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We studied the problem of mortality prediction in two datasets, the first composed of 23 septic shock patients and the second
composed of 73 septic subjects selected from the public database MIMIC-II. For each patient we derived hemodynamic variables,
laboratory results, and clinical information of the first 48 hours after shock onset and we performed univariate and multivariate
analyses to predict mortality in the following 7 days. The results show interesting features that individually identify significant
differences between survivors and nonsurvivors and features which gain importance only when considered together with the others
in a multivariate regression model. This preliminary study on two small septic shock populations represents a novel contribution
towards new personalized models for an integration of multiparameter patient information to improve critical care management
of shock patients.

1. Introduction

Themanagement of hemodynamic stability in shock patients
is of paramount importance in critical care. Sepsis and
septic shock are among the main reasons for intensive care
unit (ICU) admission and they account for one of the
highest mortality rate in noncoronary ICU (about 50%) [1].
Important medical societies, such as the European Society
of Intensive Care Medicine and the Society of Critical Care
Medicine, dedicated great attention to this topic by fostering
debates and campaigns for developing new clinical guidelines
(e.g., “Surviving Sepsis Campaign”).

An effective therapy is still lacking and there are no clear
clinical signs either able to guide the right therapy or able to
predict patient progress and outcome.The same definition of
sepsis has been recently revised [2]. In 1991 sepsis was defined
as the host’s inflammatory response to infection, specifically
by the presence of systemic inflammatory response syndrome
(SIRS) criteria plus an infection. For simplicity, SIRS was
defined by four variables: temperature, heart rate, respiratory
rate, and white blood cell count. Only minor abnormalities
in these variables are needed for a patient to meet these
criteria [3]. Vincent et al. [2] highlight important weaknesses

of this definition of sepsis. Indeed, the “softness” of SIRS
criteria implies that up to 90% of the patients admitted to
ICU meet these criteria even in cases when SIRS is caused
by noninfectious clinical causes such as severe trauma, burns,
pancreatitis, ischemic reperfusion events, or other forms of
tissue injury that are accompanied by cell necrosis. From a
molecular perspective, the initial host response to infection
does not differ appreciably from the host response to sterile
inflammation. Moreover, the host response to infections
has beneficial aspects and a reduced or absent reaction
of the subject is a symptom of other important diseases,
such as immunodepression. For this reasons the authors
proposed a new definition of sepsis as the host’s deleterious,
nonresolving inflammatory response to infection that leads
to organ dysfunction [2].

Sepsis appears as a very complex and heterogeneous
syndrome. The type of pathogen causing the infection, the
pathogen burden, and the anatomic site together with the
variety of responses of the host to the infection and the
influence of existing comorbidities and age are all indepen-
dent factors, which contribute to defining the heterogeneous
nature of sepsis and septic shock. Early diagnosis, severity
assessment, risk stratification, and mortality prediction of
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septic patients remain unsolved and the search for more
effective therapies is still a major challenge for physicians.

In the very recent years, the enormous heterogeneity of
sepsis syndrome has pushed researchers to adopt the concept
of “personalized medicine” [4] which mainly refers to a
biomarker-guided therapy. The large involvement of organs
and cell systems in the inflammatory response has widened
the number of possible candidates andmany new biomarkers
are being explored. Some of them are already in use in
clinical settings: C-reactive protein (CRP) and procalcitonin
(PCT), synthesized in the acute phase of sepsis, are routinely
used as complementary tools in clinical decision-making.
Beyond the acute phase proteins, a wide range of promising
substances and nonlaboratory tools with potential diagnostic
and prognostic value is under intensive investigation [5].

Multiple organ failure (MOF) is the fatal end of sepsis
progression and it dramatically increases morbidity and
mortality. Since the underlying mechanism, which leads to
organs dysfunction, is not fully understood yet, researchers
are exploring new biomarkers of endothelial integrity which
is thought to play a fundamental role in the failure process.
Moreover, nonlaboratory biomarkers, as the assessment of
body temperature, heart rate variability, and cardiovascular
parameters, can assist the clinicians in diagnosis, outcome
monitoring, and prediction of septic patients [6–9].

