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Abstract

Motivation: Antibody structure is largely conserved, except for a complementarity-determining region featuring six
variable loops. Five of these loops adopt canonical folds which can typically be predicted with existing methods,
while the remaining loop (CDR H3) remains a challenge due to its highly diverse set of observed conformations. In
recent years, deep neural networks have proven to be effective at capturing the complex patterns of protein struc-
ture. This work proposes DeepH3, a deep residual neural network that learns to predict inter-residue distances and
orientations from antibody heavy and light chain sequence. The output of DeepH3 is a set of probability distributions
over distances and orientation angles between pairs of residues. These distributions are converted to geometric
potentials and used to discriminate between decoy structures produced by RosettaAntibody and predict new CDR
H3 loop structures de novo.

Results: When evaluated on the Rosetta antibody benchmark dataset of 49 targets, DeepH3-predicted potentials
identified better, same and worse structures [measured by root-mean-squared distance (RMSD) from the experi-
mental CDR H3 loop structure] than the standard Rosetta energy function for 33, 6 and 10 targets, respectively, and
improved the average RMSD of predictions by 32.1% (1.4 Å). Analysis of individual geometric potentials revealed
that inter-residue orientations were more effective than inter-residue distances for discriminating near-native CDR
H3 loops. When applied to de novo prediction of CDR H3 loop structures, DeepH3 achieves an average RMSD of
2.2 6 1.1 Å on the Rosetta antibody benchmark.

Availability and Implementation: DeepH3 source code and pre-trained model parameters are freely available at
https://github.com/Graylab/deepH3-distances-orientations.

Contact: jgray@jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The adaptive immune system of vertebrates is responsible for coor-
dinating highly specific responses to pathogens. In such a response,
B cells of the adaptive immune system secrete antibodies to bind and
neutralize some antigen. The central role of antibodies in adaptive
immunity makes them attractive for the development of new thera-
peutics. However, rational design of antibodies is hindered by the
difficulty of experimental determination of macromolecular struc-
tures in a high-throughput manner. Advances in computational
modeling of antibody structures provides an alternative to experi-
ments, but computations are not yet sufficiently accurate and
reliable.

Antibody structure consists of two sets of heavy and light chains
that form a highly conserved framework region (Fc) and two vari-
able regions responsible for antigen binding (Fv). The structural con-
servation of the Fc is functionally significant, enabling the
recognition of different antibody isotypes by their receptors and the

Fc lends well to homology modeling. The Fv contains several seg-
ments of sequence hypervariability that provide the structural diver-
sity necessary to bind a variety of antigens. This diversity is largely
focused in six b-strand loops known as the complementarity deter-
mining regions (CDRs). Five of these loops (L1–L3, H1 and H2) typ-
ically fold into one of several canonical conformations (Chothia
et al., 1989) that are predicted well by existing methods (North
et al., 2011). However, the third CDR loop of the heavy chain (H3)
is observed in a diverse set of conformations and remains a challenge
to model (Almagro et al., 2014; Berrondo et al., 2014; Fasnacht
et al., 2014; Maier and Labute, 2014; Shirai et al., 2014; Weitzner
et al., 2014; Zhu et al., 2014). Although the CDR loops are some-
times flexible and context-dependent, the change is typically small
(<1 Å) between bound and unbound forms (Sela-Culang et al.,
2012). Because each antibody CDR H3 sequence evolves in an indi-
vidual organism, evolutionary sequence history is not generally
available [although there are exceptions (Eshleman et al., 2019; Wu
et al., 2011)].
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Application of deep learning techniques has yielded significant
advances in the prediction of protein structure in recent years. At
CASP13, AlphaFold (Senior et al., 2020) and RaptorX (Xu, 2019)
demonstrated that inter-residue distances could be accurately learn-
ed from sequence and coevolutionary features. Both approaches
used deep residual network architectures with dilated convolutions
to predict inter-residue distances, which provide a more complete
structural description than contacts alone. trRosetta built on this
progress by expanding beyond distances to predict a set of inter-
residue orientations (Yang et al., 2020). This rich set of inter-residue
geometries allows trRosetta to outperform leading approaches on
the CASP13 dataset, even with a shallower network (Yang et al.,
2020).

