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Background. Lymph node status is important for treatment decision making in prostate cancer (PCa). We aimed to develop a
genomic-clinicopathologic nomogram for the prediction of lymph node invasion (LNI) in PCa. Methods. Differentially
expressed genes between LNI and non-LNI PCa samples were identified in the Cancer Genome Atlas database. Univariate Cox
regression analysis and minimum redundancy maximum relevance were performed for gene selection. .e synthetic minority
oversampling technique (SMOTE) was conducted to balance the minority group (LNI group). Machine learning models were
constructed in the training set and assessed in the validation set. Univariable logistic regression and multivariable logistic
regression were applied to build a nomogram. Furthermore, the RNA-sequence data from our center were used to validate the
expression levels of hub genes between five matched primary PCa and the corresponding LNI samples. Results. .e 37-gene-
based support vector machine (SVM) model had the optimal synthesized performance in the SMOTE-balanced training (area
under the curve (AUC): 0.947) and validation (AUC: 0.901) sets. Incorporating the SVM-based risk score and the Gleason
grade, the genomic-clinicopathologic nomogram demonstrated good prediction and calibration both in the SMOTE-balanced
training (AUC: 0.946) and validation (AUC: 0.910) sets. .e dysregulated expression of hub genes between PCa and LNI
samples was also validated. Conclusion. .e proposed nomogram combining the 37-gene-based SVM model with the Gleason
grade had the potential to preoperatively predict LNI in PCa. Some of the hub genes should be prioritized for functional studies
and mechanistic analyses.

1. Introduction

Prostate cancer (PCa) is the most common cancer in men
with a rising global disease burden on public health [1]. Up
to 15% of PCa patients present lymph node invasion (LNI)
which is a negative prognostic factor [2]. Accurate nodal
staging is important for identifying PCa patients who may
benefit from additional treatment [3, 4]. Extended pelvic
lymph node dissection (ePLND) is the gold standard for
nodal staging [5]. However, due to the increased risk of
potential morbidity and prolonged operative time [6, 7], the
current European Association of Urology guidelines rec-
ommend that radical prostatectomy (RP) combined with an
ePLND is only performed in PCa patients with the estimated
risk for LNI >5% [5, 8].

Currently, there are some nomograms built for the
prediction of LNI in PCa, but the predictive factors of these
nomograms highly rely on clinical parameters and biopsy
reports, and some of the clinical parameters may not be
routinely available in other institutions [8–12]. .e use of
medical imaging techniques for preoperative nodal staging is
not recommended due to the low sensitivity [11, 13].

Sequencing of RNA using next-generation sequencing
technology (RNA-sequence) is an efficient approach to
investigate the difference of PCa in terms of lymph node
status at a genomic level. .e analysis strategy for RNA-
sequence data has evolved from single gene analysis to
develop machine learning models based on a set of genes
[13, 14], which may be a useful way to innovate clinical
management.
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Notably, due to the relatively low proportion of LNI PCa
patients, data were imbalanced between LNI patients and non-
LNI patients. Machine learning models based on imbalanced
data are more inclined to ignoring the minority type and
representing the majority type, resulting in a bias in perfor-
mance [15]. .e synthetic minority oversampling technique
(SMOTE) is a popular and powerful method for balancing
data via synthetic data [16]. It generates new minority samples
based on available minority data. After data balancing, im-
balanced types could be avoided and the performance of
prediction models could be effectively improved [15].

In our study, we sought to use the RNA-sequence data
from the Cancer Genome Atlas (TCGA) to construct ma-
chine learning models for the prediction of LNI in PCa.
Simultaneously, the prediction power of machine learning
models with and without data balancing was further eval-
uated. .e optimal prediction model was further integrated
with clinicopathological features to develop a genomic-
clinicopathologic nomogram for predicting LNI.

2. Materials and Methods

2.1. Ethics. .e study was reviewed and approved by the
Ethics Committee of Shanghai Tenth People’s Hospital
(approval number: SHSY-IEC-2014RES-36) and conducted
following the ethical standards.

