement 2) and 318 genes significantly
associated with RTB (Table S14 in Supplement 2) after Bon-
ferroni correction. CADM2 showed an exceptionally strong
association (2.10 3 10229) with RTB.

Tissue-Type Associations. We used the gene-based test
statistics as input for gene set analysis in MAGMA. Starting
with a tissue-type analysis, we found significant associations
at the Bonferroni level for nine brain regions for DB and 13
brain regions for RTB (Tables S15 and S16 in Supplement 2).
Conditional analyses indicated that only the frontal cortex
showed an independent association with DB, while indepen-
dent associations were limited to the frontal cortex and cere-
bellum for RTB.

Gene Set Associations. Subsequent gene set analyses
identified three gene sets for DB involved in cell development
and 13 gene sets for RTB involved in cell development,
Biological Psychiatry: Global O
synapse formation, and transcription (Tables S17 and S18 in
Supplement 2). Conditional gene set analyses on the three
gene sets associated with DB showed that the three gene set
associations were highly related (Table S17 in Supplement 2).
In addition, the conditional analyses of the 13 gene sets
identified for RTB traits revealed redundancy for multiple gene
sets related to synapse and cell development and transcrip-
tion, leaving seven gene sets with independent association
(Table S18 in Supplement 2).

Stratified LDSC. Complementary to gene set analysis, we
applied stratified LDSC to study effects on 10 general
tissue-type groups. Consistent with the gene set analyses,
these analyses indicated significant enrichment after Bon-
ferroni correction of the central nervous system (CNS) for
both DB (ZCNS = 6.84) (Table S19 in Supplement 2) and RTB
(ZCNS = 7.97) (Table S20 in Supplement 2). It has to be
noted that other tissues were associated with DB and RTB
as well (e.g., liver, kidney), but these associations were
considerably weaker (Tables S19 and S20 in Supplement 2).
Zooming in on associations on the cell-type level for DB
revealed 45 significant cell type–specific annotations after
Bonferroni correction, of which the top 15 all involved the
CNS (Table S21 in Supplement 2). A similar pattern was
observed for RTB, where we found 96 significant cell type–
specific annotations, of which 32 indicated CNS involvement
(Table S22 in Supplement 2).
pen Science October 2022; 2:389–399 www.sobp.org/GOS 393
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Table 2. Results of the Two-Sample Bidirectional Mendelian Randomization Analyses Between DB and Smoking and Alcohol Use Behavior