The possibility to investigate the progression of shock
with a larger integration of information at different scales
and levels, such as at the molecular or cellular scale and
at tissue or organ level by collecting hemodynamic signals
and vital signs, would help in understanding the pathological
mechanisms of the disease. Personalized models, based on
this data integration, could be the basis for newmore effective
therapies and for preventing the development of shock in
critical care patients.

In this work, we selected data from septic shock patients
from theMIMIC-II database, which is an open access clinical
database [10]. The objective was to develop a prediction
model of 7-day mortality from vital signs and parameters
routinely collected during the first 48 hours after shock onset.

2. Materials and Methods

2.1. Patients. MIMIC-II (version 2.6) includes data of more
than 30,000 patients admitted at the ICUs of Boston’s Beth
Israel Deaconess Medical Center between 2001 and 2007.

Firstly, we selected 803 adult patients, that is, patients
older than 18 years of age at time of admission, at their first
hospital and ICU admission, who experienced a septic shock
(i.e., their medical record clearly reports a shock event): they
have ICD-9 code equal to 785.52 (dataset I).

Secondly, we took into consideration also the criteria
suggested in the work of Angus et al. [11] as many patients
should not be admitted with septic shock as primary cause
of ICU admission, that is, ICD-9 code equal to 785.52. In
this case we want to take into account patients with different
progress of pathological state or different clinical history.
Therefore we created another dataset (dataset II) by selecting
the medical records with all the ICD-9 codes relating to

both bacterial or fungal infections and a diagnosis of acute
organ dysfunction. In this case we obtained a total of 3,585
adult patients at their first hospital and ICU admission. The
following data, related to patient ICU staying, were extracted:

(i) Parameters derived from continuous hemodynamic
signals: systolic arterial blood pressure (SBP, mmHg),
diastolic arterial blood pressure (DBP, mmHg), mean
arterial blood pressure (MAP, mmHg), heart rate
(HR, bpm), respiratory rate (RR, breath per minute),
central venous pressure (CVP, mmHg), and cardiac
output (CO, L/min).

(ii) Clinical parameters and laboratory exams: tempera-
ture (𝑇, ∘C), arterial pH (units), creatinine (mg/dL),
blood glucose (mg/dL), lactate (mmol/L), hematocrit
(%), white blood cell count (WBC, cells/cmm), and
oxygen saturation SpO

2
(%).

(iii) Amount of fluids administered: volume of fluids (mL)
delivered.The total intakewas calculated including all
the intravenous infusions given to the patient.

(iv) Outcome: date of death.

We analyzed patients with at least 10 values of heart rate (HR),
temperature (𝑇), systolic blood pressure (SBP), respiratory
rate (RR), and two values of white blood cells count (WBC).
Moreover we excluded patients with ICU stay less than 48
hours. In dataset I, 713 patients out of 803 were excluded
because they did not fulfill these inclusion criteria and 90 only
were considered for further analyses. In dataset II only 545
out of 3,585 patients met these criteria.

2.2. Septic Shock Onset Detection. By considering the
sequences of available data, we firstly identified time intervals
which meet the four criteria for SIRS: (1) temperature > 38∘C
or < 36∘C; (2) heart rate > 90 bpm; (3) respiratory rate > 20
breaths per minute; and (4) white blood cells count > 12,000
cells/cmm or < 4,000 cells/cmm. In particular, (i) the time
intervals which meet the SIRS criteria must exceed 5 hours
to be taken into consideration; (ii) if two or more intervals
with abnormalities are less than 6 hours apart they are
merged together to form a single episode; and (iii) the start
of abnormality of the patient record corresponds to the time
of the first measured parameter which met SIRS criteria. For
example, if a patient has a temperature > 38∘C from hour 1 to
23 and the first WBC was taken at hour 6 and it is abnormal,
then abnormality interval starts at hour 1 and not at hour 6.

