Intracellular Ca2+ signaling A novel player in the canonical mTOR-controlled autophagy pathway

Jean-Paul Decuypere,^{1,2} Ram Chandra Paudel,¹ Jan Parys^{1,†} and Geert Bultynck^{1,†,*}

¹Laboratory of Molecular and Cellular Signaling; Department of Cellular and Molecular Medicine; KU Leuven; Leuven, Belgium

2 Current affiliation: Laboratory of Abdominal Transplant Surgery; Department of Microbiology and Immunology; University Hospitals Leuven; KU Leuven; Leuven, Belgium

† These authors contributed equally to this work.

Keywords: Ca2+ signaling, endoplasmic reticulum, inositol 1,4,5-trisphosphate receptor, Beclin 1, mTOR, autophagy, autophagosomes

Abbreviations: AMPK, AMP-activated kinase; Atg, Autophagy protein; ATP, adenosine triphosphate; BAPTA(-AM), 1,2-bis(oaminophenoxy)ethane-N,N,N',N'-tetraacetic acid (-acetoxymethyl ester); Bcl-2, B cell CLL/lymphoma 2; CaMKI, Calmodulin kinase I; CaMKKβ, Calmodulin kinase kinase β; Dox, doxycycline; EGTA, ethylene glycol tetraacetic acid; ER, Endoplasmic reticulum; ERK, Extracellular signal-regulated kinase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; Ins(1,4,5)P₃R, Inositol 1,4,5-trisphosphate receptor; LC3, Microtubule-associated protein 1 light chain 3; MEF, Mouse embryonic fibroblast; mTOR, Mammalian target of rapamycin; NAADP, Nicotinic acid adenine dinucleotide phosphate; PI3K, Phosphatidylinositol 3-kinase; PKCθ, Protein kinase C θ; SERCA, Sarco-/endoplasmic reticulum Ca²⁺ ATPase; ULK1, Unc-51-like kinase 1; WIPI-1, WD repeat domain phosphoinositide-interacting protein 1

Functional intracellular $Ca²⁺$ signaling is essential for the upregulation of the canonical mTOR-controlled autophagy pathway triggered by rapamycin or by nutrient deprivation. Moreover, modifications in the Ca²⁺-signaling machinery coincide with autophagy stimulation. This results in enhanced intracellular $Ca²⁺$ signaling essential for driving the autophagy process. Yet, the mechanisms upstream (the players causing the changes in Ca²⁺ signaling) and downstream (the targets of the altered Ca²⁺ signals) of this Ca²⁺-dependent autophagy pathway remain elusive. Here, we speculate about these mechanisms based on our current knowledge.

To Have a Look Upstream: The Culprit(s) of the Changes in Ca2+ Signaling

The role of $Ca²⁺$ signaling in autophagy regulation was met with a great deal of controversy in the past years, with reports suggesting inhibitory, as well as stimulatory, effects of Ca²⁺ on autophagy.1 We recently investigated the role of intracellular Ca²⁺ homeostasis/signaling in canonical mTOR-controlled autophagy upon rapamycin treatment.2 Rapamycin activates autophagy via the inhibition of mTOR, which is regarded as a key regulator of autophagy, leading to its stimulation through a canonical pathway, involving downstream of mTOR, the ULK1 complex, the PI3K complex III (including Beclin 1), Atg5, Atg7 and LC3. Rapamcyin treatment of HeLa and MEF cells stimulated autophagy in a concentration- and time-dependent manner. Interestingly, the upregulation of autophagy correlated with

an increase in the ER Ca²⁺ content and increased $\text{Ins}(1,4,5)P_{3}R$ mediated Ca^{2+} signaling. Buffering the intracellular Ca^{2+} with the cell-permeable chelator BAPTA-AM abolished rapamycininduced autophagy, indicating that intracellular Ca^{2+} signaling is required for activation of the canonical autophagy pathway. This study followed up on a previous study investigating the role of $Ca²⁺$ signaling in nutrient starvation-induced autophagy.³ Nutrient starvation stimulates autophagy via the same canonical pathway. Hence, it is not surprising that also starvation induced changes in the intracellular Ca^{2+} homeostasis and that starvationinduced autophagy was also abolished by BAPTA-AM.