2.2. Data Collection. Five primary PCa samples and corre-
sponding LNI samples were obtained from PCa patients that
underwent RP and ePLND in Shanghai Tenth People’s
Hospital. .ese five patients had a prostate-specific antigen
(PSA) level >10 ng/mL or a Gleason grade >6 and a tumor
stage of at least cT2. Supplementary Table 2 presents the
clinicopathological characteristics of these patients. .e
ePLND template includes the obturator, external iliac, in-
ternal iliac, common iliac, and presacral regions (nine fields)
bilaterally, and the margins of the ePLND include the fol-
lowing: the caudal margin was the femoral canal and the
deep circumflex vein, the cranial margin was the ureter
crossing over the common iliac artery, the lateral margin was
the genitofemoral nerve, and the medial margin was the
vesical fat [17]. Informed consent was prior obtained from
patients. Tumor tissues from the same histologic component
of both the primary PCa samples and LNI samples were
macrodissected by a genitourinary pathologist (over 10 years
of experience) from formalin-fixed paraffin embedded
(FFPE) sections, and RNA was isolated. Total RNA was
isolated using the QubitRNA Assay Kit (cat. Q32852; Life
Technologies, USA) following the manufacturer’s protocol.
RNA-seq and data analysis were performed by Oebiotech
(Shanghai OEbiotech Co., Ltd., Shanghai, China).

.e mRNA (RNA-sequence) Fragments Per Kilobase of
transcript per Million Fragments standardized expression
dataset and corresponding clinicopathological features were
downloaded for 426 PCa patients from the Cancer Genome
Atlas (TCGA) (http://cancergenome.nih.gov/). Patients
without information on lymph node status were excluded
from the analysis.

2.3. Hub Gene Screening. With the cutoff criterion of |log2
fold change (FC)|>0.5 and FDR (false discovery rate)< 0.05,
differentially expressed genes (DEGs) between LNI and non-
LNI samples were selected. .en, DEGs were introduced
into univariate Cox regression analysis to screen for DFS-
(disease-free-survival-) associated genes.

2.4. PredictionModelConstruction. .e ratio of LNI patients
to non-LNI patients was 1 : 4.4 in TCGA, indicating a sample
imbalance. .erefore, the SMOTE algorithm was was used
to balance the minority class. Based on the expression of
DFS-associated genes, the PCa patients were equalized via
the SMOTE, so that the two classes of PCa patients were 1 :1
(347 LNI patients and 347 non-LNI patients). Subsequently,
PCa patients were randomly divided into the training set and
validation set at a ratio of 7 : 3 in imbalanced and SMOTE-
balanced datasets, respectively.

DFS-associated genes were conducted using the mini-
mum redundancy maximum relevance (mRMR) algorithm
for gene ranking via mutual information (MI) in imbalanced
and SMOTE-balanced datasets, respectively. .e mRMR
algorithm is a supervised feature selection model which
initially calculates the MI between features and a target
variable. It ranks the features via maximizingMI to the target
variable and then minimizes the averageMI for features with
higher rankings [18]. In this way, the top 40 genes were
selected for developing machine learning models, including
support vector machine (SVM) and least absolute shrinkage
and selection operator (LASSO) models.

A nonlinear SVM-based recursive feature elimination
(SVM-RFE) algorithm was applied to investigate the optimal
number of genes and obtain the most relevant genes for
SVM model construction. .is algorithm included back-
ward elimination in each iteration, wherein features that
minimally improve the performance of the model were
removed [19].

.e LASSO algorithm removes the genes that minimally
influence the target variable and selects the genes with
nonzero coefficients for model construction. .e risk score
of the LASSOmodel was calculated by summing the selected
genes weighted by their coefficients.

