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Abstract
Introduction In December 2019, China reported a series of atypical pneumonia cases caused by a new Coronavirus, called
COVID-19. In response to the rapid global dissemination of the virus, on the 11th of Mars, the World Health Organization
(WHO) has declared the outbreak a pandemic. Considering this situation, this paper intends to analyze and improve the current
SEIR models to better represent the behavior of the COVID-19 and accurately predict the outcome of the pandemic in each
social, economic, and political scenario.
Methodology We present a generalized Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model and test it using
a global optimization algorithm with data collected from the WHO.
Results The main results were: (a) Our model was able to accurately fit the either deaths or active cases data of all tested countries
using optimized coefficient values in agreement with recent reports; (b) when trying to fit both sets of data at the same time, fit
was good for most countries, but not all. (c) Using our model, large ranges for each input, and optimization we predict death
values for 15, 30, 45, and 60 days ahead with errors in the order of 5, 10, 20, and 80%, respectively; (d) sudden changes in the
number of active cases cannot be predicted by the model unless data from outside sources are used.
Conclusion The results suggest that the presented model may be used to predict 15 days ahead values of total deaths with errors in
the order of 5%. These errors may be minimized if social distance data are inputted into the model.
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Introduction

In December 2019, in China, a series of atypical pneumonia
cases have emerged caused by a new Coronavirus, nowadays
officially called COVID-19 by theWorld Health Organization
(WHO). It has spread rapidly throughout the country, having
had its epicenter the city of Wuhan, in which 82,249 people
were infected and 3341 people have died. In response to the
rapid global dissemination of the virus, on the 11th of Mars
the WHO has declared the outbreak a pandemic. Since then,
the global impact of the COVID-19 became a great threat to
the public health. Considering this emergency, different areas
of science need to focus its attention to the challenges imposed
by this new Coronavirus. In such scenarios, it is imperative the
necessity of new, improved, and specific mathematical
modeling.

There are many uncertainties regarding the gravity of the
infection caused by COVID-19. Nevertheless, based on
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epidemiological investigations, the period of incubation is 1 to
14 days, more evidently between 3 and 7 days, and the virus is
contagious still on its latency period (Guo et al. 2020). The
majority of the infected adults and children have developed
mild symptoms alike those of a common cold, and some pa-
tients evolved rapidly to an acute respiratory discomfort,
followed by respiratory failure, multiple organ failure, and
death. The probability of death in the USA, according to the
Centers for Disease Control and Prevention (CDC), has
ranged from 0.5% to ages of 45–54 to 1.4% to ages 55–64
and growing on a constant rate with age. Pre-existing comor-
bidities, affecting the vulnerability to the infection, also in-
crease the probability of death.

COVID-19 seems to have a relatively higher rate of trans-
missibility when compared with other Coronavirus infections
and, to better understand it, it is very important to multiple
factors (Chen et al. 2020; Wang et al. 2020). Family environ-
ment, age, and wealth distribution are essential factors related
to the transmission and mortality rate of COVID-19 (Walker
et al. 2020). Another important that must be considered, espe-
cially in the mortality rate, is the number of hospital beds and
the capacity of Intensive Care Unities (ICU). The relationship
between the age ranges that require attention and the mortality
rate by infection was scrutinized by China and, assuming that
30% of the hospitalized will demand intensive care (ICU), and
among those 50% will die, it has been calculated the demand
for hospital beds assuming the average stay of 16 days in the
hospital (Ferguson et al. 2020). The experience of COVID-19
in many countries, concerning medical assistance, has indicat-
ed that the demand for hospital beds and the need for mechan-
ical ventilation have overcome the availability of those in
countries with higher per capita income. Therefore, the con-
sequences in countries with scarcity of these services are ex-
pected to be larger (Walker et al. 2020).

Previous experiences in some countries highlight the need
to anticipate the impacts of the pandemic outbreak and to
develop researches with epidemiological models. These math-
ematical models are necessary to the comprehension of the
present outbreak’s behavior, so that countries might develop
strategies to minimize the impacts on the healthcare system
and preserve life (Wu et al. 2020; Peng et al. 2020). As an
example, public administrators may find comprehensive
ground to define policies such as enforcing social distance
measures, the available versus need of laboratorial tests, plan-
ning for hospital beds, and health system resources.

In the absence of a vaccine, mathematical modeling may
assess the effectiveness of non-pharmaceutical interventions
and in its role in decreasing population contact and viral trans-
mission to control the pandemic outbreak. China hasmanaged to
control the outbreak with the deployment of isolation of its cases
and social distancing of the population (Ferguson et al. 2020).

There are some non-pharmaceutical strategies to control an
outbreak, such as containment, mitigation, and suppression.

When the containment measures fail to control the outbreak,
mitigation and suppression strategies may be adopted to post-
pone and mitigate its effects on society and the healthcare
system. Mitigation will concentrate in retarding but not nec-
essarily impeding the spread of the outbreak, reducing the
peak of medical assistance and protecting the higher risk
groups. Suppression aims to reverse the outbreaks’ growth,
diminishing the number of cases and maintaining this frame
for an indefinite time, through more extreme measures, such
as quarantining, police enforcement, mass testing, compulsory
notification, and finance support to the population in isolation,
among other actions. (Ferguson et al. 2020; Walker et al.
2020).

Concerning mathematical modeling, which supplies de-
tailed mechanisms about the outbreak dynamics, the
Susceptible-Exposed-Infected-Recovered (SEIR) epidemio-
logical model is widely adopted to characterize a pandemic
caused by COVID-19. For instance, this method was used for
decision making in Hubei, Wuhan, and Beijing (Peng et al.
2020).

This paper intends to analyze and improve up on the tradi-
tional SEIRmodel by adding important new compartments, as
well as consider the effects of non-pharmaceutical interven-
tions and the possibility of death coming from lack of avail-
able ICU beds. Moreover, such a model can also be used to
prototype and analyze the cause/effect relation of a multitude
of actions and public health strategies, so the most effective
ones can be chosen for each country, city, or province. Since
every affected region is different, it is of utmost importance to
help organizations to determine not only the number of active
cases but also the number of hospital beds, and ICUs will be
needed at a certain point in time to maximize the usage of
public resources.

