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ABSTRACT

Motivation: Next-generation sequencing and exome-capture
technologies are currently revolutionizing the way geneticists screen
for disease-causing mutations in rare Mendelian disorders. However,
the identification of causal mutations is challenging due to the sheer
number of variants that are identified in individual exomes. Although
databases such as dbSNP or HapMap can be used to reduce the
plethora of candidate genes by filtering out common variants, the
remaining set of genes still remains on the order of dozens.
Results: Our algorithm uses a non-homogeneous hidden Markov
model that employs local recombination rates to identify
chromosomal regions that are identical by descent (IBD = 2) in
children of consanguineous or non-consanguineous parents solely
based on genotype data of siblings derived from high-throughput
sequencing platforms. Using simulated and real exome sequence
data, we show that our algorithm is able to reduce the search space
for the causative disease gene to a fifth or a tenth of the entire
exome.
Availability: An R script and an accompanying tutorial are available
at http://compbio.charite.de/index.php/ibd2.html.
Contact: peter.robinson@charite.de
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1 INTRODUCTION
The identification of genes underlying Mendelian disorders for the
past several decades has mainly proceeded by means of positional
cloning to identify chromosomal linkage intervals followed by the
sequencing of candidate genes (Collins, 1995). Efforts at disease-
gene identification involving linkage analysis or association studies
usually result in a genomic interval of 0.5–10 cM containing up
to 300 genes (Botstein and Risch, 2003). Although computational
methods can be used to prioritize candidate genes (Köhler et al.,
2008), sequencing large numbers of candidate genes remains a time
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consuming and expensive task, and it is often not possible to identify
the correct disease gene by inspection of the list of genes within
the interval. Recently, whole-exome sequencing, i.e. the targeted
capture of protein coding exons followed by massively parallel,
‘next-generation’ sequencing (NGS), has been demonstrated as an
effective approach to identify genes underlying Mendelian disorders
using a small number of affected individuals (Biesecker, 2010).

Sequenced individuals typically have on the order of five to
ten thousand variant calls representing either non-synonymous
substitutions in protein coding sequences, alterations of the
canonical splice-site dinucleotides or small indels (NS/SS/I)
(Gilissen et al., 2010; Ng et al., 2009; Rios et al., 2010). Even after
filtering out common variants using data from dbSNP, the HapMap
project and related resources such as the 1000 Genomes project, the
number of potentially disease-causing NS/SS/I variants can remain
high if the exome of a single patient is considered in isolation. Many
disease-causing mutations were completely unsuspected on the basis
of previous knowledge (Altshuler et al., 2008), and software tools
that aim at predicting the damaging effect of non-synonymous
variants (Adzhubei et al., 2010; Kumar et al., 2009; Schwarz
et al., 2010; Sunyaev et al., 2001) are currently unable to reliably
distinguish between disease-causing mutations and other variants.

Groups who have performed disease–gene identification projects
by exome sequencing (Choi et al., 2009; Hoischen et al., 2010;
Ng et al., 2009, 2010b) have developed analysis strategies based
upon searching for potentially damaging rare variants found in the
same gene in sets of multiple unrelated patients affected by the
same Mendelian disorder. Although this strategy has been applied
successfully in sequencing projects with two affected individuals
(Gilissen et al., 2010; Lalonde et al., 2010) and occasionally even
with a single affected individual (Pierce et al., 2010; Rios et al.,
2010), in many cases multiple candidate genes remain after applying
computational filters based on rarity or presence of a mutation
in multiple affected patients (Hoischen et al., 2010; Ng et al.,
2009, 2010a, b). This means that additional analysis of multiple
candidate genes or other procedures would often be needed to
identify the disease gene following exome sequencing of single
families with a Mendelian disorder.

