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Modelling the effects of standard prognostic factors in
node-positive breast cancer

W Sauerbrei 1, P Royston 2, H Bojar 3, C Schmoor 1, M Schumacher 1 and the German Breast Cancer Study
Group (GBSG)

1Institute of Medical Biometry and Medical Informatics, University of Freiburg, Stefan-Meier-Strasse 26, D-79104, Germany; 2Department of Medical Statistics
and Evaluation, Imperial College School of Medicine, Hammersmith Hospital, Ducane Road, London W12 0NN, UK; 3Department of Chemical Oncology,
University of Düsseldorf, Germany

Summary Prognostic models that predict the clinical course of a breast cancer patient are important in oncology. We propose an approach to
constructing such models based on fractional polynomials in which useful transformations of the continuous factors are determined. The idea
may be applied with all types of regression model, including Cox regression, the method of choice for survival-time data. We analyse a
prospective study of node-positive breast cancer. Seven standard prognostic factors – age, menopausal status, tumour size, tumour grade,
number of positive lymph nodes, progesterone and oestrogen receptor concentrations – were investigated in 686 patients, of whom 299 had
an event for recurrence-free survival and 171 died. We determine a final model with transformations of prognostic factors and compare it with
the more traditional approaches using categorized variables or assuming a straight line relationship. We conclude that analysis using
fractional polynomials can extract important prognostic information which the traditional approaches may miss.

Keywords: breast cancer; prognostic factors; regression modelling; variable transformation; fractional polynomials
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Prognostic models that predict the clinical course of a br
cancer patient and provide a rationale for her treatment a
central importance in oncology. Despite many projects 
hundreds of papers in the last 2 decades only the nodal sta
equivocally considered by all study groups as a strong fact
patients without metastases (M0). Even the prognostic value o
‘standard factors’ such as tumour size, tumour grade, histo
type, oestrogen (ER) and progesterone receptor (PR) s
menopausal status and age is still controversial. During the
few years many new factors (clinicopathological, biologic
molecular) have been investigated resulting in more than
proposed factors, most of them controversial. In addition to l
ratory and clinically related problems in obtaining objective 
reproducible measurements of a new factor, heterogenei
patient populations and treatment or limitations of follow-up
substantial part of this controversy concerns statistical as
such as inadequate sample sizes, inadequate use of sta
methods and difficulties in comparing multivariable models w
different factors or different categorizations of the factors (Sim
and Altman, 1994).

In cancer clinical trials, where survival or recurrence-f
survival (RFS) time is often the primary outcome variable, 
statistical analysis is usually performed with the Cox proportio
hazards model (Cox, 1972) where the effects of several progn
factors on the risk of death are modelled simultaneously. The 
tion arises as to how the factors should be included in the m
i.e. which form of relationship is to be assumed between a f
ason
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and the outcome variable. For factors like menopausal status
peri, post) or tumour grade (I, II, III) with only two or a few leve
no major modelling difficulties arise. Binary variables can be u
to indicate the membership of the patient to the correspon
level and the relative risks between the levels of the factor ma
estimated in standard fashion.

Problems arise for continuous prognostic factors with m
different values, e.g. age in years or tumour size in mm. Usu
such factors are included in the statistical model in their orig
form. This procedure implicitly assumes that the effect on the
of death is log-linear, i.e. that the log relative risk increase
decreases linearly as the value of a factor increases. Obvio
this assumption may be wrong for some continuous factors,
mis-specification of the functional form may lead to wro
conclusions.

One common strategy to circumvent the assumption of a li
effect is to convert the continuous predictor into categorical fac
by grouping patients into two or more groups. This ena
researchers to avoid strong assumptions about the relation be
the factor and risk, but at the expense of throwing away infor
tion. The information loss is greatest with only two groups, but
approach is widely used, e.g. for factors such as oestrogen
progesterone receptor (negative vs positive) or S phase fra
(low vs high). For S phase fraction, for instance, many diffe
cutpoints are used; Altman et al (1994) listed 19 found in the l
ature and several methods for defining the cutpoint. It is o
unclear which cutpoints to use. Sometimes patients are div
into two groups at the median value, but there is no a priori re
to assume that half of the patients are at higher risk (Simon
Altman, 1994). Often the cutpoint is used that gives the best s
ration of the patients into groups with different prognosis
repeating the analysis with all possible cutpoints. However thP-
value of the test using the ‘best’ cutpoint is invalid without
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Table 1 Patient characteristics with respect to prognostic factors. Values in
parentheses are the 25th, 50th (median) and 75th centiles of the data for the
variable in question