.e two models were developed via 10-fold cross-vali-
dation in the training set to obtain the optimal parameter
configuration for each model and were then assessed in the
validation set. .e area under the receiver operator charac-
teristic (ROC) curve (AUC) was used to evaluate the per-
formance of each model. Accuracy, sensitivity, specificity,
negative predictive value (NPV), and positive predictive value
(PPV) were calculated according to the Youden index [20].
.e machine learning model with the highest accuracy,
sensitivity, and AUC was selected for nomogram construc-
tion. .e median value of the machine learning model-based
risk score was used to divide patients into low- and high-risk
groups in the training and validation sets, respectively.

2.5. Nomogram Development. We selected the primary PCa
patients with clinical characteristics in the SMOTE-balanced
training set to develop a nomogram..e risk score generated

2 Journal of Oncology

http://cancergenome.nih.gov/


by the optimal machine learning model and preoperative
clinical characteristics, including age, PSA level (most re-
cent), clinical stage, and Gleason grade, were introduced into
the univariate logistic analysis. Significant factors in the
univariate logistic analysis were put into the step-wise
multivariate logistic regression analysis. A forward stepwise
selection was used with Akaike’s information criterion
(AIC) as the stopping rule. Variance inflation factors (VIFs)
were calculated to evaluate the collinearity of the multi-
variate logistic regression. A nomogram was constructed
using the coefficients of factors chosen by multivariate lo-
gistic regression.

AUC and calibration curves were applied to investigate
the diagnostic power of the nomogram. Decision curve
analysis (DCA) was applied to investigate the clinical utility
of the nomogram for decision making. .e Hos-
mer–Lemeshow test and Harrell’s concordance index (C-
index) were performed to quantify the performance of the
nomogram. Furthermore, we calculated the net reclassifi-
cation improvement (NRI) and the integrated discrimina-
tion improvement (IDI) to evaluate the incremental
prediction ability of the nomogram compared with the
Gleason grade [21].

2.6. Gene Set Enrichment Analysis (GSEA). GSEA (http://
www.broadinstitute.org/gsea/index.jsp) was conducted to
investigate signaling pathways between PCa patients in high-
and low-risk groups. Signaling pathways with P< 0.05 and a
false discovery rate <0.25 were considered statistically
significant.

2.7. Statistical Analysis. Statistical analysis was conducted
with R statistical software (version 3.6.1 R, https://www.r-
project.org/). Supplementary Table 1 presents the R pack-
ages used for statistical analysis. .e clinical characteristics
between the training and validation sets were compared
using Student’s t-test, the chi-square test, or the Man-
n–Whitney U test, as appropriate. .e differences in the
expression levels of hub genes between PCa samples and LNI
samples were compared using the Wilcoxon test. All ma-
chine learning models were constructed on the training set
and assessed on the validation set. All tests were 2-tailed, and
P value< 0.05 was regarded as statistically significant.

3. Results

3.1. Patient Population. A total of 426 PCa patients (347 LNI
patients and 79 non-LNI patients) were obtained from
TCGA database. Survival analysis revealed that LNI patients
had poorer DFS than non-LNI patients within five years
(P � 0.033, Figure 1).

3.2. Hub Gene Screening and Prediction Model Development.
A total of 1538 DEGs (546 upregulated and 992 down-
regulated) were screened from TCGA by univariate Cox
regression analysis. As a result, 314 DFS-associated genes
were determined. .e top 40 genes ranked by the mRMR

algorithm were retained for prediction model construction
in imbalanced and SMOTE-balanced training sets,
respectively.

Sixteen and 37 genes chosen by the SVM-RFE algorithm
were conducted to construct SVM models with the highest
accuracy in imbalanced and SMOTE-balanced training sets,
respectively (Figure 2). Twenty-two and 29 genes with
nonzero coefficients were selected by the LASSO algorithm
to develop LASSO models with the least binominal deviance
in imbalanced and SMOTE-balanced training sets, respec-
tively (Figure 3).