Methodology

The SUEIHCDR model

We present a generalized SEIR compartmental model using
novel and recently suggested ideas and concepts (APMonitor
Optimization Suite 2020; Peng et al. 2020, University of Basel
2020). An application of our model using real mobility data to
investigate different future projections for the USA has been
recently reported (Kennedy et al. 2020). It is composed of
eight compartments: Susceptible, Unsusceptible, Exposed,
Infected, Hospitalized, Critical, Dead, and Recovered
(SUEIHCDR; Fig. 1).

The model assumes, at first that, the whole population is
susceptible (Eq. 1) to the disease. As time progresses, a sus-
ceptible person can either become exposed (Eq. 5) to the virus
or unsusceptible (Eq. 2).
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dS tð Þ
dt

¼ −
1−SD tð Þð ÞβS tð ÞI tð Þ

Npop
−α tð ÞS tð Þ ð1Þ

dU tð Þ
dt

¼ α tð ÞS tð Þ ð2Þ

where I(t) is the number of infectious people at time t, Npop is
the population of the country, β is the infection rate, α is a
protection rate, and SD is a social distancing factor.

As in Peng et al. (2020) we introduced a protection rate α
factor to our susceptible equation (Eq. 1). This protection rate
was introduced to account for possible decreases in the num-
ber of susceptible people to the virus caused by factors other
than social distancing, such as the usage of face masks, better
hygiene, more effective contact tracing, and possible vaccines
and or drugs that may prevent infection. Different from the
aforementioned study of Peng et al. (2020), however, we var-
ied α across time (Eq. 3). This time variation was introduced
to reliably model people’s behavior, who are not commonly
too concerned about the disease in the earlier stages of the
epidemic, but as the number of infected and deaths increases,
become more cautious about the virus.

α tð Þ ¼ α0
log t þ 1ð Þ
log t f
� � ð3Þ

where α0 is the reference value that is the maximum value and
tf is the final time for the prediction.

Furthermore, we also introduced a social distancing factor
SD, which also varies with time (Eq. 4). Social distancing was
modeled as a logistic curve so that the model could account for

the date (tsd) when a possible quarantine measurement starts.
As mentioned before, real data for mobility can be used in our
model when available; using real mobility data have been
shown to be important when long-term future projections are
intended (Kennedy et al. 2020).

SD tð Þ ¼ SD0
1

1þ e− t−tsdð Þ ð4Þ

where SD0 is SD reference value, that is the maximum value,
and tsd is the time the SD increases until reaching SD0.

Exposed people become infectious after an incubation time
of 1/γ (Eq. 5).

dE tð Þ
dt

¼ 1−SD tð Þð ÞβS tð ÞI tð Þ
Npop

−γE tð Þ ð5Þ

Infected people stay infected for a period of 1/δ (Eq.
6) days and can have three different outcomes.
Considering m as a specific parameter to account the
fraction of infectious that is asymptomatic, it is possible
to determine that a percentage of the infected (1 −m) go
hospitalized, another percentage of them (l) may die
without hospitalization, and the rest of them (m − l) re-
cover. l was introduced as a function of time (Eq. 7) so
that the time when hospital bed became unavailable
could be modeled (tm), as well as the duration that
hospital was full (dur).

dI tð Þ
dt

¼ γE tð Þ−δI tð Þ ð6Þ

Fig. 1 SUEIHCDR model info
graphic description; it is
composed of eight compartments
Susceptible, Unsusceptible,
Exposed, Infected, Hospitalized,
Critical, Dead, and Recovered. β
is the infection rate, SD is a social
distancing factor, α is a protection
rate,m is the fraction of infectious
that are asymptomatic, 1 −m is
the percentage of the infected go
hospitalized, l is the percentage of
infected people that may die
without hospitalization, 1 − c is
the percentage of hospitalized
people that recovers, c is the
fraction of hospitalized that
becomes critical cases needing to
go an intensive care unit (ICU),
and f is the fraction of people in
critical state that dies
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l tð Þ ¼ l0
1

1þ e−rl t−tlð Þ ; t < 2tl þ dur

0:95l0 t−2tlþdurð Þ; t≥2tl þ dur
ð7Þ

where l0 is the inclination of the angular coefficient of the
ramp up until reaching the maximum value reference value
and tl is the time when people started dying due the lack of
available ICUs.

Hospitalized people (Eq. 8) stay hospitalized for 1/ζ days
and can either recover (1 − c) or become critical (c—specific
parameter to account the fraction of hospitalized that becomes
critical cases) needing to go an intensive care unit (ICU).

dH tð Þ
dt

¼ 1−mð ÞδI tð Þ þ 1− fð ÞεC tð Þ−ζH tð Þ ð8Þ

where ε is the inverse of the time people stay in the ICU.
A person stays on average 1/ε in the ICU (Eq. 9) and can

either go back to the hospital (1 − f) or die (f—specific param-
eter to account the fraction of people in critical state that died).

dC tð Þ
dt

¼ cζH tð Þ−εC tð Þ ð9Þ

Therefore, recovered people (Eq. 10) can either come
straight from infection when the case is mild (m − l) or from
the hospital when the case is no critical (1 − c).

Table 1 Input
coefficients to the model
and respective ranges

Coeff. Lower bound Higher bound

α 0.01 0.12

β 0.5 1.2

γ 0.5 5.00

δ 0.07 0.50

ζ 0.20 0.33

ε 0.05 0.14

m 0.65 0.85

l 0.005 0.02

rl 0.00 0.16

tl 0.00 40

dur 5 40

c 0.10 0.50

f 0.35 0.55

E0 E0/2 2E0

I0 I0/2 2I0

H0 H0/2 2H0

C0 C0/2 2C0

Re0 Rec0/2 2Rec0

D0 D0/2 2E0

SD 0.00 0.75

msd 0.00 40

Table 2 Optimized inputs for Germany, Brazil, Spain, Italy, South Korea, Portugal, Switzerland, Thailand, and USA, respectively, for June 18, 2020.
μ stands for the mean across countries and STD for the standard deviation