We will refer to the above-described procedure for searching for a
disease gene by exome sequencing in multiple unrelated patients as
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the ‘intersection’ approach. Although the intersection strategy has
been useful in identifying Mendelian disease genes in the studies
cited above, it is not always applicable. Many of the thousands
of Mendelian disorders listed in OMIM, whose genetic basis is
unknown, are often only clinically well characterized in members of
a single family. Obviously, a filtering approach that focuses on genes
that are affected by variants in which multiple unrelated patients
harbor potential disease-causing mutations (Hoischen et al., 2010)
is unsuitable. Rather, linkage analysis (Botstein et al., 1980; Lander
and Green, 1987) has proved to be the method of choice that led
to most of the disease–gene discoveries in such cases, and more
recently linkage analysis including homozygosity mapping has been
combined with NGS approaches to identify disease genes (Bilgüvar
et al., 2010; Johnston et al., 2010; Nikopoulos et al., 2010; Rehman
et al., 2010; Sun et al., 2010; Volpi et al., 2010; Walsh et al., 2010).
However, existing tools for linkage analysis require pedigree data
over at least two generations and are not optimized for the relatively
high error rates of variant calls in NGS data.

In this work, we describe a procedure for efficiently filtering
exome sequencing data obtained from two or more affected siblings
with an autosomal recessive Mendelian disorder based upon the
identification of chromosomal regions identical by descent (IBD) in
the presence of noisy sequence data. In consanguineous families,
affected individuals share two IBD haplotypes inherited from a
single common ancestor. The disease gene is located somewhere
within the IBD haplotype block, which is the basis of homozygosity
mapping (Lander and Botstein, 1987). In the general case in which
the parents are not consanguineous, each affected person inherits the
same haplotype from each parent. That is, although the maternally
and parentally inherited haplotypes surrounding the disease gene
may differ from one another, each affected person inherits a maternal
and a paternal haplotype that are IBD to the maternal and paternal
haplotypes in other affected siblings. We will refer to the intersection
between the maternal and paternal IBD haplotypes among all
affected individuals in a family as an IBD = 2 region. We note that
the disease gene must be located within an IBD = 2 region, but that
affected siblings may also share other IBD = 2 regions by chance.
Our method can be used to identify the chromosomal regions that are
compatible with the inheritance patterns of a recessive monogenic
disorder and can be combined with previous methods for filtering
out common variants and for predicting potentially pathogenic
sequence changes using computational tools. This approach was
first successfully used in identifying PIGV as the disease gene
in Hyperphosphatasia with Mental Retardation (HPMR) syndrome
(Krawitz et al., 2010).

We will use simulated exome datasets as well as real exome
datasets to show that our method can efficiently reduce the number of
candidate mutations in exome sequencing projects comprising more
than one affected sibling and additionally to identify chromosomal
positions with a high probability of false variant calls. The article is
structured as follows: we will first describe in detail the algorithm
used to classify a genomic position as either IBD = 2 or IBD �=2.
We will derive a posterior probability that indicates how likely the
classification of a position is to be correct under the assumptions of
our model. Based on simulated data, we trained the classifier to a
false negative classification error rate of less then 0.01. Finally, we
classified three exome triplets into IBD = 2 and analyzed a subset of
genomic locations that showed a conflict in IBD = 2 classification
and variant calls. By validating this subset, we show that candidate

locations can be identified using IBD = 2 classification that would
otherwise have been lost by mere intersection filtering.

2 METHODS
In autosomal recessive disorders, all affected children share two haplotypes
that are identical by descent (IBD = 2). We model the exome sequencing
results using a hidden Markov model (HMM), in which the meiotic process
yielding individual genomes is statistically modeled as a Markov process.
The goal of HMMs is to predict the most likely sequence of hidden states that
best explain the observed data (Fig. 1A). Here, we use an HMM to predict the
most likely sequence of IBD = 2 and IBD �=2 states in chromosomal segments