The effectiveness of inter-residue orientations for discriminating
protein structures has also recently been demonstrated by methods
such as SBROD and KORP (Karasikov et al., 2019; López-Blanco
and Chacón, 2019). SBROD is a single-model quality assessment
function that considers inter-residue interactions, backbone atom
interactions, hydrogen bonding and solvent-solute interactions.
Those features are extracted from a set of decoys from various
CASP experiments and the SBROD scoring function is trained via
ridge regression (Karasikov et al., 2019). KORP is a knowledge-
based potential constructed from a set of six inter-residue geometric
descriptors similar to those of trRosetta (López-Blanco and Chacón,
2019). Structures are scored according to a 6D joint probability dis-
tribution extracted from a database of non-redundant protein
structures.

Our work expands on the progress in general protein structure
prediction by applying similar techniques to a challenging problem
in antibody structure prediction. Specifically, we propose DeepH3, a
deep residual network that learns to predict inter-residue distances
and orientations from antibody heavy and light chain sequence
alone. When compared to state-of-the-art scoring methods, DeepH3
can identify near-native CDR H3 loops more accurately. When used
for de novo prediction of CDR H3 loop structures, DeepH3 produ-
ces lower-root-mean-squared distance (RMSD) structures than
existing methods.

2 Materials and methods

2.1 Overview
DeepH3 is a deep residual network (He et al. 2016) that learns to
predict inter-residue distances and orientations from antibody heavy
and light chain sequences. The architecture of DeepH3 draws inspir-
ation from RaptorX (Wang et al., 2017; Xu, 2019), which per-
formed well on general protein structure prediction at CASP13. The
relative scarcity of structural data for antibodies compared to gen-
eral proteins presents challenges (as in any subproblems of structure
prediction). We alleviate this limitation by reducing the depth of our
network compared to previous methods, and we verify the general-
ization by examining performance on a highly diverse benchmark
dataset. The outputs of DeepH3 are converted into geometric poten-
tials in order to better discriminate between CDR H3 loop structures
(decoys) generated using a standard homology modeling approach
(Marze et al., 2016) and to predict new CDR H3 loop structures
de novo.

2.2 Antibody structure datasets
2.2.1 Benchmark dataset

The Rosetta antibody benchmark dataset consists of 49 Fv structures
with CDR H3 loop lengths ranging from 9 to 20 residues (Marze
et al., 2016; Weitzner and Gray, 2017). These structures were
selected from the PyIgClassify database (Adolf-Bryfogle et al., 2014)
based on their quality, with each having resolution of 2.5 Å or bet-
ter, a maximum R value of 0.2 and a maximum B factor of 80.0 Å2

for every atom (Marze et al., 2016; Weitzner and Gray, 2017). The
diversity of the set is enhanced by ensuring that no two structures
share a common CDR H3 loop sequence, but the set is limited by
the restriction to structures from humans and mice.

2.2.2 Training dataset

The training dataset for this work was extracted from SAbDab, a
curated database of all antibody structures in the Protein Data Bank
(Dunbar et al., 2014). We enforced thresholds of 99% sequence
identity and 3.0 Å resolution to produce a balanced, high-quality
dataset. This high sequence identity cutoff was chosen due to the
high conservation of sequence characteristic of antibodies. In cases
where multiple chains existed for the same structure, only the first
chain in the PDB file was used. Finally, any structures present in the
Rosetta antibody benchmark dataset were removed. These steps
resulted in 1433 structures, of which a random 95% were used for
model training and 5% were used for validation. This small valid-
ation set was found to be sufficient to control for overfitting. Note
that testing is carried out on an independent benchmark sharing no
structures with the training/validation sets.