Cf BR GER ITA POR KOR SPA SWI THA USA μ SD

α 0.016 0.034 0.024 0.022 0.036 0.023 0.034 0.034 0.020 0.027 0.007

β 0.63 0.61 0.63 0.62 0.60 0.57 0.57 0.40 0.66 0.59 0.07

γ 1.02 0.76 1.25 1.23 0.70 0.80 1.18 0.93 1.12 1.00 0.20

δ 0.09 0.11 0.10 0.11 0.13 0.11 0.13 0.14 0.13 0.12 0.02

ζ 0.26 0.27 0.16 0.25 0.25 0.22 0.25 0.26 0.23 0.24 0.03

ε 0.09 0.11 0.09 0.08 0.10 0.06 0.09 0.10 0.08 0.09 0.01

m 0.90 0.90 0.91 0.93 0.96 0.85 0.95 0.96 0.89 0.92 0.04

l 0.004 0.010 0.006 0.006 0.003 0.008 0.010 0.002 0.003 0.006 0.003

rl 0.08 0.08 0.08 0.08 0.11 0.07 0.09 0.09 0.06 0.08 0.01

tl 17.47 24.80 23.71 17.95 25.35 22.22 19.79 16.75 18.60 20.74 3.14

dur 21.65 24.38 26.10 23.25 19.84 25.39 22.49 24.33 24.45 23.54 1.84

c 0.29 0.26 0.25 0.19 0.21 0.27 0.33 0.17 0.25 0.25 0.05

f 0.31 0.35 0.32 0.33 0.32 0.28 0.42 0.21 0.31 0.32 0.05

E0 1357 1059 1967 922 1036 13,223 1134 487 736 2436 3834

I0 987 1289 775 1084 680 15,784 829 450 496 2486 4709

H0 1038 1386 814 1138 626 16,661 843 448 546 2611 4975

C0 31 39 36 20 37 600 31 38 12 94 179

Rec0 0 0 0 0 0 0 0 0 0 0 0

D0 0 0 0 0 0 833 0 0 0 93 262

SD 0.60 0.53 0.57 0.62 0.64 0.60 0.56 0.51 0.51 0.57 0.04

msd 5 9 7 3 5 3 7 6 17 7 4

F 1.8 4.9 3.5 6.1 1.4 1.9 2.4 2.1 2.0 2.9 1.5
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dR tð Þ
dt

¼ m−lð ÞδI tð Þ þ 1−cð ÞζH tð Þ ð10Þ

Death (Eq. 11) arises either from lack of available treatment
(l), or from critical cases in the ICU ( f ).
dD tð Þ
dt

¼ lδI tð Þ þ f εC tð Þ ð11Þ

At last, the effective reproduction numberRt (Eq. 12) of our
model can be estimated as

Rt tð Þ ¼ 1−SD tð Þð Þβ
δ

1−
∫t0α tð ÞS tð Þ

Npop

 !
ð12Þ

Solving and testing the model

We used the fourth order Runge-Kutta numerical method to
solve our system of ordinary differential equation in
MATLAB (Mathworks Inc.R17a). To test our model we gath-
ered active cases, recovered cases, accumulated deaths, and
tests per million people data from the WHO of ten different
countries in different stages of the epidemic: Germany, Brazil,

Spain, Italy, South Korea, Portugal, Switzerland, Thailand, and
USA. Lack of testing and under-notification of active cases has
been largely reported for the COVID-19 (Hasell et al.
2020;WorldoMeter, 2020; UFPel, 2020); in consequence, ac-
tive cases data were corrected by a factor. The correction factor
was found via optimization, as described in the next paragraph,
using a range of possibilities estimated based on previous re-
ports. Lower bound was determined considering the death rate
of the country to be as described in Verity et al. (2020),
corrected by age (young: 0.32%; older adults (60+): 6.4%; se-
nior older adults (80+): 13.4%). Upper bound was set by con-
sidering the same age proportional differences in death rate, as
previously mentioned, but adjusting death rate of each country
by the death rate in Iceland (country with the greatest
percentage of test per inhabitant Gudbjartsson et al. 2020).

We used a custom build MATLAB global optimization
algorithm usingMonte Carlo iterations algorithm andmultiple
local minima searches. The algorithm was tested for the best
solution considering 21 different inputs to the model within
ranges obtained from the WHO and several publications (Liu
et al. 2020; Ranjan 2020; Wu et al. 2020; Table 1) and 1
correction factor (F) for the active cases (Table 2). The algo-
rithm was used to minimize a goal function (J) as a combina-
tion of Active Cases and Death time series (Eq. 13).

Fig. 2 Optimization algorithm results after 10,000 runs. The Pareto front was determined considering two simultaneous objectives active cases RMSE
and deaths RMSE. The best 100 solutions were used to initialize the MATLAB multi-objective genetic algorithm

5Res. Biomed. Eng. (2022) 38:1–14



J ¼ 1−pð ÞRMSE Active Casesð Þ þ pRMSE Deathsð Þ
p ¼ rms Active Casesð Þ=rms Deathð Þ

rms Active Casesð Þ
rms Deathð Þ þ 1

8>><
>>:

ð13Þ

Data under 500 active cases were discarded. Initial values
for each compartmental parameter had ranges proportional to
the following initial values (Table 1): infected initial values
(I0) were determined as the corrected actives cases first value
greater than 50; exposed initial values (E0) were 0.5 × I0;
hospitalized initial values (H0) were 0.2 × I0; critical cases
initial values (C0) were 0.7 × I0; death initial values (D0) were
obtained from the accumulated deaths real data; similarly,
recovered initial values (Rec0) were obtained from the recov-
ered real data. Optimization algorithm results were considered
after 10,000 runs; from them, the 100 best solutions were used
as initial population for a multi-objective genetic algorithm
(MATLAB function: gamultiobj) to determine a Pareto front
of solutions considering two simultaneous objectives RMSE
(active cases) and RMSE (Deaths) (Fig. 2). Lower and upper
bounds for the genetic algorithm were set as 40% variations to

the best solution found out of the previous optimization algo-
rithm runs, and 100 generations were created.

All fitting processes were done for data from the day 1 of
the outbreak for each country up to April 18, May 3, May 18,
June 3, and June 18, 2020, to test the accuracy of the future
predictions that can be made based on the model and optimi-
zation results. Furthermore, 2% perturbations to the model
coefficients were used to determine via Monte Carlo a 95%
confidence interval for the results. Results are presented as
mean (standard deviation).

