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Background. Human immunodeficiency virus (HIV)-1 drug resistance mutations (DRMs) often accompany treatment failure.
Although subtype differences are widely studied, DRM comparisons between subtypes either focus on specific geographic regions or
include populations with heterogeneous treatments.

Methods. We characterized DRM patterns following first-line failure and their impact on future treatment in a global, multi-
subtype reverse-transcriptase sequence dataset. We developed a hierarchical modeling approach to address the high-dimensional
challenge of modeling and comparing frequencies of multiple DRMs in varying first-line regimens, durations, and subtypes.
Drug resistance mutation co-occurrence was characterized using a novel application of a statistical network model.

Results. In 1425 sequences, 202 subtype B, 696 C, 44 G, 351 circulating recombinant forms (CRF)01_AE, 58 CRF02_AG, and 74
from other subtypes mutation frequencies were higher in subtypes C and CRF01_AE compared with B overall. Mutation frequency
increased by 9%–20% at reverse transcriptase positions 41, 67, 70, 184, 215, and 219 in subtype C and CRF01_AE vs B. Subtype C
and CRF01_AE exhibited higher predicted cross-resistance (+12%–18%) to future therapy options compared with subtype
B. Topologies of subtype mutation networks were mostly similar.

Conclusions. We find clear differences in DRM outcomes following first-line failure, suggesting subtype-specific ecological or
biological factors that determine DRM patterns.
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Effective treatment of human immunodeficiency virus (HIV)-1
requires the lifelong administration of combination antiretrovi-
ral therapy (ART) [1]. In recent years, there has been rapid ex-
pansion of ART access in resource-limited settings. In these
settings, the World Health Organization (WHO) recommends
2 nucleoside reverse-transcriptase inhibitors (NRTIs) with 1
nonnucleoside RTI (NNRTI) as first-line treatment followed
by a second-line protease inhibitor-based (PI) regimen [2]. Al-
though most data driving ART recommendations have been ac-
crued in HIV-1 subtype B in the United States, Oceania, and
Europe, treatment has expanded to regions with diverse group
M subtypes and distinct circulating recombinant forms (CRFs)
[3]. The influence of genetic background variation across

subtypes on disease progression and resistance evolution is cur-
rently an active research area [4].

Subtype designations are based on phylogenic clades [5]
and are widely used to represent genetic background variation

in HIV sequences. Human immunodeficiency virus-1 sub-

types are geographically distributed, with subtype C being

the most prevalent worldwide and predominantly found in

South Africa and India. Other common subtypes include A

in East Africa and Asia, D in East Africa, F in South America

and Eastern Europe, G in Africa and South-Western Europe,

CRF01_AE in Southeast Asia, and CRF02_AG in West Africa.

Subtype B is the most prevalent in the United States andWestern

Europe [6].
Although high viral genetic diversity and variable ART ad-

herence are known to contribute to drug resistance and ART
failure, subtype contributions to treatment outcomes remains
actively researched through in vitro [7–9] and surveillance
[10–13] methods. Subtype-specific codon use results in more
frequent mutations at codons 65 and 106 in the HIV-1 subtype
C RT gene under treatment selection [14, 15]. Other studies re-
port lower genetic barriers to RT mutations at codons 151 and
210 in subtype F1 [16] and overall differences in polymor-
phisms and treatment-related mutation frequencies across
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subtypes [17, 18]. Subtype backgrounds have also been associat-
ed with differences in evolutionary responses to protease inhib-
itors [19, 20]. However, there are few comparative studies of
drug resistance that integrate data from multiple subtypes in
multiple cohorts [17, 21–23].

Combinations of first-line treatment regimens are the foun-
dation of treatment administration and the prevention of trans-
mission [24]. Yet information on drug resistance outcomes to
first-line ART in resource-limited settings has been primarily
from isolated regional studies [10, 11, 21, 22, 25], and a consen-
sus view of the impact of drug resistance upon first-line failure
in resource-limited settings has been lacking [26]. The WHO
recently convened a conference to synthesize several consensus
recommendations [26]. Although those data provided impor-
tant insights, there has not been a comprehensive multicohort
analysis comparing resistance mutation outcomes between sub-
types after first-line triple-therapy regimens.