Although these data suggest that $Ca²⁺$ signaling is an important regulator in the canonical mTOR-controlled autophagy pathway, it remains to be addressed whether other autophagyinducing stimuli that do not act via this pathway induce similar changes in intracellular Ca^{2+} signaling as rapamycin or

^{*}Correspondence to: Geert Bultynck; Email: Geert.bultynck@med.kuleuven.be

Submitted: 05/28/13; Accepted: 06/17/13

Citation: Decuypere J-P, Paudel RC, Parys J, Bultynck G. Intracellular Ca²⁺ signaling: A novel player in the canonical mTOR-controlled autophagy pathway. Commun Integr Biol 2013; 6: e25429; http://dx.doi.org/10.4161/cib.25429

starvation. This is certainly not the case for Li⁺, which activates autophagy in an mTOR-independent fashion, through inhibition of the inositol metabolism.⁴ This leads to less $Ins(1,4,5)P_3$ and less activation of the ER-resident Ca²⁺ channel Ins(1,4,5) P_3R . Hence, Li⁺ works in an opposite way than rapamycin or starvation, i.e., through a decrease in intracellular Ca^{2+} signaling. This discrepancy can be explained by a difference in destination of the $Ca²⁺$ signals (mitochondria vs. cytosol, see further).⁵ This effect of Li+ clearly exemplifies that autophagy stimulation in general does not always require increased Ca²⁺ signaling. Moreover, when $Ca²⁺$ signaling participates in the autophagy process, its action will depend on the exact stimulus and on the different autophagy players involved.

To address which of these players are crucial for Ca^{2+} dependent autophagy stimulation, it will be of interest to evaluate the Ca2+ effects in a context of mTOR-, ULK1-, Beclin 1-, Atg5 or Atg7-independent autophagy stimulation. In this respect, it is important to note that the changes in $Ca²⁺$ homeostasis were still observed in an Atg5-knockout model of MEF cells upon nutrient starvation (**Fig. 1**) or rapamycin treatment.2 This suggests that (1) Atg5 is not required for enhanced Ca²⁺ signaling during the stimulation of mTORcontrolled autophagy, and (2) the key players responsible for enhanced Ca^{2+} signaling occur upstream of Atg5 in the autophagy pathway. Since LC3 lipidation is downstream of Atg5, it is unlikely LC3 will be a main contributor of the observed changes in $Ca²⁺$ signaling.

The most intriguing autophagy player in this story however is Beclin 1. We observed that Beclin 1 was essential for sensitization of the $\text{Ins}(1, 4, 5)P_{3}R$ in HeLa cells after nutrient starvation, resulting in more $Ca²⁺$ release upon stimulation by low or medium $[\text{Ins}(1, 4, 5)P_3]$.³ This sensitization was concomitant with an increased binding of Beclin 1 to the Ins(1,4,5) P_3 R and the dissociation of Beclin 1 from inhibitory Bcl-2 family proteins.3 Beclin 1 knockdown prevented $Ins(1,4,5)P_3R$ sensitization during nutrient starvation, while recombinantly expressed and purified Beclin 1 was able to sensitize Ins(1,4,5) P_3 R-mediated Ca²⁺ flux in non-starved cells. Importantly, Beclin 1 knockdown did not alter the increased ER Ca²⁺-store content upon nutrient starvation. This indicates that two mechanisms can contribute to the enhanced $Ins(1, 4, 5)$ P ₃R-mediated Ca²⁺ signaling during

nutrient starvation: the Beclin 1-dependent $\text{Ins}(1,4,5)P_{3}$ R sensitization and the Beclin 1-independent increase in ER $Ca²⁺$ content (**Fig. 2**). Likely, the more subtle Beclin 1-dependent sensitization of the Ins $(1,4,5)P$ ₃R is required to generate the more specific autophagy-stimulating Ca^{2+} signals. In this sense, this sensitization may be of more importance than the observed increase in ER Ca2+ content, and Beclin 1 may represent the switch that drives the Ca2+-dependent autophagy pathway. Therefore, the role of Beclin 1 in autophagy triggered by different stimuli ought to be further scrutinized.