Results

Besides introducing more compartments than a traditional
SEIR model (e.g., hospitalized) the three main differences of
our model SUEIHCDR to a standard SEIR model is the addi-
tion ofα SD and l.Our results suggest that our model was able
to accurately fit the data of all countries when one goal is
considered (Figs. 3 and 4). However, when we tried to fit
the model two both accumulated deaths and active cases, we
found that we could not reproduce with the same accuracy the
data for all analyzed countries (Fig. 5).

Fig. 3 Model results for active cases and accumulated deaths for all
studies countries, considering minimizing deaths RMSE. Optimization
was done considering end-date June 3 (black circles for deaths and green

circle for active cases). The red circles (deaths) and blue circles (active
cases) indicate real data up to June 18
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Table 2 shows the optimization parameter results for
June 18, 2020, for Germany, Brazil, Spain, Italy, South
Korea, Portugal, Switzerland, Thailand, and the USA consid-
ering the solution from the Pareto front (Fig. 2) that minimized
J (Eq. 12). Mean protective rate (α) was 0.027 (0.007); mean
infectious rate (β) was 0.59 (0.07); mean fraction of infectious
that are asymptomatic or mild (m) was 0.92 (0.04); the mean
fraction of infectious people that died with no treatment (l)
was 0.006 (0.003); the fraction of severe cases that turn critical
(c) was 0.25 (0.05); the mean fraction of critical cases that are
fatal ( f ) was 0.32 (0.05), and the mean social distancing pa-
rameter (SD) was 0.57 (0.04). Table 3 shows the inverse
values of γ, δ, ζ, and ε: the mean latent periodwas 1 (0.2) days;
the mean infectious period was 8.9 (1.5); the mean hospital-
ized period was 4.3 (0.7) days, and the mean period in ICU
was 11.5 (2.1) days. The basic reproduction number (R0) was
2.24 (0.52), and the death rate was 1.2 (0.5)%.

Figures 3, 4, and 5 show the model results for all studied
countries. Figure 3 shows results considering the two-goal
optimization Pareto front that minimized death RMSE.
Optimization was done considering end-date June 3 (black
circles for deaths and green circle for active cases). The red
circles (deaths) and blue circles (active cases) indicate “future”
real data for the next 15 days. Similarly, Fig. 4 shows the

results for the two-goal optimization, but now minimizing
active cases RMSE and end-date May 3. Finally, Fig. 5 shows
the results considering the solution from Pareto front that min-
imized J for end-date May 18th.

Table 4 shows the model future projection of 15, 30, 45,
and 60 days for total number of infected, deaths, hospitalized,
peak hospitalization, ICU patients, peak day ICU, and recov-
ered patients. Results indicate deaths in the thousands for ev-
ery country but Korea and Thailand. USA has a peak day of
more than 100 thousand hospitalized patients. Additionally,
Spain projects almost 2 million recovered people by the end of
August 2020. According to the model estimations, Brazil will
have more than 200 thousand ICU patients treated by the end
of July 18 and 70 thousand more in the following 30 days;
peak day will demand 35 thousand ICU beds.

Finally, Tables 5, 6, and 7 shows the percentage errors
comparing model results to real data for the day of the analy-
ses and future projections of 15, 30, 45, and 60 days. Table 5
shows the results for the optimization minimizing J, Table 6
shows the minimizing death RMSE, and Table 7 shows the
minimizing active case RMSE. Thirty-day projections were
performed twice: first, as for the other time windows, consid-
ering future date June 18, and second considering future data
May 18. As expected, errors got larger for farther into the

Fig. 4 Model results for active cases and accumulated deaths for all
studies countries, considering minimizing active cases RMSE.
Optimization was done considering end-date May 3 (black circles for

deaths and green circle for active cases). The red circles (deaths) and blue
circles (active cases) indicate real data up to June 18
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future projections. In general, projected deaths had smaller
percentage errors. Because of recent re-opening of countries
such as Portugal and Spain 30-day future projections consid-
ering data from 60 days ago to estimate 30 days ago yielded

better results than data from 30 days ago to estimate present
day (May 18). As it can be seen in Fig. 4, there was a sudden
increase in the number of active cases for both countries in the
past days that were not predicted by the model whose active
case curves kept on a steady decline.

Discussion

Considering the rapid growing COVID-19 pandemic and the
necessity of modeling the phenomenon to make future predic-
tions in the number of cases, deaths, but ultimately in the
number of hospital and ICU beds, we present a novel gener-
alized SEIR compartmental model with the addition of the
unsusceptible, hospitalized, critical, and dead compartments.
Furthermore, we introduce three new parameters to the model
(α, SD, and l). We tested our model using a global optimiza-
tion algorithm and data collected from the WHO for several
countries. Our main findings were as follows: (a) our model
was able to accurately fit the either deaths or active cases data
of all countries tested independent of what stage of the epi-
demic they were using optimized coefficient values in agree-
ment with recent reports; (b) when trying to fit both sets of
data at the same time, fit was good for some countries, but not
for all; (c) using our model, large ranges for each input, and

Fig. 5 Model results for active cases and accumulated deaths for all
studies countries, considering minimizing both the active cases and the
death RMSE. Optimization was done considering end-date May 18

(black circles for deaths and green circle for active cases). The red circles
(deaths) and blue circles (active cases) indicate real data up to June 18

Table 3 Inverse of the model optimized coefficients of γ, δ, ζ, and ε
representing latent, infectious, hospitalization, and critical cases mean
duration in days, as well as the model estimated basic reproductive
number (R0) and the death rate (DR) for June 18, 2020, for Germany,
Brazil, Spain, Italy, South Korea, Portugal, Switzerland, Thailand, and
USA, respectively. μ stands for the mean across countries and STD for
the standard deviation

Country R0 DR Latent Infectious Hospitalized Critical

BR 2.94 0.012 1.0 11.6 3.9 10.6

GER 2.50 0.017 1.3 8.9 3.7 8.9

ITA 2.87 0.013 0.8 10.5 6.2 11.1

POR 2.18 0.010 0.8 9.2 4.1 11.8

KOR 1.71 0.006 1.4 7.8 4.0 10.5

SPA 2.14 0.020 1.3 9.4 4.5 16.5

SWI 1.96 0.015 0.8 7.8 4.1 11.4

THA 1.38 0.005 1.1 7.0 3.9 10.0

USA 2.45 0.012 0.9 7.7 4.4 12.4

μ 2.24 0.012 1.0 8.9 4.3 11.5

STD 0.52 0.005 0.2 1.5 0.7 2.1

8 Res. Biomed. Eng. (2022) 38:1–14



optimization we predict death values for 15, 30, 45, and
60 days ahead with errors in the order of 5, 10, 20, and
80%, respectively, for all countries; (d) sudden changes in
active curves behavior cannot be predicted by the model with-
out coefficients estimated from outside sources.