In collaboration with the non-subtype B working group, we
previously examined differences in resistance mutation occur-
rence across subtypes from a global dataset of sequences [17].
A limitation of that study was that the ART-failure populations
merged heterogeneous treatment histories and included both
first-line/nonfirst-line ART exposures. In this study, we utilize
a multicohort, multi-subtype sequence dataset from patients
with known exposure to only first-line, triple-ART regimens.
With these data, we determine differences in resistance mutation
frequencies between ART regimens and common subtypes/CRFs
following first-line failure. We develop a multilevel modeling ap-
proach to account for heterogeneities between combinations of
treatments and subtypes. We perform a novel application of a
network model to study combinatorial patterns of mutations
and describe the implications for differences in second-line pre-
dicted susceptibility. Finally, we discuss the significance of our
findings in the context of the underlying mechanistic determi-
nants of HIV drug resistance evolution outcomes.

METHODS

Sequence Dataset and Drug Resistance Definitions
A multicohort, multi-subtype dataset of RT isolates was con-
structed and filtered to include only sequences from patients
failing WHO-recommended first-line ART. This dataset builds
on our previous study [17], adding new published sequences
within the Stanford Database [27] as well as sequences from
our studies in India, Thailand, China, and Kenya. Patients un-
exposed to ART or for whom the complete treatment history
was unknown were excluded. Patients with heterogeneities in
their history—prior histories of nonfirst-line therapies, prior
usage of more than 1 first-line combination, or mono/duo
therapy—were also excluded. Sequences were further excluded
based on previously defined quality control criteria [28].

First-line ART was defined as standard combinations of
NRTI/NNRTI triple therapy [29]: zidovudine (AZT)/stavudine

(D4T)/tenofovir (TDF) + lamivudine (3TC) + efavirenz (EFV)/
nevirapine (NVP). Treatment history was described using the
total treatment duration and the composition of the specific
ART regimens. Treatment start and stop dates were converted
into an aggregate indicator of the total treatment duration.
Treatment duration was represented as either failure after less
than or equal to 1 year of first-line treatment or failure after
more than 1 year of treatment.

Resistance mutations were based on definitions in the Inter-
national Antiviral Society (IAS)-USA mutation list [30]. Be-
cause we were interested in the occurrence of all amino acids
mutations associated with resistance, sequences were represent-
ed as a binary string with each position labeled as “mutation” or
“no mutation”. A position has a mutation if its amino acid is
listed in the IAS list. Sequences were subtyped using the Stan-
ford database tools [27].

Hierarchical Model of Mutation Frequencies and Treatment
Susceptibility
We constructed a hierarchical model to characterize resistance
mutation variation with respect to treatment histories and sub-
type genetic backgrounds. Frequencies of each mutation were
modeled as a beta binomial. The logit of the beta prior mean
was parameterized by the position (1 of 31 resistance positions
described in [30]), subtype (A, B, C, D, F, G, CRF01_AE, and
CRF02_AG), ART regimen at the time of failure (1 of the tri-
ple-therapy combinations), and treatment duration. Additional
details are discussed in the Supplementary Data.

Ising Model of Resistance Position Dependencies
We used an Ising/Boltzmann model to examine association be-
tween pairs of resistance positions as an undirected graph. For
each subtype, we fitted the Ising model/Boltzmann distribution
to the mutation statuses of the resistance positions, adjusted for
the treatment type and duration of each subject. Details of the
Ising model are in the Supplementary Data.

Predicted Susceptibility to Future Treatment
To examine the impact of first-line resistance outcomes, we de-
termine the predicted susceptibility to future ART options. The
susceptibility of each sequence was determined using the Stan-
ford HIV database tools [27]. The distribution of susceptibility
scores was determined for each subtype, treatment history com-
position, and treatment history duration.

RESULTS

From an initial aggregated, multicohort dataset of 59 002 se-
quences, most sequences (57 017) were excluded because pa-
tients were ART-naive at the time of genotyping or not failing
a triple-therapy first-line ART regimen, leaving 1985 sequences.
After applying quality control criteria [28] and removing se-
quences with missing treatment history information, 1425 se-
quences remained (Figure 1). Of these sequences, there were
202 of subtype B and 1223 of non-B subtypes including 696
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of subtype C, 44 of subtype G, 351 of CRF01_AE, 58 of
CRF02_AG, and 74 of other subtypes (A/D/F/H/K; each with
<30 available sequences). Although all subtype data were used
in estimating the model, the results focus on subtypes for which
the largest number of sequences are available (B/C/G/
CRF01_AE/CRF02_AG).