To have a Look Downstream: The Ca2+ Target

An important point that needs clarification is the exact target of these autophagy-stimulating Ca^{2+} signals. The differences observed in autophagy levels after BAPTA-AM or Xestospongin B (an Ins(1,4,5)*P*³ R inhibitor) treatment can partially address this question.³ BAPTA-AM, which buffers intracellular Ca^{2+} , did not induce any changes in basal autophagy levels, while

Xestospongin B increased them. However, both of them blunted starvation-stimulated autophagy. We anticipate that the different effects on basal autophagy levels by BAPTA-AM and Xestospongin B can be explained by differences in localization of the autophagy-inhibiting and autophagy-stimulating Ca2+ signals (**Fig.** 2). Ins $(1,4,5)P$ ₃Rs mediate a constitutive Ca²⁺ release toward mitochondria for assuring an appropriate energy production, which represses AMPK activity and hence keeps autophagy at low levels.⁵ For this pathway, close ER-mitochondria contact sites are required to facilitate the efficient transfer of Ca^{2+} into the mitochondria.6 Xestospongin B, but not BAPTA, likely can access these microdomains and inhibit the Ins $(1,4,5)P_{3}$ Rs present in the ER-mitochondria contact sites. Hence, only Xestospongin B will attenuate energy production and increase basal autophagy levels. However, since both BAPTA-AM and Xestospongin B can abolish starvation-induced autophagy,³ the autophagy-stimulating $Ca²⁺$ signal has another target than mitochondria.

Several cytosolic Ca^{2+} targets that regulate autophagy have already been proposed in the literature: CaMKKß,⁷ PKC θ ⁸ and ERK.9 However, it should be noted that these reports are based on autophagy-inducing stimuli that result in a rather general increase in the cytosolic $[Ca^{2+}]$, rather than an increase in the ER Ca²⁺ content and/or in $Ins(1,4,5)P_3R$ -mediated Ca²⁺ release. In particular, thapsigargin, a potent inhibitor of the ER Ca^{2+} pump SERCA, is often applied, but this treatment actually leads to an emptying of the ER Ca^{2+} content, opposite to the effects observed after rapamycin treatment or starvation (**Fig. 2**). The activation of autophagy through a general increase in cytosolic $[Ca²⁺]$ is therefore not strictly equal to autophagy stimulation via increased $\text{Ins}(1,4,5)P_{3}$ R-mediated Ca²⁺ signaling, and both ways of autophagy stimulation may have different targets (**Fig. 2**).

The Beclin 1-mediated $\text{Ins}(1, 4, 5)P_{3}R$ sensitization that we observe during nutrient starvation led to a small, but significant increase of $\text{Ins}(1, 4, 5)P_3$ -induced Ca^{2+} release.³ The question arises whether such a small difference in $Ca²⁺$ release can have major cellular effects. However, the small nature of this sensitization suggests that the subsequent effects are restricted to the local environment of the $Ins(1,4,5)P_3R$. Interestingly, the ER and in particular special subdomains termed omegasomes are reported as important sites of origin for autophagosomes.¹⁰ At these sites several key players for autophagosome formation are assembled, including WIPI proteins and the PI3K complex III. It is therefore possible that the autophagy-inducing $Ca²⁺$ signal does not reach beyond the close proximity of its release site, that the target is therefore situated at these omegasomes and that these Ca^{2+} signals are hence required for the initial steps in autophagosome

formation. In this context, a likely $Ca²⁺$ -target candidate is CaMKI, involved in the Ca^{2+} -dependent formation of WIPI-1 punctae upon various triggers of autophagy, including nutrient starvation (Fig. 2).¹¹

Recently, more insights in the role of lysosomal Ca²⁺ homeostasis in autophagy regulation have been obtained. Lysosomeresident NAADP-gated Ca²⁺ release channels seem important regulators of autophagy.12,13 Since lysosomes function only in the final steps of the autophagy process, it is likely that $Ca²⁺$ release from these organelles predominantly regulates distal steps in the autophagy process, such as autophagosome-lysosome fusions, the degradation of the autophagic cargo or the recycling of the lysosomal membranes. However, $Ca²⁺$ release from the lysosomes have been proposed to be amplified by $Ca²⁺$ release from the ER by a process of Ca^{2+} -induced Ca^{2+} release, and may therefore also modulate proximal steps in the autophagy pathway.14,15 Moreover, recent work of different groups highlighted the possibility of complex, bi-directional functional interactions between lysosomal and ER Ca²⁺¹⁶⁻¹⁸ Thus, enhanced Ins $(1,4,5)P_3R$ -mediated $Ca²⁺$ signaling may not only affect early steps in the autophagy pathway by regulating systems locally at the ER, but also distal steps by reciprocal Ca^{2+} signaling between the ER and the lysosomes. Thus, the modulation of intracellular $Ca²⁺$ signaling at the spatiotemporal level allows for a complex and fine-tuned control of the autophagy pathway by Ca^{2+} , likely involving multiple Ca2+ targets at different steps of the autophagy process.