A

B

Fig. 1. HMM to identify regions identical by descent in exome sequencing
data. (A) In siblings affected with an autosomal recessive disorder, both
the maternal and the paternal haplotypes surrounding the disease gene are
identical by descent (IBD = 2). It is not possible to measure the IBD = 2 state
directly, but only whether each sibling was called to the same homozygous
or heterozygous genotype (referred to as IBS*). In this model, every genetic
locus is either IBD = 2 or IBD �=2 and the transition probabilities between
these two states are defined by locus-specific transition rates, dd, nd, dn, nn.
According to the HMM, these states emit genotypes that are IBS* or not,
according to the appropriate probability distributions. Note that genotypes
in IBD �=2 may be IBS* by chance and genotypes in IBD = 2 may not be
IBS* due to calling errors (displayed with outlined letters). The HMM and
the observed exome sequence are used by the IBD = 2 classifying algorithm
to identify regions of the genome that are IBD = 2. The disease gene must be
located in such an IBD = 2 region. (B) Exome variant data of chromosome
1. Any chromosomal position that was called to a different genotype in at
least one of three sibs on chromosome 1 with respect to the haploid reference
sequence hg18 is depicted as a colored vertical line. In the upper panel, green
indicates a genomic position that is IBS* in all three sibs, and red indicates
¬IBS* (non-IBS*). In the lower panel, green indicates genomic positions
classified as IBD = 2, whereas red indicates IBD �=2.
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on the basis of the observed exome sequences of two or more persons affected
with a Mendelian disease. We note that the algorithm described here is an
enhanced version of the algorithm recently used by our group to identify
the disease gene in HPMR (Krawitz et al., 2010). For simplicity, we will
describe the algorithm in terms of the affected siblings of unrelated parents,
but note that the algorithm is equally applicable to more complex pedigrees
in which multiple affected relatives share the same two disease haplotypes,
as well as to pedigrees of consanguineous unions in which affected persons
share two haplotypes that are identical by descent.

2.1 Structure of the HMM model
We model the exome sequencing results using an HMM that can transition
between hidden (unobservable) states, each of which ‘emits’ observable
tokens. The goal of HMMs is typically to predict the most likely sequence of
hidden states that best explain the observed data. HMMs have been used in
many applications in linkage analysis including the Lander–Green algorithm
(Lander and Green, 1987).

We denote the state of descent of a chromosomal position t ∈{1,...,T} for a
particular chromosome with T relevant sites by the Boolean random variable
Xt . The relevant sites comprise all nucleotide positions for which at least one
call different from the reference sequence was made in at least one of the
sequenced siblings. If the chromosomal position t is identical by descent in its
two parental haplotypes in n studied siblings, then Xt = 1, otherwise Xt = 0.
We assume that recombinations during meiosis occur mutually independently
according to locus-specific recombination rates.

A locus t is IBD = 2 in n siblings if all n siblings share the same inheritance
pattern for t. The inheritance pattern may be represented by a Boolean
vector with two coordinates that describe the outcome of the paternal and
the maternal meioses. For each locus under consideration, the inheritance
vector is a binary vector of length 2n corresponding to the 2n gametes that
gave rise to the individuals. A coordinate is 0 if the gamete carried DNA
from the parent’s paternally derived chromosome and 1 otherwise. There is
one coordinate for the maternal and paternal loci of each of the sibs (Lander
and Green, 1987). As there are four possible combinations for each sib, the

probability of the event Xt = 1 is given by P(Xt = 1) = ( 1
4

)n−1
.

The a priori chance that a given coordinate in the inheritance vector
differs between two adjacent positions t−1 and t is the recombination
fraction θ. Recombination frequencies depend on the chromosomal region
and on sex. In other words, the inheritance vectors arise during meiosis
from an inhomogeneous Markov process with position-dependent transition
probabilities that are calculated for each variant call position on each
chromosome based on the interpolated paternal and maternal recombination
rates between position t−1 and t. The transition probabilities between
IBD = 2 and IBD �=2 will be derived in the next section. The parameters
dd and dn specify the probability of staying in the IBD = 2 state or transition
from it to the IBD �=2 state, and nn and nd are defined analogously for staying
in or transition from the IBD �=2 state.

Thus, we assume that the state of Xt depends only on the state of the
previous position, but not on the other positions, i.e. Pt(Xt |Xt−1,...,X1) =
Pt(Xt |Xt−1). The model is fully described by a first-order inhomogeneous
Markov process, whose transition probabilities Pt(Xt = j|Xt−1 = i) are
described by Tt−1,t[i,j], a 2×2, position-specific matrix of transition
probabilities between states i,j∈{0,1} and from variant position t−1 to
position t.