Successively, we identified septic shock onset according
to the approach proposed in [1]; that is, a shock episode
was defined as every time interval containing a SIRS episode
where low SBP persists despite adequate fluid resuscita-
tion. We identified all the intervals containing a prolonged
hypotension, that is, with a SBP lower than 90mmHg for
at least 30 minutes. The total fluid intake was calculated
starting one hour prior to the identified hypotension episode
to halfway through the hypotension region. If total fluid
intakewas larger than 600mL then that episodewas classified
as sepsis-induced hypotension. If more than one interval
was classified as a sepsis-induced hypotension, the first one
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was labeled as shock onset. In case only one prolonged
hypotensive episodewas identified, we considered that record
without septic shock episode as suggested in [1].

Only 23 out of 90 patients (∼25%) and 73 out of 545
patients (∼13%) showed a clear shock onset according to the
criteria previously described and were used in final datasets
I and II, respectively. Dataset II includes 21 patients from the
23 of dataset I.

2.3. Univariate and Multivariate Analysis. For each patient,
we extracted hemodynamic, laboratory, and clinical data of
the first 48 hours following the shock onset. For each of
the data series previously described, we computed statistical
indexes and we derived parameters relating to the series
trend: mean, standard deviation, minimum and maximum
values, median, kurtosis, skewness, regression slope of the
series, and variation between the start and the end of the
series (delta). Totally, we obtained 135 indexes.

The patients were subdivided into survivors (S) and
nonsurvivors (NS) patients if they died within 7 days after
the shock onset. The successive statistical analyses were
performed on the two datasets separately.

S andNS groupswere comparedwith theWilcoxonRank-
Sum Test. The False Discovery Rate (FDR) was assessed as
well due to the high number of comparisons. A 𝑝 value < 0.05
was considered for the significance level.

We developed a predictionmodel of 7-daymortality from
the 135 features by using dataset I and dataset II. We used
a linear regression model with a new regularization and
variable selectionmethodnamed elastic net.Thismethodwas
proposed by Zou and Hastie in 2005 [12] and it proved to
outperform when the number of predictors 𝑝 is much bigger
than the number of observations n, in comparison with other
regression models.

The best model was selected by using the 3-, 4-, and
5-fold cross-validation and by applying the one-standard
error rule to the misclassification error. In order to avoid
multicollinearity, the Variance Inflation Factor (VIF) was
calculated and, iteratively, the features with VIF > 5 were
excluded; VIF was then recalculated until all the values were
under the threshold.

We evaluated the performance of the mortality model on
dataset II only. We computed a linear regression model by
using the features selected by the elastic net and a 5-fold cross-
validation so as to compute theAreaUnder the Curve (AUC).

We adopted the mean imputation approach in order to
deal with missing data, which were however a low percentage
(8.1% for dataset I, 7.03% for dataset II).

Finally, we compared this prediction model with the
traditional scores for mortality risk assessment in ICU; in
this work we used the Sequential Organ Failure Assessment,
SOFA score, and the SimplifiedAcute Physiology Score, SAPS
I, the only available in the MIMIC-II database.

3. Results

Figure 1 shows the time series of the vital signs in one patient
and the shock onset is marked.
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Figure 1: Example of parameters series from one patient (ID 6471).
Green and black lines mark the start and the end of a shock
episodes, respectively. The red lines indicate the threshold value for
abnormality according to the SIRS criteria. After 6 days in ICU the
patient dies. Notice that the values of lactate monotonically increase
hinting organ dysfunction, hypoperfusion, and tissue injury. The
values for WBC are maintained clearly over the threshold during
the entire ICU staying, sign of a systemic inflammatory response.
Observing the trend for the RR series, it is clearly visible that there
is a sharp increase of the values till a plateau, synchronous with
the shock onset. The patient receives about 1200mL of fluids but he
shows a persistent hypotension despite fluid resuscitation.