3.3. Performance ofMachine LearningModels. As for LASSO
models, we observed high accuracy and specificity but low
sensitivity and relatively low AUC in the imbalanced dataset
(Figure 4). In contrast, although the accuracy and specificity
of the LASSO model declined in the SMOTE-balanced
dataset, the sensitivity improved greatly, with the sensitivity
increasing from 35.71% to 86% and from 21.74% to 88.66%
in SMOTE-balanced training and validation sets, respec-
tively (Figures 4(c) and 4(d)). .e specificity, PPV, and NPV
of SVM models in imbalanced and SMOTE-balanced
datasets were relatively equal, and the AUC, accuracy, and
sensitivity of the 37-gene-based SVMmodel in the SMOTE-
balanced dataset were higher than those of the 16-gene-
based SVM model in the imbalanced dataset (Figure 5).

Furthermore, the synthesized performance of the 37-
gene-based SVMmodel in the SMOTE-balanced dataset was
better than that of LASSO models both in imbalanced and
SMOTE-balanced datasets. In this way, the 37-gene-based
SVMmodel and the risk score of each PCa patient generated
by the 37-gene-based SVM model were selected for further
analysis.
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Figure 1: Kaplan–Meier curves of disease-free survival for prostate
cancer patients based on the lymph node status.
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.e Pearson correlation coefficients among the 37 genes in
the 37-gene-based SVM model were all <0.7, indicating no
collinearity between genes. Alluvial diagrams presented the
predictive results of the 37-gene-based SVM model in the
SMOTE-balanced training and validation sets (Figures 6(a) and
6(b)). LNI patients had significantly higher risk scores than non-
LNI patients both in the SMOTE-balanced training and vali-
dation sets (both P<0.001, Figures 6(c) and 6(d)).

3.4. 1e Prognostic Value and Pathway Analysis of the SVM
Model. PCa patients in the high-risk group had poorer DFS
than PCa patients in the low-risk group in the SMOTE-
balanced training and validation sets (Figures 6(e) and
6(f )).

GSEA revealed that malignant hallmarks of tumors, in-
cluding “NIK_NF_KAPPAB_SIGNALING,” “POSITIVE_R-
EGULATION_OF_TOR_SIGNALING,” “REGULATION_

0.84

0.83

0.82

0.81

0 10 20
Number of genes

30 40

A
cc

ur
ac

y 
(c

ro
ss

-v
al

id
at

io
n)

(a)

0.60 0.65
Importance

0.70 0.75

SPAG1
SLC43A1

PROK1
GNE

TNRC6C.AS1
LPAL2

CKS2
TMEM121B

NRIR
LTA

CRACR2A
NVL

TREML1
ACOX2

ISG15
YEATS2.AS1

TUBB3
PCAT18
GMNN
WHRN

FAM83D
C2

HASPIN
COL11A2

TTK
ASPN

RBM24
SMPDL3A

PRSS27
MIR4258

SLC16A1.AS1
NKX6.1

LCN2
KCNK17

LBX2
RPL4P2

IL27
MDK

CELSR3
ST13P15

(b)

0.85

0.80

0.75

0.70

0 10 20
Number of genes

30 40

A
cc

ur
ac

y 
(c

ro
ss

-v
al

id
at

io
n)

(c)

0.65
Importance

0.70 0.75

SPAG1
IFI44

PRSS27
NRIR
GNE

TUBB3
SLC43A1

GMNN
YEATS2.AS1

TNRC6C.AS1
PROK1

FAM83D
TREML1

LPAL2
ASPN

WHRN
CCBE1

CKS2
KY

TMEM121B
MIR4258
HASPIN

CHRNA2
C2

FAM13C
FMOD
RPE65

RBM24
NTRK3
GREM2

SMPDL3A
EEF1A1P25

GRXCR2
INSYN2B

EGF
CRACR2A

ST13P15

(d)