The true state of descent of the chromosomal positions is not directly
observable. Even in the absence of sequencing errors, it is only possible
to observe identity by state (IBS), and our observations of the IBS status
can be disturbed by sequencing and calling errors. We describe the event of
observing genotypes at chromosomal position t in n examined samples by
the Boolean random variables Yt . If Yt = 1 then an identical genotype was
called in all examined samples at chromosomal position t—an event we also
refer in the following for brevity as identity by observed state (IBS*). The
state propagation between the hidden state Xt and the observed state Yt is
determined by local probabilities P(Yt = i|Xt = j) for each i,j∈{0,1}. These

probabilities are referred to as the emission probabilities eij . This class of
probabilistic model is commonly referred to as a HMM (Durbin et al., 1998).

2.2 Transition rates
Let vt(m,p)∈{(0,0),(0,1),(1,0),(1,1)} be the inheritance vector at a
chromosomal position t that indicates, which allele was inherited from
the parents: vt(m) = 0 for the grandmaternal or vt(m) = 1 for the grand
paternal allele from the mother’s side and vt(p) = 0 for the grandmaternal
or vt(p) = 1 for the grand paternal allele from the father’s side. The a priori
chance that a given coordinate in an inheritance vector differs between two
adjacent positions t−1,t, is the recombination fraction θ. The recombination
frequencies depend on the chromosomal region and on the gender, thus θ(t−
1,t,s) is a function of both chromosomal positions and the gender s. In other
words, the inheritance vectors arise during meiosis from an inhomogeneous
Markov process with a position-dependent transition probability matrix T.

Tt−1,t[i,j] =
[

nn nd
dn dd

]
t = 1,...,T , (1)

We will assume that the distribution of IBD = 2 and IBD �=2 regions is in
equilibrium. T therefore represents a regular transition matrix for which a
unique equilibrium distribution exists. If we define D as the set of IBD = 2
loci among the measured variants and N as the set of IBD �=2 loci, then
N +D = G is the total number of measured variants and

P
(
t ∈D

) =
(

1

4

)n−1

(2)

and
D

N
= 1(

4
)n−1 −1

. (3)

Letting w = [
N D

]
be the probability vector for being in state IBD = 2 or

IBD �=2, we have w = wT. This yields two equations of five variables.

nn+ D

N
dn = 1 (4)

N

D
nd+dd = 1 (5)

The probability that the paternal coordinate of the inheritance vectors is
IBD in n siblings at two randomly chosen positions is a function of the
recombination rates θ:

P(pti = ptj ) = (1−θ)n +θn ≈ (1−θ)n (6)

The probability for the maternal coordinates of the inheritance vectors
is defined analogously. The probability that two randomly chosen positions
ti,tj have an identical vector of inheritance in n siblings, i.e. are IBD = 2, is
thus:

dd = (1−θ(ti,tj,p))n ·(1−θ(ti,tj,m))n (7)

This equation effectively averages the maternal and paternal recombination
rates, so that T represents a sex-averaged transition matrix. With the identities
nn+nd = 1 and dn+dd = 1 and Equations (4) and (5) the remaining
transition rates dn,nd and nn are thus:

dn = 1−dd

nn = 1− D

N
+ D

N
dd

nd = 1−nn

The recombination rates and the corresponding transition probability
matrices for any two randomly chosen positions were interpolated from the
deCODE recombination rate data (Kong et al., 2002) for hg18 as downloaded
from the UCSC Genome Browser (Karolchik et al., 2009).
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2.3 Emission rates with integrated genotyping errors
In autosomal recessive disorders, the disease gene must be located in an
chromosomal region that is IBD = 2 in all affected siblings. However, as
already mentioned, we are not able to measure IBD = 2 directly, but only
whether the siblings were observed to have the same diploid genotypes at a
chromosomal locus (IBS*) or whether the observed genotypes differ from
one another (not IBS*, denoted ¬IBS*). On the one hand, it is possible that
all affected siblings share the same sequence at a random chromosomal locus
by chance. On the other hand, it is also possible that sequencing or calling
errors obscure the true IBS/¬IBS status.