2.3 Learning inter-residue geometries from antibody

sequence
2.3.1 Input features

Unlike most comparable networks, DeepH3 relies only on amino
acid sequence as input. For general protein structure prediction, cur-
rent methods typically utilize some combination of multiple se-
quence alignments (MSAs), sequence profiles, coevolutionary data,
secondary structures, etc. (Senior et al., 2020; Wang et al., 2017,
2018; Xu, 2019; Yang et al., 2020). While these additional input
features provide rich information for general protein structure pre-
dictions, each antibody evolves independently in one single organ-
ism, and we rarely have relevant evolutionary histories for CDR H3
loop sequences. Thus, we omit sequence alignment data like MSAs.
DeepH3 takes as input a one-hot encoded sequence formed by con-
catenating the target heavy and light chains (Fv) sequences. A chain
delimiter is added to the last position in the heavy chain, resulting in
an input of dimension L � 21, where L is the cumulative length of
the heavy and light chain sequences.

2.3.2 Inter-residue geometries

In addition to inter-residue distances, DeepH3 is also trained to pre-
dict the set of dihedral and planar angles previously proposed for
trRosetta (Yang et al., 2020). For two residues i and j, the relative
orientation is defined by six parameters [d, x, hij, hji, uij and uji,
Figure 1A and B, adapted from (Yang et al., 2020)]. The distance (d)
is defined using Cb atoms or for glycine residues, Ca. Distances were
discretized into 26 bins, with 24 in the range of [4, 16 Å] and two
additional bins for all distances below 4 Å or above 16 Å. The dihe-
dral angle x is formed by atoms Cai, Cbi, Cbj and Caj, and the dihe-
dral angle hij is formed by atoms Ni, Cai, Cbi and Cbj. Both dihedral
angles were discretized into 26 equal-sized bins in the range of
[–180, 180�]. The planar angle uij is formed by atoms Cai, Cbi and
Cbj. Planar angles were discretized into 26 equal-sized bins in the
range of [0, 180�]. Orientation angles were not calculated for gly-
cine residues, due to the absence of the Cb atom.

2.3.3 Network architecture

DeepH3 applies a series of 1D and 2D convolutions to the aforemen-
tioned sequence input feature to predict four inter-residue geometries,
as diagrammed in Figure 1C. The first 1D convolution (kernel size of
17) projects the L � 21 input features up to an L � 32 tensor. Next,
the L � 32 tensor passes through a set of three 1D residual blocks
(two 1D convolutions with kernel size of 17), which maintain dimen-
sionality. Following the 1D residual blocks, the sequential channels
are transformed to pairwise by redundantly expanding the L � 32
tensor to dimension L � L � 32 and concatenating with the trans-
pose, resulting in a L � L � 64 tensor. This tensor passes through 25
2D residual blocks (two 2D convolutions with kernel size of 5 � 5)
that maintain dimensionality. Dilation of the 2D convolutions cycles
through values of 1, 2, 4, 8 and 16 every five blocks (five cycles in
total). Each of the preceding convolutions is followed by a batch
normalization. Next, the network branches into four paths, which
each apply a 2D convolution (kernel size of 5 � 5) to project down to
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dimension L � L � 26 (for 26 output bins). Symmetry is enforced for
the d and x branches after the final convolution by summing the
resulting tensor with its transpose. The four resulting L � L � 26 ten-
sors are converted to pairwise probability distributions for each out-
put using the softmax function. DeepH3 was implemented using
PyTorch (Paszke et al., 2019) and is freely available at https://github.
com/Graylab/deepH3-distances-orientations.

2.3.4 Training

Categorical cross-entropy loss was calculated for each output tensor
and the resulting losses were summed with equal weight before back
propagation. The Adam optimizer was used with an initial learning
rate of 0.01 and reduction of learning rate upon plateauing of total
loss. Dropout was used after the last 2D residual block, with entire
channels being zeroed out at 20% probability. The network was
trained using 95% of antibody dataset described above (1388 struc-
tures) for 30 epochs. Each epoch utilized the entire training dataset,
with a batch size of 4. Training lasted about 35 h using one NVIDIA
Tesla K80 GPU on the Maryland Advanced Research Computing
Center (MARCC).