Variable Category No. %

Age, years ≤ 45 153 22.3
(46, 53, 61) 46–60 345 50.3

> 60 188 27.4

Menopausal state pre 290 42.3
post 396 57.7

Tumour size, mm ≤ 20 180 26.2
(20,25,35) 21–30 287 41.8

> 30 219 31.9

Tumour grading I 81 11.8
II 444 64.7
III 161 23.5

No. of involved nodes 1–3 376 54.8
(1, 3, 7) 4–9 207 30.2

≥ 10 103 15.0

Progesterone receptor, < 20 269 39.2
fmol (7,33,132) ≥ 20 417 60.8

Oestrogen receptor, fmol < 20 262 38.2
(8,36,115) ≥ 20 424 61.8
appropriate adjustment for the other tests, and the estimated
of the factor is biased (Altman et al, 1994).

Tumour size is often analysed using three categories (≤ 20 mm,
21–50 mm, > 50 mm). For the most important factor, the num
of involved lymph nodes, the categories 0, 1–3, 4–9 and te
more are used. The effect of age is investigated in many diff
ways: sometimes just as a binary variable comparing young v
where many different cutpoints are in use, or with three categ
or using 5- or 10-year intervals. Based on these categorized
estimates of survival rates are compared in a univariate wa
multivariable models are developed using binary variable
represent the different categories. The serious problems 
univariate analyses of prognostic factors are well known. 
multivariable approach may lead to simple and interpret
models, but the loss of power because of categorization (Palt
Amini, 1985; Lagakos, 1988; Schmoor and Schumacher, 1
may result in the analyst failing to notice an important factor. F
continuous variable the functional relationship with the risk
death is represented as a step-function, which can give o
rough idea about the true relationship; it is unlikely that the 
suddenly changes as one crosses a cutpoint.

In this paper we use a different approach for the analysis o
effect of continuous factors. It is based on fractional polynom
(FP) and was recently proposed to investigate the functional 
of the effect of continuous factors in a systematic way (Roy
and Altman, 1994; Sauerbrei and Royston, 1998). The new p
dure is a flexible tool making use of the full information availa
in the data. It does not assume a linear relationship. Instea
each factor the functional effect on the risk of death is asse
from the data by systematically investigating a set of transfo
tions which is simple, but nevertheless very flexible, and re
sents a wide range of functional forms.

The results of the FP approach and of the traditional appr
based on categorized covariates are compared in investigati
functional influence of seven standard prognostic factors 
prospective study on node-positive breast cancer patients o
German Breast Cancer Study Group (Schumacher et al, 199
will be shown that the FP approach can provide clearer insigh
the nature of the relationship between the values of the factor
the risk of a new event than usual approaches. This is partic
so in our study for the effect of the patients’ age.

MATERIALS AND METHODS

The principal eligibility criterion was a histologically verifie
primary breast cancer of stage T1a-3aN+M0. Primary local t
ment was by a modified radical mastectomy (Patey) with en 
axillary dissection with at least six identifiable lymph nod
Patients should not be older than 65 years of age and s
present with a Karnofsky index of at least 60. The study 
designed as a Comprehensive Cohort Study (CCS), i.e. pa
who satisfy the entry criteria are informed about the study an
asked whether they agree to be randomized (Schmoor et al, 1
If so, they are randomized to a treatment, otherwise, they or
physicians choose their preferred treatment. Randomized
non-randomized patients were included in the present analy
prognostic factors.

The study has a 2 × 2 factorial design with the four adjuva
treatment arms: (A) 3 × CMF; (B) 3 × CMF + TAM; (C) 6 × CMF;
and (D) 6 × CMF + TAM. Although we could randomize short
after the operation, we aimed to randomize as late as pos
© Cancer Research Campaign 1999
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presumably after basic chemotherapy of three cycles, to inc
compliance. Following the statements of the National Ca
Institute consensus conference, the protocol was modifie
December 1986 with premenopausal patients only random
between treatment arms A and C (Consensus Conference, 
Chemotherapy was administered using the modified Bonnad
CMF scheme consisting of 500 mg m–2 cyclophosphamide
40 mg m–2 methotrexate and 600 mg m–2 fluorouracil i.v. on day 1
and 8 of a 4-week treatment period. Hormonal treatment cons
of a daily dose of 3 × 10 mg tamoxifen p.o. over 2 years start
after the third cycle of CMF. Major prognostic factors evaluate
the trial were patient’s age, menopausal status, tumour 
oestrogen and progesterone receptor status, tumour gr
according to Bloom and Richardson, histological tumour type
number of involved lymph nodes. Histopathologic classifica
was re-examined, and grading was performed centrally by
pathologist for all cases. Hormone receptor content, both ER
PR, was measured biochemically by a dextran-coated cha
method and classified as positive if the respective value was 
or greater than 20 fmol mg–1. Quality control for the hormon
receptor analysis was performed centrally. Patients were follo
up at regular intervals to ensure detection of any kind of recur
at the earliest time possible. For more details of the study
Schumacher et al (1994).