Table 1 shows the features which are significantly different
between survivors and nonsurvivors in dataset I. Table 2
reports the results of univariate analysis on dataset II which
are significant in addition to those already found in dataset
I (see Table 1): standard deviation WBC, standard deviation
𝑇, mean SBP, median SBP, mean DBP, median DBP, mean
MAP, median MAP, mean pH, maximum pH, median pH,
mean SpO

2
, minimum SpO

2
, slope SBP, slope DBP, slope

MAP, slope SpO
2
, delta SBP, delta DBP, delta MAP, delta

pH, and delta SpO
2
. Tables 3 and 4 show the values of

the coefficients of the features selected from the elastic net
regression model for datasets I and II, respectively, and a
graphical representation of them is also given in Figure 2. For
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Table 1: Median (25∘, 75∘) values of the features significantly different between groups, dataset I.

Parameters Survivors (15 pts.) Nonsurvivors (8 pts.) 𝑝 value FDR
Std. WBC (cells/cmm) 3.7 (2, 4.5) 6.2 (6, 7) 0.032 <0.01
Max WBC (cells/cmm) 18 (14.6, 29) 34.8 (31.6, 37.8) 0.035 <0.01
Std. 𝑇 (∘C) 0.4 (0.4, 0.6) 0.8 (0.5, 1) 0.026 <0.01
Min 𝑇 (∘C) 37 (35.8, 37.5) 35.5 (35.3, 36) 0.049 <0.01
Mean SBP (mmHg) 96 (94.7, 101.3) 91.2 (85.8, 97) 0.049 0.013
Median SBP (mmHg) 95 (94, 102) 88 (85, 94.3) 0.030 0.034
Mean DBP (mmHg) 59 (53.7, 66.2) 51.6 (49, 54.8) 0.015 <0.01
Median DBP (mmHg) 60 (54.5, 66.3) 52 (49, 54) 0.019 <0.01
Mean MAP (mmHg) 75 (69.4, 78.6) 64 (60.8, 67) <0.01 <0.01
Median MAP (mmHg) 75 (67, 77.5) 64 (60.8, 66.5) <0.01 <0.01
Kurtosis lactate 2.2 (1.7, 2.5) 3 (2.6, 3.2) 0.039 <0.01
Std. CO (L/min) 1.2 (0.8, 1.6) 0.7 (0.4, 0.8) 0.049 <0.01
Max CO (L/min) 7.9 (7.3, 11.3) 5.8 (4.4, 6.8) <0.01 <0.01
Skewness CVP 0.5 (0.1, 1.3) 0 (−0.5, 0.2) 0.024 <0.01
Mean pH (units) 7.3 (7.3, 7.4) 7.2 (7.2, 7.3) <0.01 <0.01
Max pH (units) 7.4 (7.4, 7.5) 7.3 (7.3, 7.3) <0.01 <0.01
Median pH (units) 7.3 (7.3, 7.4) 7.2 (7.2, 7.3) 0.016 <0.01
Mean SpO

2

(%) 97.3 (96.6, 97.7) 94.4 (90.5, 96) <0.01 <0.01
Min SpO

2

(%) 89 (75.5, 92.8) 62.5 (15, 88) 0.024 0.099
Skewness Creatinine −0.2 (−0.6, 0.2) 0.5 (0.2, 0.6) 0.032 <0.01
Slope SBP (mmHg/h) 0.33 (0.28, 0.37) −0.04 (−0.22, 0.12) 0.018 <0.01
Slope DBP (mmHg/h) 0.14 (−0.05, 0.26) −0.13 (−0.55, 0.04) 0.015 <0.01
Slope MAP (mmHg/h) 0.23 (0.03, 0.33) −0.15 (−0.78, 0.06) <0.01 <0.01
Slope SpO

2

(%/h) 0 (−0.07, 0.03) −0.19 (−0.67, −0.07) <0.01 <0.01
Delta SBP (mmHg) 24 (11, 34.7) −2 (−36, 11.5) <0.01 <0.01
Delta DBP (mmHg) 10 (5, 19) −6.5 (−21.5, 3.5) <0.01 <0.01
Delta MAP (mmHg) 15 (8, 20.7) −4 (−19.5, 4.5) <0.01 <0.01
Delta pH (units) 0.09 (0, 0.17) −0.05 (−0.11, 0.03) 0.016 <0.01
Delta SpO