2.4 Network predictions as geometric potentials
2.4.1 Implementation

We applied DeepH3 to each sequence in the Rosetta antibody
benchmark dataset to produce pairwise probability distributions for
the four output geometries. Distributions for pairs of residues that
did not include a member of the CDR H3 (according to Chothia
number) loop were discarded. Additionally, pairs of residues for
which the maximum probability bin of the distance output was
greater than 12 Å were discarded to focus on local interactions that
are likely to carry biophysical meaning. We also disregarded those
predicted distributions that were not informative enough, chosen as
those with a maximum probability below 10%. The remaining dis-
tributions were converted to potentials by taking the negative nat-
ural log of each output bin probability. Continuous, differentiable
Rosetta constraints (AtomPair for d, Dihedral for x and h and Angle

for u) were created for each potential using the built-in spline func-
tion. Within Rosetta, a histogram corresponding to each pairwise
potential is fit to a cubic spline. These constraint functions are used
calculate the DeepH3 energy term for each structure.

2.4.2 CDR H3 loop discrimination

To test the effectiveness of predicted geometric potentials for dis-
criminating between near-native CDR H3 loops, we collected a set
of 2800 decoy structures generated by RosettaAntibody for each of
the 49 Rosetta antibody benchmark targets (Marze et al., 2016).
These structures were generated by homology modeling, with
decoys for each target assuming various heavy/light-chain orienta-
tions and non-H3 CDR loop conformations (Marze et al., 2016;
Weitzner et al., 2017). After scoring each structure with DeepH3,
we compared the discrimination performance to three other state-
of-the-art scoring methods: SBROD (Karasikov et al., 2019), KORP
(López-Blanco and Chacón, 2019) and the ref2015 full-atom energy
function (referred to as Rosetta energy) (Alford et al., 2017).

2.4.3 Discrimination score

The discrimination score is a common metric for measuring the suc-
cess of structure prediction calculations by assessing whether the
minimum energy structures are near-native, with a lower value being
indicative of a more successful prediction (Weitzner and Gray,
2017). In order to compare between different energy schemes, we
first scale the scores for all decoy structures such that the 95th per-
centile energy has a value of 0.0 and the 5th percentile energy has a
value of 1.0. The discrimination score is then calculated as (Conway
et al., 2014):

D ¼
X

r�f1;1:5;2;2:5;3;4;6g
min

i;RMSDðiÞ�½0;r�
Ei � min

i;RMSDðiÞ�½r;1�
Ei (1)

where r is the RMSD cutoff in Å, Ei is the scaled energy for the i-th
decoy structure, and the discrimination score, D, is the sum of the
energy differences for the best scoring decoys above and below each
RMSD cutoff.

A C

B

Fig. 1. Architecture of DeepH3 deep residual neural network. (A) Illustration of the distance d and dihedral x for two residues. (B) Illustration of the dihedrals h12 and h21 and pla-

nar angles h12 and u21 for two residues. (C) Architecture diagram of residual neural network to learn inter-residue geometries from concatenated antibody Fv chain sequences
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2.5 De novo prediction of CDR H3 loop structures
2.5.1 DeepH3 prediction on crystal Fv framework

We applied the Rosetta LoopModeler protocol (Mandell et al.,
2009; Stein and Kortemme, 2013) to each target in the Rosetta anti-
body benchmark to build the CDR H3 loop onto the Fv crystal
structure (script provided as Supplementary Material). Prior to mod-
eling, the crystallographic loop was extended by setting / and w
angles to 180� to emulate a blind prediction. Throughout the model-
ing process, the KIC algorithm was guided only by DeepH3 energy,
with all Rosetta energy function terms disabled. For each target, 500
decoys were generated. We elected to use a relatively low number of
decoys after observing faster convergence with DeepH3 energy than
is typical for Rosetta energy.

2.5.2 TrRosetta heavy chain prediction

The most similar approach to DeepH3 is trRosetta for general protein
structure prediction. To better understand the impacts of designing a
network specifically for antibody structures, we tested the perform-
ance of trRosetta on the Rosetta antibody benchmark using the public
trRosetta server (Yang et al., 2020). Because trRosetta was designed

to predict the structure of single-chain proteins, we submitted only
heavy chain sequences (i.e. omitting the light chain). The five resulting
structures were aligned to the heavy chain in the crystal structure to
measure the RMSDs of the CDR H3 loop heavy atoms.