The population composition of treatment regimens and dura-
tions is displayed in Figure 1, which shows substantial variability
across subtypes. The most common ART regimens in this dataset
were nevirapine-containing zidovudine/stavudine regimens
(57%) followed by efavirenz-containing zidovudine/stavudine

regimens (40%). The remaining 3% of sequences were tenofo-
vir-containing efavirenz and nevirapine regimens, which were in-
corporated more recently into WHO recommendations [2].
Although tenofovir was added to treatment guidelines more re-
cently, prior alternatives remain in widespread use. Treatment
duration prior to failure was approximately evenly divided be-
tween within 1 year of treatment (with a range of 31%–61%)
and more than 1 year of treatment (with a range of 39%–69%).

Estimates of DRM frequencies across subtypes are shown in
Figure 2. Differences in mutation frequencies between subtypes
are shown in Figure 3. We also examined variation in DRM

Figure 1. The graphic illustrates the sequence dataset composition. The spine plot shows dataset subtype composition (horizontal axes) as a function of (A) first-line an-
tiretroviral therapy (ART)-specific regimens and (B) first-line ART duration. Each column corresponds to a subtype, and the width of the column represents the proportion of
sequences available from each subtype. The height of each tile represents the proportion of each regimen within that subtype. Thus, the area of each tile is proportional to the
fraction of the dataset composed of a particular subtype and treatment composition/duration. Colors correspond to the (A) first-line regimen composition and (B) treatment
duration presented in the legends. Numbers above each subtype column correspond to the total number of sequences in each subtype.
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frequency across the different first-line treatment regimens
(Supplementary Figures 1 and 2). Together, these figures illus-
trate how resistance mutation frequencies after first-line ART
failure differ between subtypes.

The lamivudine-associated mutations 184 V/I were the most
common in all subtypes (53%–84% of sequences), followed by
the NNRTI-associated mutations K103N/S (21%–59%) (Fig-
ure 2). Other common mutations were thymidine analog muta-
tions (TAMs) 41L, 67N, 70R/E, 215F/Y, and 219Q/E and
NNRTI-associated mutations 90I, 101I/P/E/H, 106N/S, 181C/
I/V, and 190S/A. The 151 complex mutations (62 V/75I/77L/
116Y/151 M), other non-TAM NRTI, and NNRTI-associated
mutations were relatively rare across subtypes (all <5%). Our
frequency estimates of 2 known subtype-related mutations,
65R and 106 M/I/A [14, 31], were consistent with prior reports
suggesting that these mutations are more frequent in subtype C,
although the frequency of K65R in subtype C was not signifi-
cantly higher than other subtypes in this dataset (Figure 2B).

Overall, subtype B exhibited lower resistance mutation fre-
quencies, and subtype C exhibited higher resistance mutation
frequencies over both NRTI and NNRTI resistance-associated
positions (Figure 3). Every subtype C position comparison
that resulted in a significant difference (15 of 31 positions,

indicated in Figure 3) exhibited a higher frequency compared
with other subtypes. Every subtype B position comparison
that exhibited a significant difference (14 of 31 positions) exhib-
ited a lower frequency compared with other subtypes. Differ-
ences were observed in 5 of 6 TAMs: 41L (+10% with a high
posterior density interval of [7–14] in subtype C vs B; relative
risk [RR], 1.9–5.2), 67N (+15% [11–18]; RR, 2.2–5.3), 70R/E
(+13% [10–16]; RR, 2.4–5.8) 215F/Y (+18% [13–22]; RR, 1.9–
4.3), and 219Q/E (+9% [6–12]; RR, 1.8–5.6). Thymidine analog
mutation 210W was relatively rare across all subtypes compared
with other TAMs. The largest absolute difference in mutation
frequency was observed for 184 V/I (+20% [14–30]; RR, 1.2–
1.6), whereas the largest average RR was observed for 98G
(+7% [5–10], RR 2.6–10.7). The general trend of higher resis-
tance in C and lower resistance in B was also observed in earlier
analyses that excluded newer samples from India, China, and
Thailand as well as analyses of only these newer samples,
which excluded the United States, suggesting the trend was
not driven by a single subtype/country cohort such as C/India
or B/United States.