The emission probability for the hidden state IBD = 2 refers to the
probabilities that we observe IBS* or ¬IBS* at a locus that is IBD = 2.
We will refer to the probability of a false genotype call at a single variant
position as ε. Harismendy et al. (2009) estimated the variant accuracy of
the three main NGS platforms to be on the order of 95% at high sequencing
coverage, whereby variant accuracy was defined to be the proportion of ABI-
Sanger validated sequence variants that are correctly called as homozygous
or heterozygous variants on the basis of NGS read alignments. Therefore,
we take the variant calling error rate to be on the order of ε = 0.05. The
probability that one actually calls a locus as identical by state, IBS*, in
n siblings is thus approximately (1−ε)n. Additionally, there is a small
probability of multiple sequencing errors leading to genotype calls that are
erroneous but still consistent with IBS*. For instance, if the true genotype is
A/C in all n siblings, n or more sequence errors could cause the genotypes
to be observed as A/G. The total probability of such events was estimated
from our simulated datasets and is small enough that it can be neglected
(<5.1×10−5).

The probability that an IBD �=2 genetic locus is IBS* depends
on the variability of the genomic region in its specific population
context (International HapMap Consortium, 2007). In reference-guided
resequencing, however, genotypes will only be considered as variant if they
differ from the haploid reference sequence. In our context, we are thus
interested in the probability that a called (diploid) genotype of a chromosomal
position that is IBD = 2 or IBD �=2 differs from the haplotype of the reference
exome sequence and is IBS* in n siblings. We sampled these emission
probabilities on our simulated exome datasets for n = 2 and n = 3 siblings.

2.4 Simulation of exome sequencing data
Genotype data of 30 HapMap trios of Central European descent was
used to construct diploid genomes of parental individuals. For each such
individual, the sex-specific meioses were simulated in the following way:
the recombination rate between any two neighboring chromosomal positions
that differed from the reference sequence was interpolated from the sex-
specific physical map of the human genome (Matise et al., 2007). A
haploid chromosome set of a gamete was simulated from the diploid
parental genome according to these recombination frequencies. Two such
haploid chromosomal sets of a male and female gamete yielded the diploid
chromosomal set of each child. In total, 25 000 families consisting of n = 2,
and n = 3 siblings were simulated. Variant calls in all siblings were restricted
to exome CCDS coordinates (Pruitt et al., 2009) and were defined as
genotypes differing from the haploid reference sequence hg18. Genotype
calling errors were simulated by randomly changing the genotype call at
any variant position with probability ε. Additionally, assuming a sequencing
accuracy (number of concordant calls between ABI Sanger and an NGS
platform) of 0.999 over the entire exome (Harismendy et al., 2009), false-
positive calls were randomly distributed over the entire exome with a
probability of 0.001 per nucleotide.

2.5 Classifying IBD = 2 regions
We denote the vector of the observed IBS* status for each called position
as y = (y1,...,yT ). x = (x1,...,xT ) is the vector describing the corresponding
IBD = 2 and IBD �=2 states. x can be estimated using the Viterbi algorithm
adapted to a inhomogeneous Markov model (Durbin et al., 1998; Viterbi,

1967), which yields a maximum a posteriori estimate of the most likely path
of hidden states:

x∗ = argmax
x

P(X = x|Y = y) (8)

Viterbi’s algorithm delivers a single configuration of the states that jointly
describe the observation best by classifying each position as either IBD = 2
or IBD �=2, but it does not provide a confidence of that classification. We
therefore also report the marginal posterior probability for each chromosomal
position t to be IBD = 2, that is P(Xt = 1|Y = y). This probability can be
calculated using the Forward/Backward algorithm (Durbin et al., 1998).
The logarithmic ratios of the marginal probabilities of being IBD = 2 versus
IBD �=2 are well suited for graphical representation: lodt = log10

P(Xt =1|Y =y)
P(Xt =0|Y =y)

(See Fig. 2C).
The full procedure has been implemented in a freely available R program

that requires a minimal amount of memory and running time on a standard
desktop computer. The program code as well as online tutorial can be found
on our web site.

2.6 Whole-exome enrichment and sequencing
Genomic DNA was enriched for the target region of all human Consensus
CDS (CCDS) exons (Pruitt et al., 2009) with Agilent’s SureSelect Human
All Exon Kit and subsequently sequenced on a SOLiD version 3 sequencing
platform with 50 bp reads (family A and B) and on a Illumina Genome
Analyzer II with 100 bp reads (family C). The raw data of ∼5 GB per exome
was mapped to the haploid human reference sequence hg18 and variants
were called using the platform’s standard software pipelines.