The primary end point was tumour recurrence or death 
patient. RFS was defined as time from mastectomy to the
occurrence of either locoregional or distant recurrence, co
lateral tumour, secondary tumour or death; overall survival 
as time from operation to death. Recurrence-free and ov
survival rates were estimated by the Kaplan–Meier product 
method. The Cox proportional hazards model was used to in
gate simultaneously the influence of several factors on the su
times (Byar, 1984). The risk function for a patient with values1,
Z2, …, Zk) of the prognostic factors can be written as

λ0(t) exp(β1Z1 +β2Z2+ … +β kZk)
British Journal of Cancer (1999) 79(11/12), 1752–1760
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where λ0(t) is an unspecified baseline hazard function. The co
cients β1, β2, …, βk, which are estimated from the data, repres
the influence of the different factors. To investigate the effec
different prognostic subgroups the variables are defined as in
tors for the respective subgroup. The relative risk of the subg
defined by Zi in relation to the reference group is then given
exp(βi). All analyses investigating the influence of prognos
factors are adjusted for hormonal treatment, whereas the du
of CMF was not included in the model. All P-values are based o
the likelihood ratio test. To develop a more parsimonious mo
including only variables with an influence on the outcome,
used backward elimination (selection level 0.05). To investi
the functional relationship of a continuous factor on RFS and
we used two usual approaches (a) and (b), and a new approa

a. The factor was included in the model as originally measure
i.e. a log linear relationship between the factor and the risk
death is assumed. This will be called the ‘linear approach’.

b. The factor was categorized into two or three groups accord
to the predefined cutpoints used in the primary analysis of 
randomized part of the trial (Schumacher et al, 1994), i.e. a
step functional relationship between the factor and the risk
death is assumed. This will be called the ‘step approach’.

c. The recent fractional polynomials approach was used, whe
among a defined class of transformations and under some
constraints concerning model complexity the best fitting fun
tional form is selected (Royston and Altman, 1994). For de
see the Appendix. This will be called the ‘FP approach’.

Sauerbrei and Royston (1999) proposed modifications of
multivariable FP version to incorporate basic medical knowle
of the types of relationship to be expected between certain pr
tors and risk. For one variable only, the number of positive lym
nodes, they decided that the relationship should be modelled
function which always increased but which levelled off at a h
number of positive nodes (technically known as a monotonic f
tion with an asymptote). We adopted the same approach and
the same simple primary transformation as Sauerbrei and Ro
(1999), namely exp(–0.12 × nodes). The factor –0.12 was es
mated from the data.

We start with a univariate analysis of the prognostic factors
then investigate their influence simultaneously in multivaria
models.

For checking the FP functional form we use generalized a
tive models (GAMs; Hastie and Tibshirani, 1990). For a b
description of this flexible approach see the Appendix. For
three approaches (a), (b) and (c) the estimated relative risk
British Journal of Cancer (1999) 79(11/12), 1752–1760

Table 2 P-values for univariate FP analyses of continuous covariates, all adjusted

Recurrence-free surviva

Linear vs none FP (2

Age 0.93 <
Tumour size < 0.001
Transformed nodesa <0.001
Progesterone receptor <0.001 <
Oestrogen receptor 0.063 <

aPrimary transformation exp(–0.12 × nodes), see end of Section 2 and Appendix.
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standardized in the sense that the baseline category from th
approach is taken as a reference with a relative risk of 1.

RESULTS

From July 1984 to December 1989, 41 centres recruited
patients, of whom about two-thirds were randomized. Com
data of the seven standard factors as given in Table 1 were
able for 686 (95.3%) patients, who are taken as the basic p
population in this paper. After a median follow-up time of near
years, 299 events for RFS and 171 deaths were observed. B
of the patients’ preference in the non-randomized part, 
because of the change in protocol concerning premenop
patients, only about a third of the patients received hormonal 
ment. Age and menopausal status had a strong influenc
whether this therapy was administered. As stated earlier we 
all analyses for hormonal treatment.

Univariate models for RFS

In Table 2 we give the results of investigating the functional in
ence of the five continuous prognostic factors in univa
models, adjusted only for hormonal treatment. We list the P-values
for two model comparisons:

a. a linear effect versus no effect
b. the effect of a second degree fractional polynomial versus

linear effect.