Mutation frequencies in CRF01_AE were also higher than
in subtype B overall and comparable to subtype C but with
lower frequencies than C for mutations 90I (−6% [−8 to −3];

Figure 2. The graphic illustrates frequency estimates of mutations at resistance positions across subtypes. Frequencies of mutations are shown for all (A) reverse-transcriptase
resistance positions and specifically for (B) K65R and 106 M/I/A. In both (A) and (B), 3 estimates of mutation frequency (y axis) are shown: (1) the raw counting estimate with an
Agresti-Coull binomial 95% confidence interval in blue, (2) the posterior estimate for each position within each treatment composition without poststratification with a 95% credible
interval in green, and (3) the posterior estimate within each treatment composition with poststratification with a 95% credible interval in black. Abbreviations: NRTI, nucleoside
reverse-transcriptase inhibitor; NNRTI, nonnucleoside RTI; TAMS, thymidine analog mutations.
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RR, .43−.60), 103N/S (−9% [−14 to −3]; RR, .73−.88), 106 M/I/
A (−7% [−11 to −3]; RR, .53−.71), 184 V/I (−10% [−18 to −6];
RR, .86−.92), and 215F/Y (−7% [−12 to −3]; RR, .74−.88). The
CRF02_AG and subtype G had fewer samples, and thus their
estimates exhibited higher uncertainty compared with other
subtypes. Estimated mutation frequencies of these other sub-
type populations were between the low and high extremes of
subtypes B and C.

We examined relationships between resistance mutations
using an Ising network model of dependence (see Methods)
and compared these networks across subtypes. Network figures
showing dependence between mutations at resistance positions
for the subtypes B, C, and CRF01_AE (subtypes with the most
sequences) are shown in Figure 4. Thirteen of the 31 RT resis-
tance positions were found to be linked to at least 1 other resis-
tance position in the 3 subtype datasets analyzed. These

mutations were TAMs 41L, 67N, 70R/E, and 215F/Y; other
NRTI mutations 65R and 184 V/I; and NNRTI mutations
101P/E/H, 103N/S, 106 M/I/A, 181C/I/V, 188L/C/H, 190S/A,
and 221F/Y. We find that the directionality between almost
every edge in the mutation network is preserved across sub-
types. The 3TC-associated mutations 184 V/I connect the
TAM network via their association with 215F/Y with NNRTI
mutations 103N/S, 181C/I/V, 188L/C/H, and 190S/A. The
184 V/I are also negatively associated with 65R in all subtypes
examined. The 103N/S is a hub that is (1) negatively associated
with other mutations in the NNRTI network, (2) positively as-
sociated with only 184 V/I, and (3) negatively associated with 5
NNRTI mutations. The 215F/Y is positively associated with 41L
and 67N. There is no association between 41L and 67N, consis-
tent with the inclusion of patients who were likely sequenced
early in the TAM pathway progression [32].

Figure 3. The graphic illustrates estimates of differences in mutation frequency at resistance-associated positions between sequences from patients failing first-line an-
tiretroviral therapy across different subtypes. Mutations are categorized into thymidine analog mutations (TAMS), nonnucleoside reverse-transcriptase inhibitors (NRTI Other),
and nucleoside reverse-transcriptase inhibitors (NNRTI) mutations. Contrasts are performed using posterior estimates of each subtype with poststratification to account for
different treatment composition within each subtype population. The y axis indicates the differences in mutation frequency. Every position in each subtype is compared with that
position in all other subtypes, and position number in each row indicates significantly different results. The colors indicate the comparison subtype.
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We also examined differences between subtype networks and
the magnitude of those differences. The NNRTI mutations (P/
E/H) at position 101 are slightly negatively associated with 184
V/I in subtype B and positively associated with 184 V/I in other
subtypes. Other differences are due to weaker, but still positive,
association between 184 V/I and NNRTI mutations 181C/I/V,
190S/A, and TAM 215F/Y. Finally, the mutual exclusivity of 103
and 181 is attenuated in subtype C compared with subtype B.

Susceptibility scores, which predict phenotypic effects of re-
sistance mutations on ART, showed lower levels of resistance to
future ART options in the subtype B population compared with
CRF01_AE and C (Figure 5A). It is important to note that the
Stanford Database scores do not account for subtype-dependent
mutation effects on susceptibility. These scores should be inter-
preted as a qualitative summary of mutation status and allow for

the possibility of subtype differences, not captured by current
models of the relationship between mutations and susceptibility.

Averaged across categories of prior ART, treatment duration,
and regimens, 60% of sequences from subtype B-infected pa-
tients were predicted to be susceptible (score <10) to treatment
options to which they were not exposed, compared with 48%
of CRF01_AE and 42% subtype C. Seventeen percent of subtype
B genotypes were predicted to have intermediate or high level
resistance to any treatment option, compared with 36% in
CRF01_AE and 34% in subtype C. Thus, observed differences
in resistance mutation outcomes after first-line therapy between
subtypes have consequences for cross-resistance to nonfirst-line
options.