Our results show that that our model can fit data from several
countries, despite obvious different COVID-19 scenarios
among them, such as South Korea and Spain for example. In
order to do that, among other things, we estimated the infection
rate (β) as an important determinant in the growth of the

infected cases mainly in the early stages of the epidemic and a
social distancing coefficient (SD) and a protective coefficient
(α) that can cause decreases in rate of transmission. This esti-
mation process provides information to compare different so-
cial distance measures adopted among several countries. South
Korea results, for instance, exhibits decreased effective trans-
mission rate β (1 − SD) compared with other countries and the
best social distancing at a rate of 64%. This result concurs with
South Korea political decisions (Shin 2020). As our model does
not have a quarantined state, the effective testing, contact

Table 4 Model results for future projection (in thousands of people) of 15, 30, 45, and 60 days for total number of infected, deaths, hospitalized, peak
hospitalization, ICU patients, peak day ICU, and recovered patients

Country Days Infect Deaths Hosp peak_Hos ICU peak_ICU REC

BR 15 7.21E + 06 7.33E + 04 6.61E + 05 4.65E + 04 1.55E + 05 3.46E + 04 6.05E + 06

GER 15 4.92E + 05 8.81E + 03 5.79E + 04 3.90E + 03 1.51E + 04 2.27E + 03 4.83E + 05

ITA 15 3.47E + 06 4.94E + 04 3.84E + 05 3.72E + 04 9.14E + 04 1.53E + 04 3.39E + 06

POR 15 2.65E + 05 2.66E + 03 2.19E + 04 1.34E + 03 4.01E + 03 6.95E + 02 2.58E + 05

KOR 15 4.29E + 04 2.82E + 02 2.78E + 03 6.26E + 02 6.17E + 02 1.01E + 02 4.26E + 04

SPA 15 1.86E + 06 3.88E + 04 3.69E + 05 2.50E + 04 9.50E + 04 2.13E + 04 1.81E + 06

SWI 15 1.40E + 05 2.22E + 03 8.89E + 03 8.43E + 02 2.97E + 03 5.40E + 02 1.38E + 05

THA 15 1.23E + 04 5.95E + 01 1.10E + 03 4.48E + 02 2.22E + 02 6.68E + 01 1.22E + 04

USA 15 1.01E + 07 1.32E + 05 1.38E + 06 1.07E + 05 3.37E + 05 6.85E + 04 9.94E + 06

BR 30 8.11E + 06 9.18E + 04 8.04E + 05 4.65E + 04 2.00E + 05 3.46E + 04 7.14E + 06

GER 30 4.92E + 05 8.85E + 03 5.81E + 04 3.90E + 03 1.52E + 04 2.27E + 03 4.83E + 05

ITA 30 3.48E + 06 5.07E + 04 3.91E + 05 3.72E + 04 9.50E + 04 1.53E + 04 3.41E + 06

POR 30 2.67E + 05 2.77E + 03 2.25E + 04 1.34E + 03 4.25E + 03 6.95E + 02 2.62E + 05

KOR 30 4.29E + 04 2.82E + 02 2.78E + 03 6.26E + 02 6.17E + 02 1.01E + 02 4.26E + 04

SPA 30 1.87E + 06 3.97E + 04 3.73E + 05 2.50E + 04 9.81E + 04 2.13E + 04 1.82E + 06

SWI 30 1.40E + 05 2.23E + 03 8.91E + 03 8.43E + 02 3.00E + 03 5.40E + 02 1.38E + 05

THA 30 1.23E + 04 5.96E + 01 1.10E + 03 4.48E + 02 2.22E + 02 6.68E + 01 1.22E + 04

USA 30 1.01E + 07 1.35E + 05 1.40E + 06 1.07E + 05 3.46E + 05 6.85E + 04 9.97E + 06

BR 45 8.82E + 06 1.07E + 05 9.20E + 05 4.65E + 04 2.39E + 05 3.46E + 04 8.01E + 06

GER 45 4.92E + 05 8.87E + 03 5.81E + 04 3.90E + 03 1.52E + 04 2.27E + 03 4.83E + 05

ITA 45 3.48E + 06 5.13E + 04 3.94E + 05 3.72E + 04 9.67E + 04 1.53E + 04 3.42E + 06

POR 45 2.68E + 05 2.82E + 03 2.28E + 04 1.34E + 03 4.37E + 03 6.95E + 02 2.64E + 05

KOR 45 4.29E + 04 2.83E + 02 2.78E + 03 6.26E + 02 6.18E + 02 1.01E + 02 4.26E + 04

SPA 45 1.87E + 06 4.02E + 04 3.75E + 05 2.50E + 04 9.98E + 04 2.13E + 04 1.82E + 06

SWI 45 1.40E + 05 2.23E + 03 8.92E + 03 8.43E + 02 3.00E + 03 5.40E + 02 1.38E + 05

THA 45 1.23E + 04 5.96E + 01 1.10E + 03 4.48E + 02 2.22E + 02 6.68E + 01 1.22E + 04

USA 45 1.01E + 07 1.36E + 05 1.40E + 06 1.07E + 05 3.51E + 05 6.85E + 04 9.98E + 06

BR 60 9.38E + 06 1.20E + 05 1.01E + 06 4.65E + 04 2.70E + 05 3.46E + 04 8.71E + 06

GER 60 4.92E + 05 8.87E + 03 5.82E + 04 3.90E + 03 1.52E + 04 2.27E + 03 4.83E + 05

ITA 60 3.48E + 06 5.16E + 04 3.95E + 05 3.72E + 04 9.75E + 04 1.53E + 04 3.43E + 06

POR 60 2.68E + 05 2.84E + 03 2.30E + 04 1.34E + 03 4.43E + 03 6.95E + 02 2.65E + 05

KOR 60 4.29E + 04 2.83E + 02 2.78E + 03 6.26E + 02 6.18E + 02 1.01E + 02 4.26E + 04

SPA 60 1.87E + 06 4.04E + 04 3.76E + 05 2.50E + 04 1.01E + 05 2.13E + 04 1.82E + 06

SWI 60 1.40E + 05 2.23E + 03 8.92E + 03 8.43E + 02 3.01E + 03 5.40E + 02 1.38E + 05