3 Results

3.1 DeepH3 accurately predicts inter-residue

geometries
To evaluate the accuracy of DeepH3’s predictions, we applied our
model to the entire Rosetta antibody benchmark dataset (not seen
during training or validation). For residue pairs involving a CDR
H3 loop residue, the predicted values for each geometry are plotted
against experimental structure values in Figure 2. We limit our ana-
lysis to pairs including an H3 loop residue to ensure that DeepH3 is
effectively learning the most variable regions of the antibody struc-
ture, rather than just the conserved framework. DeepH3 displays ef-
fective learning across all outputs; the Pearson correlation
coefficients (r) for d and u were 0.87 and 0.79, respectively, and the
circular correlation coefficients (rc) for dihedrals x and h were 0.52
and 0.88, respectively.

3.2 Geometric potentials discriminate near-native CDR

H3 loop structures
To evaluate the effectiveness of DeepH3 energy for identifying near-
native structures, predicted DeepH3 geometric histograms were con-
verted to potentials (Section 2) that were then evaluated on
RosettaAntibody generated structure decoys. Reported RMSD val-
ues are measured between the heavy atoms of CDR H3 loops after
aligning the Fv backbone heavy atoms. When the best-scoring struc-
tures (top 1) by Rosetta energy and DeepH3 energy were compared,
DeepH3 selected better-, same- and worse-RMSD structures for 33,
6 and 10 out of 49 targets, respectively, with an average RMSD im-
provement of 1.4 Å (Fig. 3A). When the set of five best-scoring struc-
tures (top 5) by Rosetta energy and DeepH3 energy were
considered, DeepH3 energy identified a better-, same- and worse-
RMSD structures for 24, 16 and 9 out of 49 targets, respectively,
with an average RMSD improvement of 0.8 Å (Fig. 3B). We also
compared the ability of Rosetta energy and DeepH3 energy to dis-
criminate between decoys for each benchmark target (Fig. 3C,
Table 2). The mean discrimination scores for Rosetta energy and
DeepH3 energy across the benchmark were 1.7 and –12.2, respect-
ively, indicating that DeepH3 was much more successful in general.
When individual targets are considered, DeepH3 energy was suc-
cessful in discriminating between decoys for 36 out of 49 targets,
while Rosetta energy was successful for only 15 out of 49 targets.

Fig. 2. Accuracy of predicted inter-residue geometries. Pearson correlation coeffi-

cients (for d and u) and circular correlation coefficients (for x and h) are calculated

between DeepH3 predictions and experimental values

A B C

Fig. 3. Effectiveness of predicted inter-residue geometries for decoy discrimination. (A, B) Comparison of the quality of structures selected by Rosetta energy and DeepH3 en-

ergy (using all geometric potentials). The quality of structures is considered the same if the difference in RMSD is within 60.25 Å, indicated with dashed lines. (A) DeepH3 en-

ergy selected better-, same- and worse-RMSD structures for 33, 6 and 10 out of 49 targets, respectively, when the best-scoring structures were compared (top 1). (B) When the

set of five best-scoring structures were considered (top 5), DeepH3 energy identified better-, same- and worse-RMSD structures for 24, 16 and 9 out of 49 targets, respectively.

(C) Comparison of the discrimination scores for Rosetta energy and DeepH3 energy
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To compare against alternative state-of-the-art methods, we also
scored the RosettaAntibody decoy using SBROD (Karasikov et al.,
2019) and KORP (López-Blanco and Chacón, 2019) (Tables 1 and
2). In a comparison of the top-rated structures from the decoy set,
DeepH3 demonstrated improvements over SBROD (38 targets were
better, 6 same and 5 worse; average DRMSD of –1.8 Å). The compari-
son of the five top-scoring structures was similar (35 better, 11 same
and 3 worse; DRMSD ¼ –1.1 Å). In general, SBROD was unsuccessful
in discriminating near-native decoys, with only 8 out of 49 benchmark
targets having a negative discrimination score and an average D of
3.7. DeepH3 also outperformed KORP among best-scoring structures
(32 better, 10 same and 7 worse; DRMSD ¼ –0.9 Å) and when com-
paring the lowest-RMSD structure among the five best-scoring decoys
for each target (25 better, 18 same and 6 worse; DRMSD ¼ –0.6 Å).
KORP was generally unsuccessful in discriminating near-native CDR
H3 loop decoys, with only 21 out of 49 targets having negative dis-
crimination scores and an average D¼0.2.