Exposure Outcome
SNPs,

n F

IVW Weighted Median Weighted Mode MR-Egger (SIMEX) GSMR

b 95% CI p b 95% CI p b 95% CI p b 95% CI p
SNPs,

n b 95% CI p

DB Smoking
initiation

40 37.41 0.39 0.24
to 0.54

2.0 3 1027 0.25 0.13
to 0.37

3.2 3 1025 0.15 20.06
to 0.36

.180 0.43 0.09
to 0.77

.017 33 0.342 0.27
to 0.41

1.7 3 10220

DB Cigarettes/
day

38 37.61 0.14 0.01
to 0.27

.029 20.01 20.12
to 0.10

.895 20.06 20.16
to 0.04

.284 20.31 20.60
to 20.02

.041 34 0.178 0.09
to 0.26

3.3 3 1025

DB Smoking
cessation

40 37.33 20.20 20.33
to 20.07

.002 20.11 20.25
to 0.03

.118 0.02 20.24
to 0.28

.873 0.17 20.11
to 0.45

.254 37 20.190 20.29
to 20.09

9.9 3 1025

DB Alcohol/
week

40 37.41 20.01 20.04
to 0.02

.472 20.002 20.03
to 0.03

.897 0.01 20.02
to 0.04

.545 20.04 20.11
to 0.03

.341 35 20.020 20.04
to 0.00

.043

DB Alcohol
use
disorder

46 37.00 0.26 0.08
to 0.44

.004 0.16 20.10
to 0.42

.245 0.14 20.12
to 0.40

.288 n.a. n.a. n.a. 43 0.310 0.10
to 0.52

.003

Smoking
Initiation

DB 317 27.53 0.17 0.14
to 0.20

9.9 3 10231 0.15 0.12
to 0.18

8.0 3 10221 0.15 0.05
to 0.25

.004 n.a. n.a. n.a. 296 0.186 0.17
to 0.21

6.4 3 10272

Alcohol/
week

DB 80 28.61 0.04 20.13
to 0.21

.632 0.052 20.12
to 0.22

.543 20.17 22.07
to 1.73

.859 20.24 20.54
to 0.06

.133 74 0.0719 20.05
to 0.20

.261

Alcohol
Dis.
5 3 1028

DB 7 26.35 20.02 20.06
to 0.02

.299 20.02 20.06
to 0.02

.480 20.01 20.08
to 0.06

.833 n.a. n.a. n.a. 7 0.00016 20.04
to 0.04

.993

Alcohol
Dis.
1 3 1025

DB 25 21.94 20.01 20.03
to 0.01

.328 20.01 20.03
to 0.01

.654 20.01 20.06
to 0.04

.652 n.a. n.a. n.a. 24 20.0078 20.02
to 0.01

.365

n.a. indicates that MR-Egger results were not reported because of limited reliability based on the I2 measure being ,0.60. F . 10 generally indicates the instrument is sufficiently strong.
DB, disruptive behavior; Dis., disorder; F, F-statistic indicating instrument strength; GSMR, generalized summary data–based Mendelian randomization; IVW, inverse variance weighted

regression; SIMEX, simulation extrapolation; SNP, single nucleotide polymorphism.
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Figure 4. Brain regions with local differential gene
expression enrichment for the disruptive behavior
and risk-taking behavior factors in coronal, sagittal,
and axial views. The locations of the samples of brain
tissues that were used to measure gene expression
by Hawrylycz et al. (31) are projected to a standard
Montreal Neurological Institute template brain
(Colin27). For every annotation, the figure is centered
on the averaged Montreal Neurological Institute co-
ordinates of the brain samples. (A) Cerebellum:
dentate nucleus. (B) Brainstem: cuneiform nucleus.
(C) Cortex: claustrum. (D) Cortex: paracentral lobule.
(E) Subcortex: lateral amygdaloid nucleus. (F) Sub-
cortex: preoptic region.
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Differential Gene Expression. To pinpoint relevant brain
areas associated with DB and RTB more accurately, we pro-
ceeded with a local differential gene expression approach
using stratified LDSC (31). For DB, we identified significant
enrichment after Bonferroni correction exclusively in the den-
tate nucleus (cerebellum, Z = 3.35, p = .0004) (Figure 4A;
Table S23 in Supplement 2). For RTB, there was also enrich-
ment in the dentate nucleus (cerebellum, Z = 3.22, p = .0006)
and additional enrichment in the cuneiform nucleus (brain
stem, Z = 4.74, p = 1.06 3 1026) (Figure 4B), claustrum (cortex,
Z = 4.08, p = 2.27 3 1025) (Figure 4C), paracentral lobule
(cortex, Z = 3.35, p = .0004) (Figure 4D), lateral amygdaloid
nucleus (subcortex, Z = 3.12, p = .0009) (Figure 4E), and pre-
optic region (subcortex, Z = 3.34, p = .0004) (Figure 4F;
Table S24 in Supplement 2).

Single-Cell Analysis. Finally, we investigated the involve-
ment of specific brain cell types using LDSC. For DB, this
revealed enrichment in excitatory neurons of the prefrontal
cortex (Z = 2.88, p = .002) and the hippocampal CA3 region
(Z = 2.85, p = .002) (Table S25 in Supplement 2). For RTB, we
found enrichment in excitatory prefrontal cortex neurons (Z =
3.14, p = .0008) (Table S26 in Supplement 2).

DISCUSSION

In a bottom-up approach to evaluate overlap in genetic and
neurobiological backgrounds underlying externalizing symp-
toms, we collected 13 publicly available GWAS summary
statistics for a range of externalizing phenotypes. Assessment
of genetic resemblance indicated a categorization into two
externalizing-related factors, one characterized by DB and
another by RTB, that together explained 53% of the total ge-
netic variance. Meta-analyzing the factor-specific phenotypes
yielded 50 loci for DB and 257 loci for RTB.