Consistent with recent reports [33], patients failing D4T-
containing regimens are more susceptible to TDF than to

Figure 4. The graphic illustrates the Boltzmann/Ising network model of correlation between resistance-associated positions. (A) illustrates mutation networks for subtypes B,
C, and CRF01_AE. Solid edges indicate positive correlations, whereas dashed edges indicate negative correlations with varying magnitude according to line width. Black edges
indicate significant correlations, whereas gray edges indicate correlations that are not significant. (B) shows resistance position networks only with edges for which correlations
differ between subtypes. (C) illustrates differences in resistance position correlation between subtypes.
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AZT (Figure 5, D4T+ EFV, D4T+ NVP, columns 1–2, 7–8).
This holds regardless of subtype or ART duration. However,
in patients failing TDF-containing first-line regimens, predicted
cross-resistance was substantial (19%, 56%, and 63% intermedi-
ate or high level resistance to AZT, didanosine (DDI), and aba-
cavir (ABC), respectively (Figure 5B).

Overall, there were lower levels of resistance to TDF (72% of pa-
tients susceptible, averaged across prior histories) and higher levels
of resistance to ABC (32% susceptible), except in patients with prior
exposure to TDF. Between the extremes of TDF and ABC was re-
sistance to AZT (67% susceptible), etravirine (49%), rilpivirine
(49%), and DDI (32%). Within each drug susceptibility column
in Figure 5, NVP-exposed patients with durations of treatment ex-
ceeding 1 year tended to exhibit higher levels of resistance than
EFV-exposed patients. These susceptibility trends are robust across
subtypes and are clearly observed in subtypes B, C, and CRF01_AE.

DISCUSSION

We characterized HIV-1 drug resistance mutation patterns in a
multicohort, multi-subtype dataset of patients failing first-line
triple ART. Overall, we find lower resistance mutation frequen-
cies in subtype B and higher resistance mutation frequencies in

subtype C and CRF01_AE. This suggests that much of these dif-
ferences likely reflect biological or ecological factors that simul-
taneously influence multiple DRMs. The trend is less evident in
prior studies [17], likely due to greater treatment heterogeneity
among the sequences included.

Subtype mutation pattern differences affect the predicted
cross-resistance to subsequent regimens, with CRF01_AE and
subtype C exhibiting high levels of cross-resistance (Figure 5).
For D4T-failing patients, there is evidence of more AZT than
TDF cross-resistance across subtypes, consistent with current
knowledge [30, 33]. More broadly, resistance to TDF and AZT
was lower and resistance to second-generation NNRTIs, DDI,
and ABC was higher, regardless of subtype and prior first-line
ART history. Our findings extend a report on second-line sus-
ceptibility following first-line therapy in sub-Saharan Africa,
which also suggested high cross-resistance to second-generation
NNRTIs in patients failing first-line therapy [22]. However, it
should be noted that patients who fail TDF-based first-line
ART exhibit relatively high levels of cross-resistance. Although
the number of TDF-failing patients in our dataset is limited, re-
sistance to TDF should be closely monitored as it becomes more
widely used.

Figure 5. The graphic illustrates predicted antiretroviral therapy (ART) susceptibility after first-line treatment failure. Proportions of sequences are shown for each of 6
drugs (columns), according to the specific ART regimen (x axis), subtype (rows: B, C, CRF01_AE), ART duration (<1 year, left side of figure; and ≥1 year, right side of figure),
and 5 resistance categories (colors). Number of sequences are indicated by the color strength according to the legend. (A) Non-tenofovir (TDF)-based regimens, sorted from
left to right by decreasing susceptibility within each ART duration category; (B) TDF-based regimens, pooled across subtypes and prior treatments due to the limited sample
size. Abbreviations: ABC, abacavir; AZT, zidovudine; DDI, didanosine; D4T, stavudine; EFV, efavirenz; ETR, etravirine; NVP, nevirapine; RPV, rilpivirine; 3TC, lamivudine.
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Resistance mutation outcomes can be explained by the un-
derlying determinants of the observed genotype upon treatment
failure. During viral population expansion before treatment,
subtype differences in genetic barriers and tolerance to muta-
tions determine the baseline spectrum of mutations [15]. Fit-
ness considerations determine relative frequencies of resistant
genotypes within the viral quasispecies and introduce negative
correlations between high fitness-cost mutations such as K65R
[34]. Differential tolerance to resistance mutations is also con-
sistent with measurements of the effect of genetic background
on fitness tolerance to TAMs. Competition assays have found
that mutants with TAMs 67N and 70R are less fit in subtype
B compared with subtype C [8], and susceptibility assays have
found that TAMs contribute more to resistance in a CRF01_AE
background [35, 36]. It is not yet possible to synthesize generaliz-
able principles from such individual studies. Nevertheless, such
experiments provide the most direct measurement available of
the impact of subtype on phenotype.