To provide a better understanding of how predicted geometric
potentials improve discrimination between CDR H3 structures, we
detail two case studies: anti-ALOX12 scFv (scFv of mouse antibody
with a 12-residue CDR H3 loop, PDB ID: 4H0H) and anti-dansyl
mAb (humanized mouse antibody with a 12-residue CDR H3 loop,
PDB ID: 1DLF) (Weitzner and Gray, 2017). Figure 4A–C shows en-
ergy funnels for anti-ALOX12 and anti-dansyl, respectively, with
the discrimination score calculated for each. For anti-ALOX12,
Rosetta energy displays little ability to discriminate with structures
ranging from 2 to 8 Å RMSD (D¼10.0). DeepH3 energy, however,
earns a negative discrimination score (D ¼ –3.7), indicating an abil-
ity to easily distinguish the near-native structures. The best scoring
anti-ALOX12 decoy structures as selected by Rosetta energy (or-
ange, 7.2 Å RMSD) and DeepH3 energy (violet, 1.6 Å RMSD) are
shown in Figure 4B.

For anti-dansyl, Rosetta energy is generally unsuccessful in dis-
criminating between decoys (D¼0.6), again with minor energetic
differences across a wide range of RMSD values. DeepH3 energy
appears to converge to an alternative loop conformation around 4 Å
RMSD, resulting in a poor discrimination score (D¼3.8).
Figure 4D shows the best-scoring anti-dansyl decoy structures as
selected by Rosetta energy (orange, 2.5 Å RMSD) and DeepH3 en-
ergy (violet, 4.0 Å RMSD).

3.3 Longer loops remain a challenge
The Rosetta antibody benchmark dataset encompasses a diverse set
of CDR H3 loop lengths. Longer loops introduce greater degrees of
freedom (two DOFs per residue), and thus present additional chal-
lenges to effective sampling and discrimination. To investigate the
performance of DeepH3 across loop lengths, we sub-divided the
benchmark targets by length and compared to three alternative scor-
ing methods: SBROD, KORP and the Rosetta energy function
(Fig. 5). For nearly every loop length considered, DeepH3 identified
the lowest RMSD structures according to the top-1 and top-5 crite-
ria (see above). For several loop lengths, DeepH3 identified decoys
near the lowest-RMSD for particular targets in the dataset, as indi-
cated by the shaded region. In general, the average RMSD increased
with loop length across all four methods, though DeepH3 displayed
notable consistency across loop lengths according to the top-5
criteria.

3.4 Orientation potentials are more effective than

distance potentials
We also evaluated the utility of individual geometric potentials for
selecting low-RMSD decoys (Table 3). Notably, when DeepH3 dis-
tance potentials alone were used, performance was only moderately
better than Rosetta energy. When the best-scoring structures by
Rosetta energy and distance potentials were compared, distance
potentials selected better-, same- and worse-RMSD structures for
27, 9 and 13 out of 49 targets, respectively, with an average RMSD
improvement of 1.1 Å. When the set of five best-scoring structures
by Rosetta energy and distance potentials were considered, DeepH3
energy identified better-, same- and worse -RMSD structures for 22,
14 and 13 out of 49 targets, respectively, with an average RMSD im-
provement of 0.5 Å. Individual orientation potentials were more ef-
fective at selecting low-RMSD decoys than distance, even matching
or outperforming the total DeepH3 energy by some metrics. We also
calculated discrimination scores for each geometric potential
(Table 2). Distance and x orientation potentials displayed the weak-
est performance among geometric potentials but still showed signifi-
cant improvement over Rosetta energy, with 32 out of 49
simulations being successful for both. The other orientation poten-
tials produced more successful simulations and lower mean discrim-
ination scores.