2

(%) 0 (−1, 3) −2 (−20, −0.5) 0.028 <0.01
WBC = white blood cell count. 𝑇 = temperature. SBP = systolic blood pressure. DBP = diastolic blood pressure. MAP = mean arterial pressure. CO = cardiac
output. CVP = central venous pressure. Std. = standard deviation.
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Figure 2: Barplot representation of the coefficients of the features selected from the elastic net regression model for dataset I and dataset II,
in the upper and lower window, respectively.
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Table 2: Median (25∘, 75∘) values of the features significantly different between groups, dataset II (only the features which are not already
shown in Table 1).

Parameters Survivors (53 pts.) Nonsurvivors (20 pts.) 𝑝 value FDR
Mean HR (bpm) 103.1 (93.6, 110.4) 115 (104, 124) <0.01 <0.01
Std. HR (bpm) 11.8 (9.2, 16.8) 15.7 (10, 24) 0.046 0.058
Median HR (bpm) 102 (90.1, 111) 112.2 (102.5, 124.5) <0.01 0.01
Mean RR (breaths/min) 22.8 (19, 25.6) 24.9 (23.3, 27.2) 0.025 0.036
Median RR (breaths/min) 24 (19, 26) 25.5 (24, 30) 0.014 0.025
Max 𝑇 (∘C) 38.3 (37.6, 38.8) 38.9 (37.9, 39.5) 0.049 0.062
Kurtosis 𝑇 2.5 (1.9, 3.2) 2.1 (1.6, 2.2) 0.035 0.047
Max SBP (mmHg) 144 (128, 157) 129.5 (116, 150.5) 0.046 0.06
Min MAP (mmHg) 51 (44.2, 56.2) 39 (17, 52.5) 0.018 0.027
Mean lactate (mmol/L) 3.2 (1.7, 5.1) 6.7 (3.8, 12.7) <0.01 <0.01
Min lactate (mmol/L) 1.8 (1.4, 2.5) 5.15 (2.5, 7.8) <0.01 <0.01
Max lactate (mmol/L) 4.8 (2.45, 7.37) 8 (5.3, 16.9) 0.014 0.024
Median lactate (mmol/L) 3 (1.7, 5) 6.8 (3.8, 11.9) <0.01 <0.01
Mean CVP (mmHg) 14.3 (12.1, 18.5) 17.3 (16.3, 19.9) 0.012 0.023
Min CVP (mmHg) 8 (4, 11) 11 (9, 15) <0.01 0.011
Median CVP (mmHg) 15 (11.7, 17) 17 (16, 19) <0.01 0.016
Min pH (units) 7.25 (7.17, 7.35) 7.15 (7.08, 7.21) <0.01 <0.01
Skewness pH −0.01 (−0.5, 0.4) −0.61 (−0.91, −0.12) 0.028 0.039
Slope pH (units/h) 0 (−0.001, 0.004) −0.001 (−0.004, 0) <0.01 0.014
Std. SpO

2

(%) 2.7 (1.7, 4.4) 5.5 (2.1, 11) 0.028 0.039
Median SpO

2

(%) 97 (96, 99) 95.75 (94.5, 97.5) 0.017 0.026
HR = heart rate. RR = respiratory rate. 𝑇 = temperature. SBP = systolic blood pressure. MAP = mean arterial pressure. CVP = central venous pressure. Std. =
standard deviation.

Table 3: Coefficients of the elastic net regression, dataset I (MSE is
0.0302).

Parameters Coefficients VIF
Maximum CO (L/min)∗ −0.0875 2.09
Maximum pH (units)∗ −0.0753 2.5
Delta DBP (mmHg)∗ −0.0418 1.78
Skewness lactate −0.0214 2.39
Median MAP (mmHg)∗ −0.0121 2.14
Kurtosis RR 0.0012 2.12
Mean RR (breath/min) 0.0348 2.38
Std. 𝑇 (∘C)∗ 0.0666 3.09
MaximumWBC (cells/cmm)∗ 0.0749 1.63
Skewness creatinine∗ 0.0811 2.39
Kurtosis lactate∗ 0.0815 2.63
∗Significant features also in the univariate analysis.

each feature the corresponding VIF value is reported as well,
and the mean square error of the models is annotated in the
table headings.