Figure 2: Construction of SVMmodels. (a) Gene selection process using SVM-RFE and 10-fold cross-validation in the imbalanced training set: 16
genes with the highest discriminative accuracy were selected for SVM model development. (b) SVM-RFE is used to rank genes according to the
gene importance, and the top 16 genes were selected for SVMmodel development. (c) Gene selection process using SVM-RFE and 10-fold cross-
validation in the SMOTE-balanced training set: 37 genes with the highest discriminative accuracy were selected for SVMmodel development. (d)
SVM-RFE is used to rank genes according to the gene importance, and the top 37 genes were selected for SVMmodel development. SVM: support
vector machine; SVM-RFE: SVM-based recursive feature elimination; SMOTE: synthetic minority oversampling technique.
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OF_CELL_CYCLE_G2_M_PHASE_TRANSITION,” “REG-
ULATION_OF_CELL_CYCLE_PHASE_TRANSITION,”
and “REGULATION_OF_NUCLEAR_DIVISION,” were
mainly enriched in the high-risk group (Figure 7).

3.5. Development and Performance of the Genomic-Clinico-
pathologic Nomogram. After removing the synthetic sam-
ples generated by the SMOTE, there were 291 and 135
primary PCa patients with clinical characteristics in
SMOTE-balanced training and validation sets, respectively.
Table 1 presents the clinical characteristics of PCa patients.

No significant differences were observed in age, PSA level
(most recent), clinical stage, pathologic stage, Gleason grade,
surgical margin resection status, number of dissected lymph
nodes, number of positive lymph nodes, and N stage be-
tween the two datasets. After univariate and multivariate
analyses, the risk score and Gleason grade remained sig-
nificant factors for the prediction of LNI with the lowest AIC
value (AIC� 136.5) (Table 2). .e VIFs of risk score and
Gleason grade were 1.509 and 1.611, respectively, indicating
no collinearity.

.en, the risk score and Gleason grade were used to
construct a genomic-clinicopathologic nomogram
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Figure 3: Construction of LASSO models. (a) Selection of the tuning parameter λ in the LASSO model via 10-fold cross-validation in the
imbalanced training set. .e optimal λ value of 0.0165, with log (λ)� −4.103, was chosen based on minimum criteria. (b) LASSO coefficient
profiles of the 22 genes. (c) Selection of the tuning parameter λ in the LASSO model via 10-fold cross-validation in the SMOTE-balanced
training set. .e optimal λ value of 0.0066, with log (λ)� −5.021, was chosen based on minimum criteria. (d) LASSO coefficient profiles of
the 29 genes. LASSO: least absolute shrinkage and selection operator; SMOTE: synthetic minority oversampling technique.
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Figure 4: Performance of LASSOmodels in imbalanced and SMOTE-balanced datasets. (a) ROC curves of the LASSOmodel in imbalanced
training and validation sets. (b) ROC curves of the LASSO model in SMOTE-balanced training and validation sets. (c) .e predictive
performance of LASSO models in imbalanced and SMOTE-balanced training sets. (d) .e predictive performance of SVM models in
imbalanced and SMOTE-balanced validation sets. ROC: receiver operating curve; AUC: area under the ROC curve; NPV: negative
predictive value; PPV: positive predictive value; LASSO: least absolute shrinkage and selection operator; SMOTE: synthetic minority
oversampling technique.
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Figure 5: Performance of SVM models in imbalanced and SMOTE-balanced datasets. (a) ROC curves of the SVM model in imbalanced
training and validation sets. (b) ROC curves of the SVM model in SMOTE-balanced training and validation sets. (c) .e predictive
performance of SVM models in imbalanced and SMOTE-balanced training sets. (d) .e predictive performance of SVM models in
imbalanced and SMOTE-balanced validation sets. ROC: receiver operating curve; AUC: area under the ROC curve; NPV: negative
predictive value; PPV: positive predictive value; SVM: support vector machine; SMOTE: synthetic minority oversampling technique.
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Figure 6: Continued.
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(Figure 8(a)). After removing the synthetic samples gener-
ated by the SMOTE, the AUCs of the nomogram were 0.946
(95% confidence interval (CI): 0.918–0.974) and 0.910 (95%
CI: 0.860–0.959) in SMOTE-balanced training and valida-
tion sets, respectively (Figure 8(b)). .e calibration curves
showed marked calibration of the prediction and observa-
tion in both datasets (Figure 8(c)). Harrell’s C-indices of the