Table 2. Discrimination score metrics for DeepH3 energy and sev-

eral state-of-the-art energy functions

Energy terms Successful Unsuccessful Mean D

SBROD 8 41 3.7

KORP 21 28 0.2

Rosetta 15 34 1.7

DeepH3 36 13 –12.2

d 32 17 –7.4

x 32 17 –7.8

h 38 11 –15.6

u 36 13 –9.6

Notes: DeepH3 energy is further divided into individual inter-residue geo-

metries. Negative discrimination scores, D, are considered successful and

positive are considered unsuccessful.

Table 3. Performance of geometric potentials versus Rosetta en-

ergy function for selecting low-RMSD antibody decoys

Energy

terms

Top 1 Top 5

Better Same Worse DRMSD Better Same Worse DRMSD

d 27 9 13 –1.1 22 14 13 –0.5

x 30 8 11 –1.3 26 14 9 –0.4

h 31 7 11 –1.5 23 13 13 –0.7

u 29 7 13 –1.4 26 14 9 –0.8

Notes: Top-1 metrics compare the RMSD of the best-scoring structure by

Rosetta energy against that of a given DeepH3 potential. Top-5 metrics com-

pare the lowest-RMSD structure among the five best-scoring structures

selected by Rosetta energy and that of a given DeepH3 potential. The average

difference in RMSD between the structures selected by a given DeepH3 poten-

tial and Rosetta energy is reported as DRMSD (Å).

Table 1. Performance of DeepH3 energy versus alternative meth-

ods for selecting low-RMSD antibody decoys

Energy

function

Top 1 Top 5

Better Same Worse DRMSD Better Same Worse DRMSD

SBROD 38 6 5 –1.8 35 11 3 –1.1

KORP 32 10 7 –0.9 25 18 6 –0.6

Rosetta 33 6 10 –1.4 24 16 9 –0.8

Notes: Top-1 metrics compare the RMSD of the best-scoring structure by

DeepH3 energy against that of a given energy function. Top-5 metrics com-

pare the lowest-RMSD structure among the five best-scoring structures

selected by DeepH3 energy and that of a given energy function. The average

difference in RMSD between the structures selected by DeepH3 energy and a

given energy function is reported as DRMSD (Å). ‘Better,’ ‘Same’ and ‘Worse’

indicate the number of targets that achieve a lower, same, or higher RMSD,

respectively, when scored by DeepH3.
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3.5 DeepH3 effectively predicts new CDR H3 loop

structures de novo
The ultimate goal of DeepH3 was to improve the de novo prediction
of CDR H3 loops. Towards this end, we used DeepH3 to create
potentials that we then used in Rosetta for de novo structure predic-
tion of the CDR H3 loops (Section 2). The average (6 SD) RMSD
of the best-scoring structures generated with DeepH3 potentials for
each target (top 1) was 2.2 6 1.1 Å. When the set of five best-scoring
structures for each target were considered (top 5), the average
RMSD fell to 1.9 6 0.9 Å. We compare the best-scoring structures
generated with DeepH3 potentials to those published by Weitzner
et al. (Weitzner and Gray, 2017) (Fig. 6A) and find effectively

equivalent performance (DRMSD < 0.1 Å) (Top-5 metrics were not
reported by Weitzner et al.). The recently published trRosetta provides
another deep learning prediction method to compare. trRosetta is
trained broadly on diverse protein structures, and DeepH3 has fewer
input features (just sequence). trRosetta is designed for single-chain
proteins, so we omitted the light chain and predicted structures for the
heavy chain alone. On the same benchmark, trRosetta achieves aver-
age accuracies of 4.76 1.4 Å (top 1) and 4.3 6 1.3 Å (top 5, Fig. 6A).
Compared to trRosetta, DeepH3’s top-1 and top-5 metrics are 2.5 Å
and 2.4 Å RMSD better, respectively.