THA 60 1.23E + 04 5.96E + 01 1.10E + 03 4.48E + 02 2.22E + 02 6.68E + 01 1.22E + 04

USA 60 1.01E + 07 1.37E + 05 1.40E + 06 1.07E + 05 3.53E + 05 6.85E + 04 9.99E + 06
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tracing, and quarantining implemented by Korea was reflected
not only in a greater SD values but also an increased protection
rate of α = 0.036. The worse protection rates were found for
Brazil (α = 0.016) and the USA (α = 0.02) most likely caused
by poor political decision and downplaying by officials of the
seriousness of the virus in the beginning of the crisis (Abutaleb
et al. 2020; Andreoni 2020).

Furthermore, in order to adequately model, countries
where the number of deaths are critically above the expect-
ed number considering COVID-19 death mortality rates
even considering possible age effects (Li et al. 2020;
WHO 2020), we introduced a coefficient l to the model.

This coefficient represents the percentage of people that
went from infectious to death without access to hospital
care. Introducing l was a novel idea in SEIR model studies.
It was done to account for the sad reality that many people
are facing during the COVID-19 pandemic, as many people
have passed away for the lack of available ICU and/or hos-
pital beds, especially in some regions where the outbreak
was not early contained, Italy for example (Tondo 2020).
Nevertheless, in order to accurately estimate the value of l,
one need to know c (specific parameter to account the frac-
tion of hospitalized that becomes critical cases) and f

Table 5 Percentage errors
comparing model future
projections of 15, 30, 45, and
60 days with real data for the day
of the analysis (May 18, 2020),
considering minimizing both
active cases and deaths RMSE

Country Optz Days Cases Deaths Abs
C

Abs
D

Days Cases Deaths Abs
C

Abs
D

BR J 0 − 0.81 − 0.03 0.81 0.03 15 − 0.82 0.07 0.82 0.07

GER J 0 − 0.37 0.10 0.37 0.10 15 − 0.24 0.50 0.24 0.50

ITA J 0 − 0.88 0.37 0.88 0.37 15 − 0.74 0.52 0.74 0.52

POR J 0 − 0.39 0.35 0.39 0.35 15 − 0.49 0.43 0.49 0.43

KOR J 0 − 0.99 0.01 0.99 0.01 15 − 0.99 − 0.01 0.99 0.01

SPA J 0 − 0.53 0.61 0.53 0.61 15 − 0.48 0.46 0.48 0.46

SWI J 0 − 0.73 0.12 0.73 0.12 15 − 0.88 0.03 0.88 0.03

THA J 0 − 0.96 0.02 0.96 0.02 15 − 0.96 0.15 0.96 0.15

USA J 0 − 0.95 0.04 0.95 0.04 15 − 0.58 0.63 0.58 0.63

μ − 0.73 0.18 0.73 0.18 − 0.69 0.31 0.69 0.31

STD 0.25 0.22 0.25 0.21 0.26 0.25 0.26 0.24

BR J 30 − 0.90 0.08 0.90 0.08 45 − 0.80 0.23 0.80 0.23

GER J 30 − 0.66 0.30 0.66 0.30 45 − 0.88 − 0.05 0.88 0.05

ITA J 30 − 0.87 1.11 0.87 1.11 45 − 0.77 1.21 0.77 1.21

POR J 30 − 0.49 0.86 0.49 0.86 45 − 0.40 0.78 0.40 0.78

KOR J 30 − 0.99 0.10 0.99 0.10 45 − 0.99 0.05 0.99 0.05

SPA J 30 − 0.33 1.10 0.33 1.10 45 − 0.74 1.36 0.74 1.36

SWI J 30 − 0.87 0.20 0.87 0.20 45 − 0.79 0.42 0.79 0.42

THA J 30 − 0.97 0.21 0.97 0.21 45 − 0.96 0.28 0.96 0.28

USA J 30 − 0.95 1.54 0.95 1.54 45 − 0.87 1.15 0.87 1.15

μ − 0.78 0.61 0.78 0.61 − 0.80 0.60 0.80 0.61

STD 0.23 0.55 0.23 0.55 0.17 0.53 0.17 0.52

BR J 60 − 0.69 0.40 0.69 0.40 30* 0.44 0.86 0.44 0.86

GER J 60 − 0.99 − 0.67 0.99 0.67 30* − 0.26 0.39 0.26 0.39

ITA J 60 − 0.87 2.17 0.87 2.17 30* − 1.32 − 0.06 1.32 0.06

POR J 60 − 0.82 1.67 0.82 1.67 30* − 1.76 − 0.40 1.76 0.40

KOR J 60 − 1.00 0.04 1.00 0.04 30* − 0.08 0.10 0.08 0.10

SPA J 60 − 0.77 2.50 0.77 2.50 30* − 1.30 0.29 1.30 0.29

SWI J 60 − 0.05 1.03 0.05 1.03 30* − 0.73 0.31 0.73 0.31

THA J 60 − 0.74 1.18 0.74 1.18 30* − 0.89 − 0.38 0.89 0.38

USA J 60 − 0.91 2.12 0.91 2.12 30* − 1.43 0.20 1.43 0.20

μ − 0.76 1.16 0.76 1.31 − 0.81 0.15 0.91 0.33

STD 0.29 1.07 0.29 0.86 0.73 0.39 0.58 0.24

*30-day percentage errors in futures projections considering data fromMarch 19, 2020 to predict April 18, 2020.
μ represents the mean across countries and STD the standard deviation. Italics emphasize results related to the
choice of optimization.
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(specific parameter to account the fraction of people in
critical state that died) from outside sources.