nomogramwere 0.946 (95%CI, 0.918–0.974) and 0.910 (95%
CI, 0.861–0.958) in SMOTE-balanced training and valida-
tion sets, respectively. .e Hosmer–Lemeshow test yielded
nonsignificant P values of 0.749 and 0.846 in SMOTE-
balanced training and validation sets, respectively, indicating
good calibration power. .e DCA showed that the nomo-
gram had a higher clinical net benefit than the Gleason grade
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Figure 6: Performance of the SVM-based risk score in the SMOTE-balanced dataset. Alluvial diagrams showed the predictive results of the
37-gene-based SVM model in SMOTE-balanced training (a) and validation (b) sets. Violin plots of the risk score in SMOTE-balanced
training (c) and validation (d) sets grouped by the N stage. Kaplan–Meier curves of DFS for prostate cancer patients based on the risk group
in SMOTE-balanced training (e) and validation (f) sets. DFS: disease-free survival; FP: false positive; FN: false negative; SVM: support vector
machine; SMOTE: synthetic minority oversampling technique.
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in both datasets (Figures 8(d) and 8(e)). Compared with the
Gleason grade, the nomogram significantly improved di-
agnostic accuracy (overall category-based NRI, 0.23; NRI
indices for events and nonevents, 7.59% and 14.99%, re-
spectively; IDI, 0.32, all P< 0.001), and similar results were
also observed in SMOTE-balanced training and validation
sets, respectively, which are presented in Table 3.

3.6. Validation of 37 Genes from the SVMModel. .e RNA-
sequence data of five primary PCa samples and corre-
sponding LNI samples from our center were used to validate
the expression levels of 37 genes from the SVM model. .e
results demonstrated that the expression levels of 18 genes
were significantly different between PCa and LNI samples
(Figure 9).

Table 1: .e clinicopathological characteristics of primary patients in SMOTE-balanced training and validation sets.

Number of patients (%)
P value

Characteristic SMOTE-balanced training set (n� 291) SMOTE-balanced validation set (n� 135)
Age, years
Mean [median] 61.50 [62] 61.15 [62] 0.640a

IQR 57–66 56–66
PSA level (most recent), ng/mL
Mean [median] 1.17 [0.10] 1.00 [0.10] 0.698a

IQR 0.03–0.18 0.03–0.17
Clinical stage
cT1 93 (31.96) 44 (32.59) 0.294b

cT2 104 (35.74) 55 (40.74)
cT3 30 (10.31) 19 (14.07)
cT4 1 (0.34) 0 (0)
NA 63 (21.65) 17 (12.59)

Pathologic stage
pT2 98 (33.68) 47 (34.81) 0.534b

pT3 181 (62.20) 85 (62.96)
pT4 10 (3.44) 1 (0.74)
NA 2 (0.69) 2 (1.48)

Gleason grade
<7 17 (5.84) 7 (5.19) 0.739b

� 7 140 (48.11) 69 (51.11)
>7 134 (46.05) 59 (43.70)

Surgical margin resection status
R0 178 (61.17) 89 (65.93) 0.283b

R1 97 (33.33) 36 (26.67)
R2 2 (0.69) 2 (1.48)
NA 14 (4.81) 8 (5.93)

Number of dissected lymph nodes
Mean [median] 12.15 [10] 10.75 [9] 0.170a

IQR 5–16 5–15
Number of positive lymph nodes
Mean [median] 0.51 [0] 0.35 [0] 0.279a

IQR 0 0
N stage
N0 235 (80.76) 112 (38.49) 0.297c

N1 56 (19.24) 23 (7.90)
IQR: interquartile range; NA: not available; PSA: prostate-specific antigen; SMOTE: synthetic minority oversampling technique; at-test; bMann–Whitney U
test; cchi-square test.