3 RESULTS
The algorithm presented here infers the locations of IBD = 2
chromosomal segments from the exome sequences of siblings
affected by an autosomal recessive hereditary disease without
requiring sequence data from the parents. The disease gene must
be located in such an IBD = 2 region.

3.1 Distribution of IBD = 2 regions over the exome
To evaluate the performance of our algorithm, exome data were
simulated for families of two and three siblings based on 30 HapMap
trios. In reference-guided resequencing, only variants that differ
from the haploid reference sequence are called. In our simulation,
only those chromosomal positions that show heterozygous or
homozygous variants with respect to the haploid reference sequence
are potential variant alleles in a child of those parents. We restricted
our analysis to the 38 Mb of the exonic regions of the human genome
as defined by CCDS (Pruitt et al., 2009). The mean number of such
varying positions was in the order of 20 thousand per individual
corresponding to roughly one variant position in every 1900 bp. The
proportion of the genome that is IBD = 2 in two and three siblings
is shown in Figure 2A. The mean fraction of IBD = 2 is 1/4 for
n = 2 and 1/16 for n = 3 (Table 1), which is in agreement with

the expected values, according to
(

1
4

)n−1
. Thus, identification of

IBD = 2 regions reduces the exomic search space exponentially in
the number of siblings.

Also, the mean number of continuous IBD = 2 intervals decreases
with the number of analyzed siblings. The distribution of IBD = 2
intervals is shown in Figure 2B for n = 2 and n = 3. The expected
mean number of IBD = 2 intervals for n siblings can be derived as
follows: the total sex-averaged map length of the human genome
is 3790 cM (Matise et al., 2007). This translates to an expected
number of roughly 38 recombinations per meiosis. Given the length
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D

B C

Fig. 2. (A and B) Distribution of the IBD = 2 ratio and the number of IBD = 2 intervals. Exome datasets were simulated for 25 000 families consisting of n = 2
and n = 3 siblings using HapMap variant frequency data (International HapMap Consortium, 2007). (A) The mean proportion of the genome that is IBD = 2 is
µ = 1/4 for n = 2 and µ = 1/16 for n = 3. (B) The mean number of intervals that are IBD = 2 is 38 in two and 14 in three siblings. (C) Robustness of IBD = 2
classification. The in silico exomes were simulated with a sequencing accuracy of 0.999 and a variant calling error rate of ε = 0.05. This yielded emission
probabilities of e11 = 0.77 and e01 = 0.28. Using these emission probabilities as HMM parameters in the IBD = 2 classifier, the simulated 3 sib exome data
could be classified with a false negative rate of fnr = 0.016 and a false positive rate of fpr = 0.095 (triangle). Decreasing the emission probabilities increases
sensitivity but lowers specificity. The default parameters for the classification of real exome datasets of three siblings, the emission probabilities were set to
e11 = 0.75 and e01 = 0.26, to increase sensitivity above 99% for the expected error rates (filled circle). (D) Posterior probabilities of IBD = 2 classification.
The logarithmic ratio of the posterior probabilities of being IBD = 2 versus IBD �=2 are plotted for all classified variant positions on chromosome 1. A
disease-causing mutation (red star) was identified in a IBD = 2 region of high posterior probability (Krawitz et al., 2010).

of the human genome, all recombination events may be assumed to
occur at different positions in different meioses. We may thus expect
that when comparing n≥2 diploid genomes, we will encounter
2n ·38 transitions between chromosomal segments with differing
inheritance vectors among the n siblings. The expected number of

IBD = 2 intervals in n siblings is thus 38 ·2n
(

1
4

)n−1
, which is in

perfect agreement with our simulations (Fig. 2B).