Our model predicted a basic reproduction number R0 of
2.24 (0.52). The basic reproduction number represents the
average number of secondary cases that result from the intro-
duction of a single infectious case in a susceptible population
(Anastassopoulou et al. 2020). Considering the importance of
such parameter, several other papers have tried using different
methods to estimate this parameter for COVID-19, and our
values fall within the range of values reported so far. In their
review, Liu et al. (2020) reported two studies using stochastic
methods that estimated R0 ranging from 2.2 to 2.68, six

studies, where mathematical methods, with results ranging
of 1.5 to 6.49, and finally three studies that used statistical
methods such as exponential growth with estimations ranging
from 2.2 to 3.58.

Additionally, we found a worldwide mean of latent period
of 1 (0.2) and infectious period of approximately 8.9 (1.5)
days. The mean estimated latent period found here is smaller
than some previously reported, such as in PENG et al. (2020)
and GUAN et al. (2020) who reported estimates the latent
median times around 2–3 days. Nevertheless, our results cor-
roborate with the idea that COVID-19 transmissionmay occur
in the pre-symptomatic phase and that COVID-19 patients

Table 6 Percentage errors
comparing model future
projections of 15, 30, 45, and
60 days to real data for the day of
the analysis (May 18, 2020),
considering minimizing
deaths RMSE

Country Optz Days Cases Deaths Abs
C

Abs
D

Days Cases Deaths Abs
C

Abs
D

BR D 0 − 0.84 0.02 0.84 0.02 15 − 0.86 0.05 0.86 0.05

GER D 0 − 0.73 0.00 0.73 0.00 15 − 0.76 0.05 0.76 0.05

ITA D 0 − 0.99 0.07 0.99 0.07 15 − 0.99 0.10 0.99 0.10

POR D 0 − 0.92 0.08 0.92 0.08 15 − 0.99 0.04 0.99 0.04

KOR D 0 − 1.00 − 0.03 1.00 0.03 15 − 1.00 − 0.03 1.00 0.03

SPA D 0 − 0.99 − 0.02 0.99 0.02 15 − 0.99 − 0.05 0.99 0.05

SWI D 0 − 0.85 0.04 0.85 0.04 15 − 0.92 0.04 0.92 0.04

THA D 0 − 0.97 0.04 0.97 0.04 15 − 0.99 0.04 0.99 0.04

USA D 0 − 0.98 − 0.01 0.98 0.01 15 − 0.93 0.01 0.93 0.01

μ − 0.92 0.02 0.92 0.03 − 0.94 0.03 0.94 0.05

STD 0.09 0.04 0.09 0.03 0.08 0.04 0.08 0.02

BR D 30 − 0.91 0.07 0.91 0.07 45 − 0.65 0.40 0.65 0.40

GER D 30 − 0.80 0.08 0.80 0.08 45 − 0.88 − 0.16 0.88 0.16

ITA D 30 − 1.00 0.09 1.00 0.09 45 − 0.96 0.43 0.96 0.43

POR D 30 − 0.99 0.12 0.99 0.12 45 − 0.97 0.20 0.97 0.20

KOR D 30 − 1.00 − 0.04 1.00 0.04 45 − 1.00 − 0.02 1.00 0.02

SPA D 30 − 1.00 − 0.07 1.00 0.07 45 − 0.99 0.13 0.99 0.13

SWI D 30 − 0.97 0.09 0.97 0.09 45 − 0.91 0.15 0.91 0.15

THA D 30 − 0.99 0.10 0.99 0.10 45 − 0.95 0.30 0.95 0.30

USA D 30 − 0.99 − 0.02 0.99 0.02 45 − 0.97 0.18 0.97 0.18

μ − 0.96 0.05 0.96 0.08 − 0.92 0.18 0.92 0.22

STD 0.07 0.07 0.07 0.03 0.11 0.19 0.11 0.13

BR D 60 0.63 1.46 0.63 1.46 30* 0.10 0.69 0.10 0.69

GER D 60 − 0.97 − 0.36 0.97 0.36 30* − 0.92 − 0.33 0.92 0.33

ITA D 60 − 0.98 0.73 0.98 0.73 30* − 0.32 0.46 0.32 0.46

POR D 60 − 0.97 0.36 0.97 0.36 30* − 0.59 0.43 0.59 0.43

KOR D 60 − 1.00 0.01 1.00 0.01 30* − 0.06 0.15 0.06 0.15

SPA D 60 − 0.98 0.62 0.98 0.62 30* − 0.48 0.31 0.48 0.31

SWI D 60 − 0.64 0.61 0.64 0.61 30* − 0.48 0.13 0.48 0.13

THA D 60 − 0.69 1.37 0.69 1.37 30* − 1.03 − 0.59 1.03 0.59

USA D 60 − 0.94 1.78 0.94 1.78 30* − 1.28 0.11 1.28 0.11

μ − 0.73 0.73 0.87 0.81 − 0.56 0.15 0.58 0.35

STD 0.52 0.70 0.16 0.59 0.45 0.40 0.42 0.21

*30-day percentage errors in futures projections considering data fromMarch 19, 2020 to predict April 18, 2020.
μ represents the mean across countries and STD the standard deviation. Italics emphasize results related to the
choice of optimization.
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may have an inconsiderable latent non-infectious period. The
mean infectious period of 9 days is within expected range
estimated by recent publications (Guo et al. 2020; Hou et al.
2020).

Our results indicate that, despite all uncertainty and biases
in the data collected, lack of testing in several countries and
possible changes in policies and people’s behavior regarding
the COVID-19 our proposed mathematical modeling may
help predict 15 days ahead values of total deaths with errors
in the order of 5% and 30 days ahead values of active cases
with errors in the order of 30%. Moreover, a reliable 2-week
prediction of the number of deaths suggests that the model

may also be used to determine the number of hospital and
ICU beds that a region will need ahead of time enough for
people to prepare themselves for it. Unfortunately, we could
not get reliable data of number of hospitalizations and ICU
patients in the different countries studied here to verify the
certainty of our predictions for the values estimated by the
model, and we urge future research to do so. Furthermore,
future application of our model should consider including
stratification by age groups (Li et al. 2020) and coefficients
to account for temperature variations and people’s density
(Chen et al. 2020; Wang et al. 2020).