To better understand the sampling performance of DeepH3, we
compared the lowest-RMSD decoy sampled to the best-scoring (top

A

C D

B

Fig. 4. Results for two Rosetta antibody benchmark targets. (A) Plots of Rosetta energy and DeepH3 energy versus RMSD from the experimental structure for 2800 decoy

structures for anti-ALOX12 scFv. The five best-scoring structures in each funnel plot are indicated in red. Five relaxed native structures are plotted as orange triangles. (B)

Experimental structure of anti-ALOX12 scFv (green) with best-scoring structures by Rosetta energy (orange, 7.2 Å RMSD) and DeepH3 energy (violet, 1.6 Å RMSD). (C) Plots

of energy versus RMSD from the experimental structure for anti-dansyl mAb. (D) Experimental structure of anti-dansyl mAb (green) with best-scoring structures by Rosetta

energy (orange, 2.5 Å RMSD) and DeepH3 energy (violet, 4.0 Å RMSD)

A B

Fig. 5. Performance of DeepH3 and alternative methods across various loop lengths. (A and B) Comparison across loop lengths of the error in structures selected by SBROD

(green), KORP (blue), Rosetta energy (orange) and DeepH3 score (violet). The shaded areas show the range of lowest RMSD values sampled for targets across loop lengths.

(A) Average RMSD of the best-scoring structure (top 1). (B) Average of the lowest-RMSD present within the five best-scoring structures (top 5)
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1, Fig. 6B) and the lowest-RMSD among the five best-scoring (top
5, Fig. 6C). DeepH3 samples structures with sub-angstrom RMSD
for 38.8% of the targets and 95.9% for <2 Å. On the other hand,
DeepH3 is able to identify a sub-angstrom decoy as the best-scoring
structure (top 1) for 14.3% of targets and 55.1% for <2 Å. When
considering the set of five best-scoring decoys (top 5), DeepH3 iden-
tifies a sub-angstrom decoy for 18.4% of targets and 63.2% for
<2 Å. These results are promising and point to possibility of further
refining the DeepH3 geometric potentials for de novo prediction.

4 Discussion

The results here suggest that the significant advances by deep learning
approaches in general protein structure can also be realized in subpro-
blems in structural modeling. Specifically, we demonstrate that a deep
residual network can effectively capture the local inter-residue inter-
actions that define antibody CDR H3 loop structure. DeepH3
achieves these results without MSAs and coevolutionary data, while
using significantly fewer residual blocks (3 1Dþ25 2D blocks) than
similar networks, such as AlphaFold (220 2D blocks) (Senior et al.,
2020), RaptorX (6 1Dþ60 2D blocks) (Wang et al., 2017; Xu,
2019) and trRosetta (61 2D blocks) (Yang et al., 2020). Fewer blocks
may suffice because we limited our focus to antibodies, which are
highly conserved, rather than the entire universe of protein structures.
By omitting MSAs and coevolutionary, we demonstrate that these
features, which have seemed essential to the advances in general pro-
tein structure prediction, may not be necessary for some subproblems.
In the future, similar specialized networks could achieve enhanced
performance in other challenging domains of protein structure predic-
tion, but further research is required.

Breakdown of DeepH3 energy into individual geometric poten-
tials revealed that inter-residue orientations were significantly more
effective for scoring CDR H3 loop structures than distances. This
finding was surprising, given the improvements that distances alone
have enabled in general protein structure prediction. This observa-
tion could also underlie the improved performance of trRosetta
compared to methods that do not use orientations. Or possibly dis-
tance restraints are effective at placing residues globally, but local
interactions in loops are captured by inter-residue orientations.

Application of DeepH3 to de novo prediction of CDR H3 loop
structures highlights the promise of deep learning in this challenging
area. Comparison with the results from Weitzner et al., which lever-
aged an explicit H3-kink geometric constraint (Weitzner and Gray,
2017), demonstrates that DeepH3 effectively learned challenging
features of H3 loop structure. While this work focused only on the
CDR H3 loop, we anticipate that applying DeepH3 to other aspects
of antibody structure prediction may yield further advances.
Because DeepH3 learns from full Fv heavy and light chain sequences,
the current network may already capture other critical aspects of

antibody structure prediction [VL–VH orientations (Marze et al.,
2016), non-H3 CDR loop conformations (North et al., 2011) etc.],
though future work will be necessary to explore these areas.
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