Comparison (a) represents the simplest approach for mod
a continuous predictor without grouping the values. The 
column of Table 2 shows the strong influence of tumour 
number of involved lymph nodes and PR, but age and ER see
to be prognostic. Comparison (b) is part of our strategy to d
and model non-linear relationships. By contrast with (a), for
and ER there are highly significant (P < 0.001) difference
between the second degree FP and the linear model, showin
these factors have a strong non-linear effect on RES. The infl
of PR is also seen to be non-linear. The effect of exp(–0.12*n
is linear. Since the improvement in fit due to the exponential t
formation of nodes compared with a linear model is highly sig
cant (Sauerbrei and Royston, 1999), the effect of nodes is
found to be strongly non-linear. With the step approach, only a
not significant; the four other continuous variables are signif
at the 1% level. Among the categorical variables, tumour g
shows a strong effect whereas the effect of menopausal sta
non-significant.
© Cancer Research Campaign 1999

 for hormonal treatment

l (RFS) Overall survival (OS)

) vs linear Linear vs none FP (2) vs linear

 0.001 0.56 0.75
0.23 <0.001 0.62
0.23 <0.001 0.77
0.001 <0.001 <0.001
0.001 0.023 <0.001
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Figure 1 Postulated functional influence of the number of positive lymph
nodes (PN) on the log relative risk of recurrence-free survival in multivariable
models according to three modelling approaches. To enable comparison
between models, each of the fitted curves has been standardized
by subtracting an appropriate constant. The functions plotted are
(A) 0.054 × PN – 0.0925; (B) step function with log relative risks 0, 0.731,
1.301; (C) –1.9812 × exp(–0.12 × PN) + 1.6203. (––) Linear function; (- - -)
step function, (– – –) fractional polynomials
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Figure 2 Postulated functional influence of age on the log relative risk of
recurrence-free survival (details as for Figure 1). The functions plotted are
(A) 0.000383×age –0.0151; (B) step function with log relative risks 0, –0.24,
–0.13; (C) 1.7422 × (age/50)–2 – 7.8179 × (age/50)–0.5 + 5.884. (——) Linear
function, (- - -) step function, (– – –) fractional polynomials

Figure 3 Postulated functional influence of progesterone receptor (PR) on
the log relative risk of recurrence-free survival (details as for Figure 1). The
functions plotted are (A) –0.0023 × PR+0.0125; (B) step function with log
relative risks 0, –0.639; (C) –0.0582 × (PR+1)0.5 + 0.131. (——) Linear
function, (---) step function, (– – –) fractional polynomials
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Table 3 Final multivariable models for recurrence-free survival, adjusted for
hormonal treatment (P-values from likelihood ratio tests)

a) Linear approach

Variables β SE P-value

Grade
1 0 – –
2 or 3 0.687 0.247 0.002

No. of nodes 0.054 0.007 <0.001
Progesterone receptor (PR) –0.0023 0.0006 <0.001

b) Step approach

Variable with categories β SE P-value

Grade
1 0 – –
2 or 3 0.547 0.250 0.019

No. of nodes
1–3 0 – –
4–9 0.731 0.134 <0.001
≥ 10 1.301 0.153 <0.001

Progesterone receptor (PR)
< 20 0 – –
≥ 20 –0.639 0.120 <0.001

c) FP approach

Variable with transformation β SE P-value

(age/50)–2 1.742 0.330 <0.001
(age/50)–0.5 –7.818 1.749 <0.001
Grade
1 0 – –
2 or 3 0.517 0.249 0.026

Transformed nodesa –1.981 0.227 <0.001
Transformed –0.0582 0.0111 <0.001
progesterone receptorb

aPrimary transformation exp(–0.12 * nodes), see end of section 2 and
Appendix. b(PR + 1)0.5.
Multivariable models for RFS

In Table 3 we give the final multivariable models for recurren
free survival. With the usual approaches based on a linear fun
or on categorized variables and with backward elimination a
selection procedure, grade, PR and number of positive ly
nodes show a prognostic effect. In Figure 1 we present the
mated relative risk of the lymph nodes component from the 
models. The increase in relative risk can be seen. Patients w
least ten nodes have a significantly worse prognosis than 
with 4–9 nodes. The linear model may underestimate the effe
a small number of nodes, whereas it may substantially 
estimate it for a very large number.