Table 2: Univariate and multivariate logistic analyses in the SMOTE-balanced training set.

Variable
Univariate analysis Multivariate analysis

β OR (95% CI) P value β OR (95% CI) P value
Age (continuous), years 0.004 1.004 (0.961–1.049) 0.868 — — —
PSA level (most recent) 0.021 1.021 (0.959–1.086) 0.516 — — —
Clinical stage 0.501 1.650 (1.041–2.615) 0.033 — — —
Gleason grade 1.098 2.997 (2.102–4.272) <0.001 1.071 2.919 (1.962–4.343) <0.001
Risk score 2.590 13.334 (6.888–25.815) <0.001 2.539 12.670 (6.211–25.847) <0.001
CI: confidence interval; OR, odds ratio; PSA: prostate-specific antigen; SMOTE: synthetic minority oversampling technique.

10 Journal of Oncology



6

7

8

9

10

0.05 0.1 0.2

0.3 0.5 0.7

0.4 0.6 0.8 0.9 0.95

–3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3

Points

Risk score

Gleason grade

Total points

Risk of LNI

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

(a)

SMOTE-balanced training set: 0.946 (0.918 – 0.974)
SMOTE-balanced validation set: 0.910 (0.860 – 0.959)

1.0

0.8

0.6

0.4

0.2

0.0

1.0 0.8 0.6 0.4
Specificity

AUC (95% CI)

0.2 0.0

Se
ns

iti
vi

ty

(b)

SMOTE-balanced training set
SMOTE-balanced validation set

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6
Nomogram-predicted probability

0.8 1.0

A
ct

ua
l p

ro
ba

bi
lit

y

(c)

Nomogram
Gleason grade

All
None

0.2

0.1

0.0

0 0.25 0.50 0.75
Risk threshold

1.00

N
et

 b
en

efi
t

(d)

Nomogram
Gleason grade

All
None

0.2

0.1

0.0

0 0.25 0.50 0.75
Risk threshold

N
et

 b
en

efi
t

(e)

Figure 8: Construction and performance of the genomic-clinicopathologic nomogram. (a) Nomogram to predict the LNI. (b) ROC curves
of the nomogram in SMOTE-balanced training and validation sets after removing the synthetic samples generated by the SMOTE. (c)
Calibration curve of the nomogram in SMOTE-balanced training and validation sets. DCA for risk score and nomogram in SMOTE-
balanced training (d) and validation (e) sets. ROC: receiver operating curve; AUC: area under the ROC curve; LNI: lymph node invasion;
SMOTE: synthetic minority oversampling technique.
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4. Discussion

.e lymph node status is essential for decision making
regarding PCa treatment regimens, specifically concerning
the use of ePLND and additional therapies [3, 4]. Current
guidelines for PCa patients with LNI suggest that ePLND
should be a necessary part of RP [22], but this procedure
extends the operative time and increases the risk of potential
morbidity [6, 7]. .erefore, accurate nodal staging could
reduce unnecessary ePLND.

In this study, we constructed genomic-based machine
learning models for the prediction of LNI. However, due to
the relatively low proportion of LNI PCa patients, data were
imbalanced between the two types (LNI patients vs. non-
LNI patients, 1 : 4.4). .e synthesized performance of
machine learning models based on the imbalanced dataset
was unsatisfactory, with indeed low sensitivity. After data
balancing by SMOTE, these machine learning models
achieved better synthesized performance, suggesting that it
is useful to develop prediction models with SMOTE-bal-
anced data. As the 37-gene-based SVM model built using
the SMOTE-balanced training data had the optimal syn-
thesized performance in the prediction of LNI, the risk

score generated by this model was selected for the no-
mogram construction. A genomic-clinicopathologic no-
mogram combined with the risk score and Gleason grade
achieved novel calibration and good clinical net benefit,
indicating a useful approach for the preoperative predic-
tion of LNI.