3.2 Evaluation of classifying simulated datasets
Genotype calling was simulated by adding sequencing and calling
errors at frequencies representative of NGS data. The binary
input vector of IBS*/¬IBS* observations was generated on these
simulated observation datasets and classified into IBD = 2 or not

using our algorithm. The rates of false negative and false positive
classification were analyzed depending on different sets of emission
probabilities: e01 ∈ [0.22,0.33], e11 ∈ [0.70,0.80] Using the mean
emission probabilities from the simulated datasets of three siblings,
e01 = 0.28 and e11 = 0.77 yielded classification error rates of
fnr = 0.016 and fpr = 0.095 (triangle in Fig. 2C). The emission
probabilities are a function of the error rates of the actual sequence
data, and increasing error rates will decrease the probability of
observing IBS* sequences for both IBD = 2 and IBD �=2 states.
The error rates of false positive and false negative classification
in turn depend on the emission probabilities. Lowering e01 and e11
will increase the number of chromosomal positions that are falsely
classified as IBD = 2, but on the other hand, it will decrease the
number of chromosomal positions that are falsely not identified
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Table 1. IBD = 2 classification of simulated datasets

n = 2 n = 3

Total Percentage Total Percentage

Variant sites 21 150 (±1414) 100 22 034 (±1687) 100
IBS* 6615 (±867) 31 6842 (±735) 31
True IBD = 2 5260 (±553) 25 1494 (±457) 6.5
Classified IBD = 2 7754 (±1332) 36 2198 (±683) 10

The mean number (±1SD) of variants called on an CCDS exome of European ethnicity
as expected from HapMap data is in the order of 20K. The fraction of exome positions
that are expected to show identical genotypes IBS* is 0.31. The mean fraction of the
exome that is IBD = 2 is 1/4 in 2 sibs and 1/16 in 3 sibs. With a false negative rate of
fnr <0.01 about a third of the exome is classified IBD = 2 for 2 sibs and about a tenth
for 3 sibs. Chromosomal positions classified as IBD = 2 but that are not IBS* are either
misclassifications or are ¬IBS* due to calling errors. Therefore, besides reducing the
search space, IBD = 2 classification can help identify calling errors.

as IBD = 2 (Fig. 2C). When optimizing the emission probabilities
for a minimal combined error, emission probabilities should be
chosen according to the expected error rate in the real sequencing
data. However, if an experiment is being performed to search for
a novel disease gene, sensitivity is typically of higher importance
than specificity. For classifying our real exome data, we thus
set the emission probabilities to e01 = 0.26 and e11 = 0.75. These
parameters yielded a IBD = 2 classification sensitivity of over 99%
for three siblings in the simulated datasets and reduced the exomic
search space on average to less than a tenth of the original search
space (Table 1).

3.3 Classification of real NGS exome datasets
We first successfully used our IBD = 2 classifying algorithm to
confine the exomic search space in a non-consanguineous family
of three siblings affected by HPMR (Krawitz et al., 2010). In this
case, about a fifth of the exome was classified IBD = 2 (family
A in Fig. 3), reducing the number of genes affected by protein
changing mutations that were called in all three siblings and that
established a candidate set under an autosomal recessive disease
model from 14 to 2. The disease-causing mutation mapped to a
region on chromosome 1 with a high posterior IBD = 2 probability
as depicted in Figure 2D.

To test the robustness of our IBD = 2 classifier, we subsequently
analyzed the exome datasets of two families of different population
backgrounds that were sequenced on two different NGS platforms
(Fig. 3). Family B is of Turkish ethnicity and family C is
of Syrian ethnicity. In both families, a higher number of total
variant (about 30 thousand each) was called, which is probably
due to their population backgrounds. The haploid reference
sequence has a bias toward an European population background
(International Human Genome Sequencing Consortium, 2004) and
consequently variants that represent the major allele in the Syrian or
Turkish population may be called as polymorphisms with respect to
hg18. Regardless of the higher number of total variants called, the
fraction of the IBD = 2 classified exome was 0.10 for family B and
0.07 for family C (Fig. 3) as expected from our simulations.

Fig. 3. Filtering of exome variant calls. Variants to hg18 were called in
exomes of all three sibs of families A, B, and C. Subsequently, every position
was classified as IBD = 2 or IBD �=2 and as common or rare variants. Variants
classified as IBD = 2 and rare represent the set of candidate mutations for rare
monogenic diseases. Variants that are classified as IBD = 2 are either false
IBD = 2 classifications or have been called to wrong genotypes in at least
one of the probed samples.