As well as the three factors selected with the linear and
approaches, the final model based on fractional polynomials
cates a strong effect of age on RFS. Interpretation of the para
estimates can best be demonstrated graphically. In Figure 
shown that the FP approach for nodes implies an increased re
risk with an asymptote of about a fivefold risk for a large num
of positive nodes. The function fitted by the step approach c
seen as a reasonable approximation.
© Cancer Research Campaign 1999
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In Figure 2 we give the estimated functional relationships
the age effect which demonstrates that the linear approach do
show any effect. This could be expected, as age was not signi
in the multivariable model and was only added to the final m
to estimate its effect. The FP approach indicates that you
patients, up to an age of about 40, have a highly increased ris
British Journal of Cancer (1999) 79(11/12), 1752–1760
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Figure 4 Check of the postulated FP functions for recurrence-free survival from the final model using generalized additive models (GAM). –––, FP; - - -, GAM
with 95% pointwise confidence interval. (A) number of positive lymph nodes; (B) age; (C) progesterone receptor
that after a fairly constant period between 40 and 55 years th
increases again. In the step approach we added the non-sign
age effect to the corresponding final model in order to demons
the behaviour of this procedure. The effect is very small, per
as a result of choosing the predefined cutpoint of 45 years fo
young age group.

In Figure 3 we show the estimated functional relationships
PR from the three modelling approaches. In contrast to the l
approach, the FP approach shows a steep decrease for very
values.

The effect of grade is similar in the different models wit
better prognosis for grade 1 patients and no differentia
between grade 2 and grade 3. To check the suggested func
form of the final model, in Figure 4 we plot the FP function and
fitted GAM curve with pointwise 95% confidence limits for 
three continuous factors. The GAM curve was fitted for one v
able, with the other variables and corresponding FP func
fixed as given in the final model for RFS.

In each case the confidence limits for the GAM curve incl
the fitted FP curve, which suggests that the two models are st
cally compatible. This provides reassurance that the FP app
has not missed some important feature of the relationship.

Models for OS

In univariate analyses of OS, age has no apparent effect b
four other continuous variables are all significant (Table 2). 
British Journal of Cancer (1999) 79(11/12), 1752–1760
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effect seems to be linear for tumour size only. In multivaria
analysis with the FP approach, only the number of nodes an
entered the final model, whose prognostic index is given by

–2.176 × exp(–0.12 × nodes) – 0.127 × (progesterone + 1)0.5.

The graphs for these two factors show that the funct
resemble those for RFS and are supported by the model-che
method using GAMs (data not shown). With the step appro
tumour size was also included in the model and had a weak e
With the linear approach, tumour size and grade were includ
the model in addition to the two dominating factors (numbe
nodes, progesterone receptor).

DISCUSSION

Prognostic factors play an important role in the manageme
breast cancer and in clinical research. The role of several sta
factors has been investigated in hundreds of papers and is s
subject of controversy. Some of the important reasons for
situation concern statistical aspects such as small sample s
inadequate ways of modelling complex multivariable relations
(Simon and Altman, 1994).

Categorization of continuous variables is often used 
certainly has several advantages, including simplicity of the 
model and robustness to outliers or to problems of data quality
least, the analysis is cost-effective in terms of the time, effort
skill required to undertake it. If several categories are consider
© Cancer Research Campaign 1999



Modelling prognostic factors in breast cancer 1757

oto
raw
ge
su
 as
or 
fi-
 ov
f
tm
n th
ve
rio
ina
 (e

t
if th
 or
pti
r o
on
del

p
viv
 b

-fun
n 

l F
m

 ve
ow

es 
g a
 an

 O
tio
te

 the
nction
n may

 of
ble.

n the
 are

ients
risk.
from
large
illary
reased
ished
ndex
ifica-
wn et
y, the
ce or
ntext
993).
on-
ear
odel

 size
l

effect
steep
. The
 and
to the
hich

esti-
 the
nves-
t carci-
le for

Table 4 Fractional polynomial models for the effect of age on recurrence-free survival. The best-fitting first and second degree models are indicated by
underlining

Fractional polynomials

First-degree Second-degree

Power Model Powers Model Powers Model Powers Model
p χ2 p q χ2 p q χ2 p q χ2

–2 6.41 –2 –2 17.09 –1 1 15.56 0 2 11.45
–1 3.39 –2 –1 17.57 –1 2 13.99 0 3 9.61
–0.5 2.32 –2 –0.5 17.61 –1 3 12.37 0.5 0.5 13.37
0 1.53 –2 0 17.52 –0.5 –0.5 16.82 0.5 1 12.29
0.5 0.97 –2 0.5 17.30 –0.5 0 16.18 0.5 2 10.19
1 0.58 –2 1 16.97 –0.5 0.5 15.41 0.5 3 8.32
2 0.17 –2 2 16.04 –0.5 1 14.55 1 1 11.14
3 0.03 –2 3 14.91 –0.5 2 12.74 1 2 8.99