In conclusion, the present findings represent only the tip of the iceberg in unraveling the role of $Ca²⁺$ in autophagy stimulation. The identification of the exact key players, both upstream and downstream of the autophagy-stimulating $Ca²⁺$ signals, will

be a key future prospect to further understand the generality and importance of intracellular $Ca²⁺$ signaling in autophagy regulation. Moreover, the clarification of this complex regulation may provide novel opportunities to modulate autophagy.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

- 1. Decuypere JP, Bultynck G, Parys JB. A dual role for Ca(2+) in autophagy regulation. Cell Calcium 2011; 50:242-50; PMID:21571367; http://dx.doi. org/10.1016/j.ceca.2011.04.001
- 2. Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De Smedt H, et al. mTOR-Controlled Autophagy Requires Intracellular Ca(2+) Signaling. PLoS One 2013; 8:e61020; PMID:23565295; http:// dx.doi.org/10.1371/journal.pone.0061020
- 3. Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgó J, et al. $Ins(1, 4, 5)P_3$ receptor-mediated Ca²⁺ signaling and autophagy induction are interrelated. Autophagy 2011; 7:1472-89;
PMID:22082873; http://dx.doi.org/10.4161/ http://dx.doi.org/10.4161/ auto.7.12.17909
- 4. Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170:1101-11; PMID:16186256; http://dx.doi. org/10.1083/jcb.200504035
- 5. Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, et al. Essential regulation of cell bioenergetics by constitutive InsP_3 receptor Ca^{2+} transfer to mitochondria. Cell 2010; 142:270-83; PMID:20655468; http://dx.doi.org/10.1016/j.cell.2010.06.007
- 6. Decuypere JP, Monaco G, Bultynck G, Missiaen L, De Smedt H, Parys JB. The IP(3) receptor-mitochondria connection in apoptosis and autophagy. Biochim Biophys Acta 2011; 1813:1003-13; PMID:21146562; http://dx.doi.org/10.1016/j.bbamcr.2010.11.023
- 7. Høyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007; 25:193- 205; PMID:17244528; http://dx.doi.org/10.1016/j. molcel.2006.12.009
- 8. Sakaki K, Wu J, Kaufman RJ. Protein kinase Ctheta is required for autophagy in response to stress in the endoplasmic reticulum. J Biol Chem 2008; 283:15370- 80; PMID:18356160; http://dx.doi.org/10.1074/jbc. M710209200
- 9. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM. Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 2008; 65:3640-52; PMID:18850067; http://dx.doi. org/10.1007/s00018-008-8383-9
- 10. Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbé S, Clague MJ, et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 2010; 6:506- 22; PMID:20505359; http://dx.doi.org/10.4161/ auto.6.4.11863
- 11. Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T. Ca2+/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 2011; 80:1066-75; PMID:21896713; http://dx.doi.org/10.1124/ mol.111.071761
- 12. Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C, Han SW, et al. Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 2011; 286:27875- 81; PMID:21610076; http://dx.doi.org/10.1074/jbc. C110.216580
- 13. Gómez-Suaga P, Luzón-Toro B, Churamani D, Zhang L, Bloor-Young D, Patel S, et al. Leucine-rich repeat kinase 2 regulates autophagy through a calciumdependent pathway involving NAADP. Hum Mol Genet 2012; 21:511-25; PMID:22012985; http:// dx.doi.org/10.1093/hmg/ddr481
- 14. Calcraft PJ, Ruas M, Pan Z, Cheng X, Arredouani A, Hao X, et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 2009; 459:596-600; PMID:19387438; http://dx.doi. org/10.1038/nature08030
- 15. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM. Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol 2010; 298:C430-41; PMID:20018950; http:// dx.doi.org/10.1152/ajpcell.00475.2009
- 16. López-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW. Lysosomes shape $Ins(1, 4, 5)P_3$ -evoked Ca²⁺ signals by selectively sequestering Ca²⁺ released from the endoplasmic reticulum. J Cell Sci 2013; 126:289- 300; PMID:23097044; http://dx.doi.org/10.1242/ jcs.116103
- 17. Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S. Direct mobilisation of lysosomal Ca²⁺ triggers complex Ca²⁺ signals. J Cell Sci 2013; 126:60-6; PMID:23108667; http://dx.doi.org/10.1242/ jcs.118836
- 18. Morgan AJ, Davis LC, Wagner SK, Lewis AM, Parrington J, Churchill GC, et al. Bidirectional Ca²⁺ signaling occurs between the endoplasmic reticulum and acidic organelles. J Cell Biol 2013; 200:789- 805; PMID:23479744; http://dx.doi.org/10.1083/ jcb.201204078