Clustering of aggression, angriness, and irritability items in
the DB factor fits very well with the general finding that these
are highly comorbid behaviors and also cluster together in
diagnoses of conduct and oppositional defiant disorder (35).
Biological Psychiatry: Global O
Addition of ADHD aligns with the fact that DBs coexist most
commonly with ADHD (36) and with evidence of strong genetic
resemblance between ADHD and conduct and oppositional
defiant disorder (37). The phenotypes of the RTB factor related
to pursuing risk (21). Three RTB traits (general risk tolerance,
number of sexual partners, lifetime cannabis use) similarly
clustered together in another recent GWAMA (38). Addition of
antisocial behavior aligns with the fact that antisocial behavior
frequently includes thoughtless, self-centered, and immedi-
ately rewarding acts, which are also typical for risk taking. The
present RTB phenotypes related to substance use, speeding,
and sexual promiscuity are closely linked to social misconduct
(38,39). In genomic structural equation modeling, antisocial
behavior also loaded on DB, which is concordant with obser-
vations from the Hierarchical Taxonomy of Psychopathology
consortium that antisocial behavior is a broad construct and
also alludes to disruptive phenotypes (1,40).

Assessment of genetic relationships with other traits indi-
cated associations for DB with higher neuroticism and lower
conscientiousness and agreeableness, corroborating previous
findings (41). For RTB, we found associations with higher ex-
traversion, higher openness to experience, and lower consci-
entiousness, which is also in line with earlier reports (42).
Another notable result was that DB, much more than RTB,
showed negative genetic associations with indices of mental
and physical health. Previous studies indicated associations
with mental and physical health problems for both disruptive-
ADHD and risk-taking behaviors (43–46). This finding of
stronger genetic correlations for DB points to the possible
distinction that DB phenotypes, characterized by affective
instability/irritability and impaired cognitive control, are
generally central to mental and physical health problems
(44,47), whereas for RTB, mental health problems are more
often at the core (45), resulting in risk behaviors, such as
substance use, that ultimately affect physical health (46).

In addition, we applied MR to explore causal relationships
between the DB factor and smoking and alcohol use. In full
agreement with previous findings (15,48), we obtained evi-
dence that DB traits promote substance use (strong evidence
pen Science October 2022; 2:389–399 www.sobp.org/GOS 395
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for an increased odds of smoking initiation and decreased
odds to successfully quit smoking and weak evidence for
increased odds of alcohol use disorder). This causal direction
is also consistent with expectations for behavioral develop-
ment, in that DB traits are more likely to occur at younger ages
than risk behaviors. Smoking and alcohol use are not yet
appropriate and less feasible during early childhood (15,48).
However, we also replicated the observation that smoking
might causally increase the risk for DB traits. This finding could
have important consequences for intervention strategies but
needs further inquiry. To distinguish a causal influence from
horizontal pleiotropy, i.e., when a genetic variant influences the
two traits through independent pathways, dose-response ef-
fects should be included in future MR analyses (taking ciga-
rettes per day as the exposure and applying stratification on
smoking status).

Biological annotation by gene set analysis and stratified
LDSC converged on genetic enrichment in the brain for both
DB and RTB traits. An atlas of differential brain region gene
expression pointed specifically to the dentate nucleus of the
cerebellum, for both DB and RTB, and the cuneiform nucleus
of the brainstem, preoptic region of the hypothalamus, lateral
nucleus of the amygdala, and the claustrum and paracentral
cortical lobule, which were significant for RTB.

Involvement of these brain regions confirms current hy-
potheses on the neurobiological background of externalizing
symptoms but also points to the importance of relatively un-
derrepresented regions. Especially for the medial part of the
preoptic hypothalamic region, animal studies indicate an
important role in stimulating aggression to facilitate repro-
duction (49), as well as in modulating mesolimbic activity
involved in reward processing (50). The contribution of the
amygdala to emotional processing is also generally recognized
(51), and there is ample evidence that amygdala–frontal cortex
network abnormalities predispose to externalizing behaviors
(14), including aggression and risk taking (52,53). In addition,
amygdala volume reductions are commonly found in ADHD
(54–56). Furthermore, a recent study showed that GABAergic
neurons in the medial amygdala project to the medial preoptic
area to regulate reward from social stimuli by controlling the
release of dopamine in the nucleus accumbens (57).