–1 –1 17.58 –0.5 3 10.98 1 3 7.15
–1 –0.5 17.30 0 0 15.36 2 2 6.87
–1 0 16.85 0 0.5 14.43 2 3 5.17
–1 0.5 16.25 0 1 13.44 3 3 3.67

See Appendix for further details.
the analysis, a test for trend may be used to assess a mon
effect of a factor. However, there are several well-known d
backs. The final model is a risk step-function which chan
suddenly as one crosses a cutpoint. Because cutpoints are u
not ‘naturally’ given, and because there is often no consensus
a sensible cutpoint, investigators may be tempted to search f
‘optimal’ cutpoint in their study, ‘optimal’ meaning ‘most signi
cant’. The severe problems of this approach are a substantial
estimation of the effect size, too small P-values, and loss o
information because of categorization as demonstrated by Al
et al (1994). Such an approach will lead to different cutpoints i
single studies, which makes comparing the results of se
studies nearly impossible. Even if the cutpoints are given a p
considerable information may be lost. A further problem is term
digit preference, which is common with certain measurements
tumour size 10, 20 mm). Defining a group as ‘smaller than x’ rather
than ‘smaller than or equal to x’ may give substantially differen
results. The effect of terminal digits is much less pronounced 
data are not categorized. Using the data in continuous form as
inally measured, a straight line is the most common assum
used to describe the functional influence of a prognostic facto
the outcome. If the assumption is wrong, there are serious c
quences for the inclusion of a prognostic factor in the final mo

In accordance with the literature, the number of positive lym
nodes is the factor with the strongest influence on the two sur
criteria. With all types of analyses the significant effect can
demonstrated, but Figure 1 shows the differences. The step
tion model jumps at the predefined cutpoints 3 and 10, but ca
seen as a rough approximation to the form from the fina
model. The linear model may underestimate the effect for a s
number of nodes, whereas it overestimates this effect for a
large number, e.g. 40 or more. Based on current medical kn
edge we forced the functional influence of the number of nod
be monotonic with an asymptote, which we achieved usin
initial exponential transformation (for details see Sauerbrei
Royston, 1998).

Furthermore, PR is included in all final models for RFS and
with a highly significant reduced risk for increasing concentra
whereas ER never showed an effect in the multivariable con
© Cancer Research Campaign 1999
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This result confirms the earlier result in a subpopulation of
patients analysed here (Schumacher et al, 1994). The FP fu
shows a steep decrease for very small values; such a functio
explain the chosen cutpoints (usually between 5 fmol mg–1 and
20 fmol mg–1) to define receptor negativity for the investigation
the prognostic value of receptor measurements as a binary varia

For recurrence-free survival tumour grade is also included i
final models of all three types of analysis. Grades 2 and 3
always indicating little or no difference between them, but pat
with that grade 1 tumour have a substantially reduced 
Combining grade 2 and 3 is in agreement with results 
Cummings et al (1995) and Pichon et al (1996), who found 
differences between grade 1 and 2 in a model adjusting for ax
node status, tumour size, age and ER, whereas the risk inc
only slightly from grade 2 to grade 3. Grade was also establ
as one of the three factors in the Nottingham Prognostic I
(Galea, 1992), which seems to be the only prognostic class
tion scheme capable of being validated more than once (Bro
al, 1993, Balslev et al, 1994, Sauerbrei et al, 1997). Generall
issues of which grading schemes to use and the importan
otherwise of grade as a prognostic factor in a multivariable co
are controversial (Elston and Ellis, 1991; Schumacher et al, 1
For overall survival the importance of grade could not be dem
strated. Grade only entered the final model with the lin
approach, but with categories 1 and 2 combined. This m
was the only one which indicated a strong effect of tumour
(P < 0.01). Tumour size also entered (P = 0.04) the final mode
for OS in the analysis based on categorized variables.