AUC values obtained are the following: SOFA score:
0.74 ± 0.17, SAPS I: 0.95 ± 0.04, and proposed model: 0.97 ±
0.03.

4. Discussion

In this study we presented preliminary analyses on two small
subsets of septic shock patients extracted from MIMIC-II

Table 4: Coefficients of the elastic net regression, dataset II (MSE is
0.1095).

Parameters Coefficients VIF
Delta SpO

2

(%)∗ −0.0323 1.6
Slope SBP (mmHg/h)∗ −0.0191 1.52
Delta pH (units)∗ −0.0154 1.63
Max pH (units)∗ −0.0114 1.48
Delta DBP (mmHg/h)∗ −0.0047 1.91
Mean HR (bmp)∗ 0.0012 1.32
Skewness Creatinine 0.033 1.13
Std. WBC (cells/cmm)∗ 0.0443 1.38
Std. 𝑇 (∘C)∗ 0.0827 2.03
Min lactate (mmol/L)∗ 0.1431 1.93
∗Significant features also in the univariate analysis.

database. Dataset I consists of only 23 septic shock subjects
selected based on the presence of the specific ICD-9 code
for septic shock.The second dataset includes 73 patients with
both ICD-9 codes for fungal or bacterial infections and acute
organ dysfunction, based on the criteria defined by Angus
et al. [11].

The results from univariate and multivariate analysis
identified features which play an important role in mortality
prediction after shock onset. As expected, nonsurvivors
have significant lower BP, decreased cardiac functionalities
(described by low cardiac output (CO)), and reduced blood



6 Computational and Mathematical Methods in Medicine

pH and oxygenation. The results obtained studying the
trend of the physiological variables, that is, the slope and
delta indices, could be interpreted as a lack of recovery by
nonsurvivors. Blood pressure keeps on decreasing during the
first 48 hours after the onset of a shock episode inNS patients,
together with oxygen saturation (see Table 1), leading to
organ dysfunction and death.

Some features that were not significantly different
between S and NS in dataset I were, however, selected as
important in univariate analysis on dataset II or, anyway,
they gain more importance. It is the case, for example, of
heart rate (HR), respiratory rate (RR), lactate and central
venous pressure (CVP) (see Tables 1 and 2). On the other side,
creatinine, whose distribution was found as significant in the
first analysis, was not selected in the analyses in the larger
dataset. These results could be explained by the fact that an
increase of patients number permits more reliable estimates,
but it rises the heterogeneity of the population, represented,
for instance, by the different progress of patient condition or
different pathological state at the ICU admission.

Some of the features that were found significant in
the univariate analysis for discriminating S from NS are
well known in literature as crucial to assess the patient’s
status. For example, hyperlactatemia is widely considered a
symptom of poor outcome in ICU [13, 14] and creatinine is
a well-established measure of renal activity and high levels
in the blood are associated with severe renal dysfunction.
An interesting consideration concerns the role of central
venous pressure (CVP). The importance and the role of this
physiological measure in critical care settings are still under
debate. Guidelines recommend increased values of CVP as
the end point of fluid resuscitation, based on the hypothesis
that CVP reflects intravascular volume; that is, patients
with low CVP are volume depleted whereas patients with
high CVP are volume overloaded. However, recent studies
demonstrated a poor relationship between CVP values and
circulating blood volume and a reduced ability of CVP to
predict fluid responsiveness, coming up with the idea that
CVP should not be used anymore to guide fluid management
strategies [15, 16]. Furthermore, a linear association between
higher mean CVP in the first 24 hours from admission and
increasing risk of new or persistent acute kidney injury (AKI)
in septic patients was demonstrated by Legrand et al. [17],
suggesting a role of venous congestion in the development
of AKI. The authors suggested a revision of the affirmed
clinical paradigm such that high target of CVP may reduce
the occurrence of AKI, as part of the multiple organ failure
syndrome. From our analyses (Table 1) we found out that
the distribution of CVP and lactate and creatinine values
are significantly different between the two populations of
survivors and nonsurvivors.