The other brain regions have been implicated less
frequently, despite previous evidence for associations. For the
cerebellar dentate, a relevant role in the development of rein-
forcement learning relevant to addiction has been indicated
(58), and there is evidence that abnormal development of
corticocerebellar connections contributes to ADHD (59). The
cuneiform nucleus is part of the mesencephalic locomotor
control network (60) and related to autonomic fear and stress
responses (61,62). The claustrum is richly interconnected with
almost all regions of the cerebral cortex and hypothesized to
play a role in regulating attention and resilience to distraction
(63,64), which links this region to ADHD (65). The anterior
section of the paracentral lobule includes motor control re-
gions but has also been linked to executive control function
and attention orienting (22,23). Single-cell analysis further
elucidated the important role of the CNS for both DB and RTB
and pointed to glutamatergic prefrontal neurons for DB and
RTB and pyramidal hippocampal neurons for DB. Gluta-
matergic neurotransmission has been associated with alcohol
396 Biological Psychiatry: Global Open Science October 2022; 2:389–
and tobacco use (33) and RTB (21) before, but more research is
needed to address the role of these specific cell types and their
functions on the externalizing phenotypes.

Finally, testing for specific biological mechanisms using
gene set analysis indicated associations for gene sets primarily
related to neuronal development for both DB and RTB. In
addition, synaptic functions and transcription regulation were
identified for RTB. These three biological mechanisms have
been related to a wide range of psychiatric disorders (66) and
may play a broad role in behaviors and brain-related traits.

This study comes with a number of limitations. First, the two
identified factors DB and RTB combine several distinct
phenotypic measures, which inevitably leads to etiologic het-
erogeneity (reflected by the imperfect genetic correlations). In
addition, phenotyping could be as poor as a single question
(e.g., about regular use of a substance). Poor and heteroge-
nous phenotyping, with the trade-off of having large sample
sizes available, are a common phenomenon in GWAS meta-
analyses of single traits (67) or multiple traits (22) and gener-
ally results in lower SNP heritability estimates compared with
the individual traits, which was also the case here for DB (4%)
and RTB (2%). Second, we incorporated three measures on
irritability, which seems redundant. However, the mutual ge-
netic correlation between these phenotypes was not perfect (rg
, 1), and therefore, we note that including GWAS statistics of
all three phenotypes does provide additional genetic informa-
tion in GWAMAs. Third, in the MR analyses, the tested effects
from smoking and alcohol use to DB did not fully comply with
the expected temporal order. The aggression and ADHD var-
iables of DB included children (which amounts to w5% of the
total number of DB participants). This means that smoking and
alcohol use were, for those variables, not valid exposures. In
addition, we limited assessment of causal directions to the
relationship between the DB factor and smoking and alcohol
use. We also demonstrated interesting relationships of DB and
RTB with several other traits, such as personality and health
characteristics. Given the complexity of the included study
cohorts forming the different summary statistics, it was beyond
the scope of this study to also test for causal relationships with
these traits. Fourth, except for ADHD, the GWAS data in our
study related to behavioral extremes that did not exceed the
diagnostic threshold. Given previous evidence of genetic het-
erogeneity between nondiagnosed and diagnosed individuals
(68,69), we emphasize that the findings in this study apply in
particular to general rather than excessive diagnosed exter-
nalizing behaviors. Finally, regarding the biological annotation
analyses, we must consider limitations in drawing conclusions
about different findings for DB and RTB. DB and RTB are
moderately correlated (rg = 0.33) and therefore not completely
independent. In addition, the effective sample size of RTB is
w3 times larger than that of DB (1,506,537 vs. 523,150), so
there is likely more power to detect significant associations for
RTB. For example, differential gene expression indicated more
brain regions with statistically significant enrichment for RTB,
but we note that the same regions also showed relatively
increased enrichment among the 211 brain regions tested
for DB.

In summary, we extend previous findings involving exter-
nalizing behavior and provide further evidence for common
genetic architectures, particularly for different DBs and RTBs.
399 www.sobp.org/GOS
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Follow-up evaluations of the data in this study indicated ge-
netic relationships with personality traits and mental and
physical health behaviors in agreement with the DB versus
RTB categorization and highlighted possible bidirectional
causal relationships between DB and substance use traits.
Biological annotation revealed generally similar gene-brain
mappings that mediate the predisposition to comorbid exter-
nalizing phenotypes. Possible subtle differences in neurobio-
logical backgrounds between DB and RTB traits may be
resolved in future studies based on higher-resolution genetic
association and gene expression data that are becoming
increasingly available.
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