3.4 False positive variant calls and false positive
IBD = 2 classifications

It is important to realize that current exome-capture and NGS
technologies are not able to provide adequate and error-free coverage
of the entire exome. Mutations in poorly covered genes can be
missed by current analysis strategies if no or an insufficient number
of mutant reads are sequenced. In projects in which the causative
gene cannot be identified by exome sequencing, manual inspection
or Sanger sequencing of poorly covered genes that are located in
IBD = 2 regions and are thought to be good candidates may be a
reasonable strategy.

Genes that have divergent calls for the affected sibs would be
excluded from further analysis by the intersection strategy described
in the Section 1. However, variants that are observed as ¬IBS but
are located in IBD = 2 regions are likely to reflect a sequencing error
(or rarely a de novo mutation in one of the sibs). Alternatively, the
IBD = 2 classification could be false. To test this, we examined rare
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variants (not in dbSNP) that were observed to be ¬IBS but located
within chromosomal regions classified as IBD = 2. There were 254
such variants in familyA, 220 in family B and 53 in family C (Fig. 3).
Each variant thus represents a conflict between the IBS* observation
and the IBD = 2 classification. We picked 29 of these calls at random
and validated their genotypes by ABI Sanger sequencing. Of total,
27 of these positions were validated as IBS*, indicating false NGS
calls, and 2 were validated as ¬IBS*, indicating false positive
IBD = 2 classification. The rate of false IBD = 2 classifications is
thus in the expected false positive range for the parameters chosen
for the analysis. Although most false NGS calls were found to be
wild-type genotypes in the Sanger sequences, we also identified
two positions as heterozygous in all samples, thus representing
a candidate mutation that would have been missed under simple
intersection filtering. Besides being a powerful filtering approach,
IBD = 2 classification is thus also an effective approach to identify
false NGS calls.

4 DISCUSSION
The analysis of chromosomal regions that are identical by descent
is a fundamental tool in linkage analysis of pedigree data and in
population genetics studies such as genome-wide association studies
(Browning and Browning, 2010). In this work, we have presented a
method for detection of IBD = 2 regions in the exome sequences of
two or more related individuals affected with an autosomal recessive
disease. In contrast to homozygosity mapping approaches designed
for the analysis of children of consanguineous matings (Lander
and Botstein, 1987), our procedure was developed to work for
consanguineous or non-consanguineous families. With the recent
advent of exome and genome sequencing for medical diagnostics,
there is a pressing need for computational procedures that make
maximum use of the information provided by the sequences for
the rapid and correct identification of medically relevant mutations.
Recent results have shown that even in populations such as
Europeans that are well represented in dbSNP and HapMap, very
high numbers of novel SNPs still remain to be found (Roach et al.,
2010). This is likely to be even more the case in other population
groups, and this will be an important issue given that many families
affected by rare recessive syndromes come from small populations
for which only scarce variational data are available.

The main drawback of filtering approaches that rely on a
computational prediction of pathogenicity, as well as filtering
approaches that focus on sets of variants that intersect in all
analyzed samples of affected individuals (Ng et al., 2009, 2010b),
is the possibility of false negative results. Not all disease-associated
mutations are predicted to be pathogenic by current algorithms
(Raymond et al., 2009), and not all disease-causing mutations are
called to the correct genotype in all samples (Roach et al., 2010).
The benefit of error-robust IBD = 2 classification is thus 2-fold: on
the one hand, it is an effective tool for reducing the genomic search
space, and on the other hand, it is an effective means for identifying
sequencing errors.

The posterior probability computed by our algorithm additionally
provides an estimator of how likely the classification is to be correct.
The interpretation of these values is difficult. It has to be noted, that
error probabilities, as well as IBD = 2 classification probabilities
are often of a conditional nature. The constraint of being a rare
variant increases the error probability tremendously. That is, a

variant call at a dbSNP130 position is much more likely to be a
correct one, compared with a call at a non-dbSNP position. The
same holds true for IBD = 2 classification errors. A limitation of our
method is the fact that regions of high linkage disequilibrium in
a population (Browning and Browning, 2010) are more likely to
be falsely classified as an IBD = 2 region. In future work, we plan
on analyzing how homozygosity runs as well as population-specific
linkage disequilibria may be incorporated to further reduce error
rates in IBD = 2 classification.
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