Currently, medical imaging techniques, including CT,
MRI, and PET, have been commonly used for preoperative
N staging in PCa. However, these methods rely on expe-
rienced radiologists, which could inevitably result in human
error and low sensitivity, as metastatic lymph nodes may
have normal size [23, 24]. Medical image-based radiomics
has been used for preoperative N staging in PCa cancer
imaging. However, the cohorts of these studies were rela-
tively small [25, 26], and the application of radiomics is still
hindered by multiple reasons, including lack of standardi-
zation, automation, and harmonization.

At present, several nomograms have been constructed
for predicting LNI based on biopsy data [8–12]. Briganti
et al. [9] built a nomogram predicting the risk of LNI in PCa
patients undergoing RP combined with ePLND. .e no-
mogram contains the routinely available clinical factors such
as clinical stage, preoperative PSA, and biopsy Gleason sum

Table 3: .e NRI and IDI indices.

Primary dataset SMOTE-balanced training
set

SMOTE-balanced
validation set

Values P value Values P value Values P value
NRI 0.23 <0.001 0.25 <0.001 0.58 <0.001
Events NRI 7.59% 8.93% 56.52%
Nonevents NRI 14.99% 16.17% 1.79%
IDI 0.32 <0.001 0.39 <0.001 0.18 <0.001
NRI: net reclassification improvement; IDI: integrated discrimination improvement; SMOTE: synthetic minority oversampling technique.
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with relatively high accuracy. .en, Briganti et al. [10]
further found that the inclusion of the percentage of positive
biopsy cores could improve the performance of the no-
mogram. In 2012, Briganti et al. updated the nomogram in
more contemporary patients undergoing RP combined with
ePLND and reported that patients with an LNI risk <5%
might be safely spared ePLND based on the nomogram [8].
Gandaglia et al. [11] constructed a nomogram based on
detailed biopsy reports including the percentage of positive
cores with highest-grade PCa and the percentage of positive
cores with lower-grade PCa. .en, Gandaglia et al. [12]
developed the first nomogram including mpMRI and MRI-
targeted biopsy data. Adoption of this nomogram could
avoid up to 60% of ePLND at the cost of missing only 1.6% of
LNI patients. However, all of the abovemodels highly rely on
the clinical factors and biopsy reports without the appli-
cation of genomic data.

With the development of high-throughput sequencing
technologies, a genomic signature may be a useful tool for
predicting LNI. Cao et al. [27] used the clinical and RNA-
sequence data of PCa patients from TCGA to develop a
nomogram based on 7-gene risk signature, PSA, clinical
stage, and primary and secondary biopsy Gleason grade for
N staging, with the AUC of 0.902%. However, there was no
validation set in this study, and the sample imbalance was
not equalized. In our study, the genomic-clinicopathologic
nomogram integrating the SVM-based risk score with the
Gleason grade achieved favorable performance in the pre-
diction of LNI, with the AUCs of 0.946 and 0.910 in SMOTE-
balanced training and validation sets, respectively. .e
predictive factors of this genomic-clinicopathologic no-
mogram could be obtained from biopsy tissues before RP.
Hence, the proposed nomogram may be useful in the
prediction of LNI and the preoperative selection of ePLND
candidates.

.e results of the RNA sequence in our center showed
that 18 of 37 genes from the SVM model exhibited dysre-
gulated expression between PCa and LNI samples, indi-
cating that dysregulated expression levels of these genes
played an important role in the LNI of PCa.

.is study had some limitations..e nomogram was not
validated in an external validation from different institu-
tions. Multicenter studies are needed to evaluate the gen-
eralizability of the proposed nomogram. In addition, the
number of tumor samples for RNA sequence in our center
was small.

In conclusion, a genomic-clinicopathologic nomogram
integrating the SVM-based risk score with the Gleason grade
had encouraging performance in the preoperative prediction
of LNI and may provide added value for the preoperative
selection of ePLND candidates in PCa. Dysregulated ex-
pression of genes from the SVM model between PCa and
LNI samples was validated by RNA sequence in our center.
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