The FP approach clearly demonstrates a strong non-linear 
of age on RFS. As Figure 2 shows there seems to be a 
increase in the hazard for patients younger than 40 years
model implies that the risk is similar for patients between 40
60 years. Age is an independent prognostic factor in addition 
number of positive lymph nodes, tumour grade and PR, w
contrasts with the conclusions of Kollias et al (1997) who inv
gated the effect of age in different subgroups defined by
Nottingham Prognostic Index. Besides the standard factors i
tigated here, there seem to be other factors that make breas
nomas in young women different and that may be responsib
British Journal of Cancer (1999) 79(11/12), 1752–1760
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the bad prognosis (Walker et al, 1996). With the two usual ana
approaches we could not demonstrate an effect of age on
This is not surprising for the linear approach because the e
seems to be strongly non-linear. With the step approach we 
not establish the age effect because we used the categories
on predefined cutpoints of 45 and 60 years (Schumacher 
1994). This decision was intended to avoid well-known probl
with the optimal cutpoints approach (Altman et al, 1994). Our 
mated FP function seems to explain the current discussion 
several cutpoints for young age which range at least from
(Rochefordiere et al, 1993) to 45 (Crowe et al, 1994; Collett e
1996). Moreover, our results give some indication that the effe
age is sometimes not established because of differences in 
tical approaches. Besides the three different types of postu
functions, the other factors studied may have a strong influen
the final conclusions on the age effect as an independent 
nostic factor in a multivariable context. Because of the large v
tion in competing factors between different studies a f
conclusion cannot be reached at present. As an example, Ch
al (1996) concluded that ‘women 40 years of age and you
have a worse 5 year cancer-specific survival than their older c
terparts’. They included 3722 women in their study, used ag
10-year intervals and analysed the data in three groups by sta
a study on 2879 women, Kollias et al (1997) compared pat
aged < 35 years with older age groups, stratified by three g
defined by the Nottingham Prognostic Index, and concluded
‘age itself had no influence on the prognosis of the individu
Pichon et al (1996) had complete data for 1665 patients o
covariates grade, number of axillary nodes, tumour size, ER s
TNM stage, menopausal status and age. For disease-fre
metastasis-free survival they found a strong age effect (re
risk 2.8) in a multivariable model by comparing patients ≤ 35 years
with those older than 35. However, as with our analysis, ag
not enter the final model for overall survival.

An important step for an improvement in summarizing infor
tion from prognostic factors would be a widely accepted stan
prognostic model. We see the Nottingham Prognostic Index a
most often validated and accepted classification scheme
recently published for node-negative patients where, in additi
changes to the weights of the component of the NPI, in one o
proposals only age was added to the NPI (Sauerbrei et al, 1
we see the results from the NPI and our proposals as a st
point for an urgently needed accepted and sensible descript
the influence of standard factors.

FPs may also be used to investigate a possible treat
covariate interaction. After fitting a single model with a sepa
FP curve for each treatment group, and with the rest of the m
variable model unchanged, a substantial difference in the ty
FP curve for each group may indicate of a treatment/cova
interaction. Alternatively, the original FP transformation, such
square root, may be retained and a separate slope estimated
transformed variable in each group. A significant differenc
the slopes may be evidence of an interaction. However, 
methodological issues connected with this way of analysing t
ment/covariate interactions are unresolved.

We have proposed a multivariable approach to analysis w
avoids categorization and retains continuous variables as c
uous. This avoids loss of information and postulates functi
forms that are more realistic than step functions. If groupin
required for clinical reasons, e.g. to define criteria for risk ada
trials, it can be done in the usual way, but based on a more se
British Journal of Cancer (1999) 79(11/12), 1752–1760
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prognostic index suggested by the shape of the FP curve. Giv
FP model, we checked the proposed form for each continuous
able against that from generalized additive models. Becaus
final model of a GAM approach cannot be given as a con
mathematical expression, this alternative makes clinical interp
tion and application very difficult. However, it can be seen a
advantageous approach to demonstrate that the proposed FP
tion does exhibit essentially all the important information pre
in the data. Of course, any postulated models have to be val
in new studies.
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APPENDIX

Fractional polynomials

Suppose we wish to construct a Cox proportional-hazards re
sion model with which to predict the relative risk of disease re
rence in terms of age (the patient’s age, regarded as a continu
variable). A possible non-linear function with which to repres
the relationship is a quadratic polynomial model in age, as
follows:

log RR = a + b × age1 + c × age2

Quadratic polynomials, while undoubtedly useful, suffer vari
disadvantages as regression models, including a limited ran
possible curve shapes. Generalizations of polynomials know
fractional polynomials (Royston and Altman, 1994) are obta
by replacing the whole-number powers 1 and 2 by less restri
numbers, p and q:

log RR = a + b × agep + c × ageq

The powers p and q are not allowed to be completely free, but 
chosen from the small set –2, –1, –0.5, 0, 0.5, 1, 2, 3. The ‘po
0 represents a natural logarithmic transformation, so that age0 is
defined as loge(age). This simple extension generates a consi
able range of new curve shapes which are useful in data an
(Royston and Altman, 1994). For example, a fractional poly
mial with powers (0, 2), that is with p = 0 and q = 2, is

a + b × log(age) + c × age2

When p = q, the complete family of curves also includes functi
of the form

log RR = a + b × agep + c × agep × log(age).