Table 7 Percentage errors
comparing model future
projections of 15, 30, 45, and
60 days to real data for the day of
the analysis (May 18, 2020),
considering minimizing active
cases RMSE

Country Optz Days Cases Deaths Abs
C

Abs
D

Days Cases Deaths Abs
C

Abs
D

BR C 0 − 0.80 − 0.05 0.80 0.05 15 − 0.82 0.14 0.82 0.14

GER C 0 − 0.37 0.10 0.37 0.10 15 − 0.24 0.98 0.24 0.98

ITA C 0 − 0.88 0.37 0.88 0.37 15 − 0.80 0.81 0.80 0.81

POR C 0 − 0.39 0.35 0.39 0.35 15 − 0.49 0.43 0.49 0.43

KOR C 0 − 0.98 1.21 0.98 1.21 15 − 0.99 0.07 0.99 0.07

SPA C 0 − 0.52 0.90 0.52 0.90 15 − 0.48 0.46 0.48 0.46

SWI C 0 − 0.73 0.12 0.73 0.12 15 − 0.88 0.03 0.88 0.03

THA C 0 − 0.96 0.15 0.96 0.15 15 − 0.96 0.15 0.96 0.15

USA C 0 − 0.94 0.77 0.94 0.77 15 − 0.58 0.63 0.58 0.63

μ − 0.73 0.44 0.73 0.45 − 0.69 0.41 0.69 0.41

STD 0.24 0.43 0.24 0.41 0.26 0.34 0.26 0.34

BR C 30 − 0.88 0.46 0.88 0.46 45 − 0.80 0.17 0.80 0.17

GER C 30 − 0.66 0.30 0.66 0.30 45 − 0.88 − 0.09 0.88 0.09

ITA C 30 − 0.86 1.66 0.86 1.66 45 − 0.75 1.24 0.75 1.24

POR C 30 − 0.48 1.28 0.48 1.28 45 − 0.40 0.76 0.40 0.76

KOR C 30 − 0.98 2.04 0.98 2.04 45 − 0.98 0.04 0.98 0.04

SPA C 30 − 0.33 1.50 0.33 1.50 45 − 0.73 1.46 0.73 1.46

SWI C 30 − 0.87 0.20 0.87 0.20 45 − 0.78 0.54 0.78 0.54

THA C 30 − 0.99 1.40 0.99 1.40 45 − 0.96 0.28 0.96 0.28

USA C 30 − 0.93 3.07 0.93 3.07 45 − 0.87 1.19 0.87 1.19

μ − 0.78 1.32 0.78 1.32 − 0.80 0.62 0.80 0.64

STD 0.23 0.92 0.23 0.92 0.17 0.57 0.17 0.55

BR C 60 − 0.69 0.44 0.69 0.44 30* 0.86 0.44 0.86 0.44

GER C 60 − 0.99 − 0.67 0.99 0.67 30* 0.39 − 0.30 0.39 0.30

ITA C 60 − 0.87 2.17 0.87 2.17 30* − 0.06 − 1.32 0.06 1.32

POR C 60 − 0.82 1.67 0.82 1.67 30* − 0.40 − 1.76 0.40 1.76

KOR C 60 − 0.99 1.53 0.99 1.53 30* 0.20 − 1.60 0.20 1.60

SPA C 60 − 0.77 2.50 0.77 2.50 30* 0.29 − 1.30 0.29 1.30

SWI C 60 − 0.06 1.09 0.06 1.09 30* 0.31 − 0.78 0.31 0.78

THA C 60 − 0.83 1.12 0.83 1.12 30* − 0.41 − 0.92 0.41 0.92

USA C 60 − 0.91 1.69 0.91 1.69 30* 0.20 − 1.09 0.20 1.09

μ − 0.77 1.28 0.77 1.43 0.16 − 0.96 0.35 1.06

STD 0.28 0.95 0.28 0.67 0.40 0.69 0.23 0.50

* 30-day percentage errors in futures projections considering data fromMarch 19, 2020 to predict April 18, 2020.
μ represents the mean across countries and STD the standard deviation. Italics emphasize results related to the
choice of optimization.
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Additionally, for Brazil where the active cases are still fast-
growing errors in prediction can be large (Fig. 4). The larger
errors in such cases happened because there is less data for the
optimization process to fit the data to the models’ parameters
and the fact the active cases and accumulated death curves are
still, approximately, exponentially growing (Ranjan 2020).
Because of the simplicity of the curve, different optimization
solutions can fit the data but yield quite different future pro-
jections. For example, different combinations of α and β may
cause similar behavior patterns for the beginning of the curve.
Our results are in agreement with recent study by Ranjan
(2020), who adds that modeling of an epidemic during its
progress is very challenging as the parameters such as trans-
mission rate and basic reproduction number are different for
different geographical regions and depend on many social and
environmental factors. They also concluded that the early
stage of an epidemic is relatively easy tomodel and the model-
ing of later stages to predict the decline and eventual flattening
of the curve is very challenging as more known parameters
need to be included in the model. The inclusion of effects due
to isolation and quarantine adds to the complication. Although
technically we solved this issue by including in our model
three time-changing coefficients α, SD, and l, they are hard
to find by optimization for countries in the beginning stages.
This happens mainly because SD and l are time-dependent
triggered and the optimization process attributes random
values for both these coefficients and their time “activations.”
With larger tsd and tl than current time, different values of SD
and l can yield the same temporal trends for the beginning of
the curves but significantly different behaviors after times tsd
and tl. In other words, in countries where the epidemic is still
in its pre-peak stages, especially during the fast-initial grow-
ing phase, some of the model coefficients, especially SD, α,
tsd, and tl, should be estimated from outside sources and/or
used to infer possible future scenarios dependent upon future
defined policies, such as, for example, an enforcement of so-
cial distance measures. Furthermore, sudden changes in SD
after a period may also cause a rapid increase in active cases
that cannot be predicted by the model (e.g., Figure 4; Spain,
and Portugal); to predict such cases, data from SD and ideally
protection rates should be obtained from outside sources.
Studies to test such hypothesis should be made.

Conclusion

In response to the rapid global dissemination of the COVID-
19, on the 11th of Mars the WHO has declared the outbreak a
pandemic motivating further research in epidemiological
mathematical modelling. The results suggest that the present-
ed model may be used to predict 15 days ahead values of total
deaths with errors in the order of 5%. These errors may be
minimized if social distance data are inputted into the model.

Sudden changes in social distance measures could not be pre-
dicted by the model using optimization alone.
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