We can guess that the time distributions and trends of the
indexes, more than punctual values, may play a crucial role in
the assessment of patient’s status and the prediction of disease
progress and outcome.

Not all the features selected in the multivariate analysis
were also significant individually. We can notice that respira-
tory rate for dataset I and creatinine for dataset II were not
significantly different between survivors and nonsurvivors,

but, in the multiparameter model, they do have an impact on
the model outcome.

Comparing Tables 3 and 4, relating to the multivariate
model coefficients, lactate plays an important role in the
model. For dataset I (Table 3), respiratory rate and cardiac
output contribute to the final decision together with the
other variables selected also in dataset II, while for dataset
II (Table 4) heart rate and oxygen saturation play important
role in the assessment of mortality risk.

These findings support a complex interdependence
among different physiological systems in response to sepsis
and septic shock.This reciprocal influence is at the basis of the
big heterogeneity of the disease and a more detailed study of
it could allow a risk stratification of the patients with effective
incidence in early therapies. An example could be found in
a recent work proposed by Knox et al. [18]. They present a
clusterization of septic patients based on different combina-
tions and burden or organ failure and they demonstrate a
direct association of the clusters with 30-day risk ofmortality.
Using Self-OrganizingMap (SOM) neural network technique
they were able to identify four clusters of patients: cluster 1
that contains shock patients with elevated creatinine, cluster
3 that has shock patients with hypoxemia and altered mental
status, while patients with severe sepsis weremostly in cluster
2 (minimal multiple organ dysfunction syndrome (MODS)),
and cluster 4 (hepatic disease). Surprisingly, these results
do not mirror the traditional classification of septic patients
based on severity scores: elevated mortality was found in
association with cluster 4 (severe sepsis with hepatic disease),
whereas septic shock patients with elevated creatinine had
lower mortality similar to patients with severe sepsis and
minimal MODS.

Finally, AUC analyses support our study as the higher
value is achieved by the proposed model (0.97 ± 0.03)
followed by SAPS I (0.95 ± 0.04) and, last, SOFA score
with a value of AUC under 0.8. Although some of the
variables included in our model are the same as in the
calculation of the scores (e.g., creatinine, blood pressure,
heart rate, temperature, andWBC), the givenmodel is proved
to outperform traditional scores. Unlike SAPS and other ICU
mortality scoring systems, SOFA was originally designed to
focus more on organ dysfunction and morbidity, with less
emphasis on mortality prediction, and this could be the
reason why the performance of SOFA mortality prediction
modelwas found to be lower.On the other side, SAPS reached
a very good discrimination ability between S and NS, despite
being overcome by the multivariate model. We could think
that this gap is mainly due to a substantial difference in the
approach: SAPS takes into account only the worst value of
each variable over the past 24 hours for the computation,
whereas our approach allows involving also trends and time
distributions information of the values rather than single
absolute measures.

5. Conclusion

The analyses show how the available information in a com-
mon ICU setting can be used to predict the progress of septic
shock also in a very limited number of cases.
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Vital signs available from measurements or their esti-
mates are currently used for monitoring purposes in ICU.
They convey system-wide, instantaneous information on the
cardiovascular status of the patient, but they do not provide
any insight into the fundamental mechanisms of disease. For
this reason, in the recent years’ clinical research is moving
towards the study of new potential specific targets and
biomarkers of sepsis and septic shock, trying tomark the root
cause of the disease [19]. Discovering relationships and asso-
ciations between bits of information at different physiological
scales is thought to be the turning point in sepsis detection
and early treatment. In this work we incorporated in the
samemodel features derived from continuous hemodynamic
monitoring, clinical parameters, and laboratory results and
we demonstrated the validity of this approach in themortality
prediction problem. The huge quantity of multidimensional
data collected by modern ICU is continuously increasing,
calling for the need of new models for data integration.
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