These are known as ‘repeated powers models’ because they
sent the mathematical limit attained when p and q approach each
other arbitrarily closely.

First-degree fractional polynomials are simple, familiar po
transformations of the predictor. They include reciprocal, lo
rithmic, square root and square transformations. They are gu
teed to produce fitted curves that are ‘monotonic’, that is, 
always increase or always decrease as the predictor incr
Second-degree fractional polynomial curves have at most
turning point (minimum or maximum) which may or may not 
within the observed range of predictor values. However, s
second-degree curves are monotonic, and it is straightforwa
determine this by inspecting the signs of the powers p, q and the
coefficients b, c.
© Cancer Research Campaign 1999
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Higher degree fractional polynomials have greater flexib
still, but we do not generally recommend their use in data ana
and did not use them in the analyses in the present paper.

We now consider fractional polynomial model selection. A fr
tional polynomial of first-degree is of the form a+b agep. The
special case p = 1 corresponds to a straight line is our prefer
choice unless there is convincing evidence that it does not f
data adequately. We adopt a forward selection approach to lo
such evidence. For a given data-set, we fit the eight regre
models a + b x with x = age–2, x = age–1, …, x = age3 in turn and
find the value of p which maximizes the likelihood. This is equi
alent to maximizing the model χ2 statistic or to minimizing the
deviance, which is defined as minus twice the log likelihood. 
hypothesis that p = 1 is tested against p ≠1 using a χ2 test with one
degree of freedom (df). If the test is significant at the 5% level
linear model is rejected. Next we look for evidence of a m
complex curve shape by finding the best-fitting second-de
fractional polynomial. This involves searching for the powerp
and q which maximize the model χ2 among the 36 two-term
models of the form a + b agep + c ageq and a + b agep + c agep

log(age). The required hypothesis test of second-degree ve
first-degree fractional polynomial now has 2 df, one for estima
the regression coefficient c and one for estimating the powq.
With no prior knowledge about the shape of the relationship
again perform the test at the 5% significance level. If we wa
force the relation to be monotonic, for example because of 
medical knowledge, we prefer a first-degree fractional polyno
unless there is strong contrary evidence. We may therefore te
more rigorous significance level such as 1% to reduce the ri
choosing an inappropriate model.

To illustrate the process, Table 4 gives the results of fitting 
tional polynomials with age as the only predictor of recurrenc
free survival. The χ2 value for a straight line model is 0.58 (see p =
1 in Table 4), which gives no indication of a linear progno
effect of age (P = 0.4). However, the best-fitting first degree fra
tional polynomial has power p = –2 and a model χ2 of 6.41, indi-
cating a significant non-linear effect (deviance difference = 
on 1 df, P = 0.02). The best second-degree fractional polyno
has powers p = –2, q = –0.5 and a model χ2 of 17.61. The fit is
convincingly better than that of the first-degree model (devia
difference = 11.20 on 2 df, P = 0.004). Note that several secon
degree models have χ2 values not much smaller than that of t
best model. This is a typical feature of such an analysis a
similar to deciding in favour of the best model in all-subsets v
able selection. It implies some arbitrariness in the final model
example, there are seven models with χ2 > 17, but their fitted
curves turn out to be much alike.

When the model may contain several continuous predictors
usual situation with prognostic factor studies), it is impractic
to search for the best model among all possible combinatio
powers for each of the predictors. Instead we use a proc
based on backward elimination of uninfluential variables 
selection of the best fractional polynomial for each predicto
turn, adjusting for the other predictors. Details are given
Sauerbrei and Royston (1999).

Generalized additive models

Generalized additive models or GAMs (Hastie and Tibshir
1990) provide a flexible approach to modelling curved regres
relationships. The conventional multiple linear regression func
British Journal of Cancer (1999) 79(11/12), 1752–1760
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β1Z1 + β2Z2+ … + βkZk is replaced with a sum of function
f(Z1) + f(Z2) + … + f(Zk). Each ‘f’ is a cubic smoothing splin
(a special type of cubic polynomial) whose complexity is de
mined by its ‘equivalent degrees of freedom’ or edf. A higher
gives a more flexible family of curve shapes. Rather than 
British Journal of Cancer (1999) 79(11/12), 1752–1760
-
f
a

GAM for all the prognostic factors simultaneously we compar
GAM (5 edf) with the FP for each predictor individually, keep
the rest of the original FP model. The fitted GAM curves 
pointwise 95% confidence limits (as a guide to the precision o
curve) were plotted for each predictor.
© Cancer Research Campaign 1999
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