Ecological factors such as the frequency of monitoring [21]
also determine the level of resistance upon treatment failure
(see model in the Supplementary Figure 3). Given the higher
levels of resistance observed in subtype C and CRF01_AE pop-
ulations, interventions that minimize ecological contributions
to resistance such as increased monitoring, viral load testing,
or use of boosted PI regimens may warrant consideration. If
these subtype differences reflect ecological factors, then they
suggest a need for programmatic interventions to optimize
ART and mitigate the accumulation of resistance among sub-
types C and CRF01_AE. An additional ecological explanation
incorporates temporal differences among subtypes in time of
sample collection, reflecting changes in clinical practice and
treatment monitoring. Although the collection periods for the
major variants (subtypes B, C, and CRF01_AE) overlap (all
start between 1994 and 1996 and end in 2010 and 2011), sub-
type B sequences are enriched in earlier collection dates
(mean = 2002.2, standard deviation [SD] = 3.8), whereas sub-
type C and CRF01_AE are enriched in later collection dates
(subtype C mean = 2005.9, SD = 2.4; subtype CRF01_AE
mean = 2005.1, SD = 3.2).

Due to differences in data availability across cohorts, poten-
tially relevant metadata at the subject level was not always avail-
able. Viral load and CD4 counts measure an important effect of
potential treatment monitoring differences, and a limitation of
this study is the lack of their measurements across these multi-
ple resource-limited cohorts. In a mathematical model present-
ed in the Supplementary Data, we specifically discuss how both
treatment monitoring frequency and genetic background effects
interact with viral population expansion before treatment and
can influence the observed pattern of resistance upon treatment
failure. Patterns of transmitted resistance and mutations before
treatmentmayalso exhibit population-specific heterogeneities not
apparent in this cross-sectional dataset. In addition, sequences in

any observational monitoring database do not constitute a
random sample of the treatment population. Interpretation of
observed subtype differences must allow for potential sampling
biases favoring patient subpopulations with a higher propensity
to be sequenced.

We have discussed both ecological and biological contribu-
tions to subtype differences, but the correlation between the
subtype of a patient and their geographical location inherently
limits the determination of causal attribution from observation-
al data. Dividing a patient population by subtype inevitably re-
sults in ecologically distinct comparisons. Even comparisons
within locales including multiple subtypes, subtype populations
segregate along transmission networks and reflect distinct eco-
logical circumstances [37]. Our central limitation remains the
causal identification of the genetic background effect regardless
of sample size. Secondary limitations include the limited avail-
ability of certain subtypes and aggregation of discretization of
treatment durations.

Observational data from clinical genotypes should be used
in conjunction with evidence from in vitro phenotypic charac-
terizations, for which direct effects are causally identifiable. Fur-
thermore, observational comparisons between subtypes should
incorporate as much background information regarding ecolog-
ical heterogeneity as possible. The multilevel modeling ap-
proach we developed here enables modeling of population
heterogeneity while minimizing analytical problems arising
from the large number of parameters inherent to mutational
analyses [38]. Focusing on estimation of subtype differences
has interpretational advantages over the standard approach of
multiple hypothesis testing [38, 39].

CONCLUSIONS

Previous characterizations of subtype differences have focused
on mechanisms related to position-specific associations among
subtype backgrounds, such as codon usage in subtype C, which
impact the frequency of K65R and V106 M [14, 15, 19, 31].
Although such position-specific mechanisms are clearly impor-
tant, variation in resistance between subtypes appears dominat-
ed by shared influences affecting multiple mutations. Future
studies should further disentangle the role of ecological and bi-
ological contributors for higher levels of resistance in subtype C
and CRF01_AE. Identifying the correct causal explanations for
the patterns of resistance characterized here is crucial to opti-
mizing ART among populations infected with non-B HIV-1
subtypes.

Supplementary Data
Supplementary material is available online at Open Forum Infectious
Diseases (http://OpenForumInfectiousDiseases.oxfordjournals.org/).
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