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Introduction

The World Health Organization estimates that 1 in 12 
women are diagnosed with some breast abnormality in 
their lifetime (Ferlay et al., 2015; Fitzmaurice et al., 2015). 
In developing countries like India, mortality rates approach 
50% (Bray et al., 2013; Ferlay et al., 2015; Malvia et al., 
2017). The national incidence and mortality rates of 
breast cancer in India are approximately 25.8 and 12.7 per 
100,000 women, respectively (Bray et al., 2013; Ferlay et 
al., 2015; Fitzmaurice et al., 2015; Malvia et al., 2017). 
This incidence rises to 35-40 per 100,000 women in large 
metropolitan cities (such as Delhi, Chennai and Bangalore) 
(Malvia et al., 2017). There is a critical imbalance of 1 
radiologist per 100,000 persons across India, suggesting 
that access to appropriate expertise and screening facilities 
are major factors impacting detrimentally on breast cancer 
mortality (Kalyanpur, 2008). 

There is low public awareness and limited acceptability 
of breast cancer screening among Indian women. 
Significant efforts are needed to improve early breast 

Abstract

Purpose: To evaluate the robustness of multiple machine learning classifiers for breast cancer risk estimation in the 
presence of incomplete or inaccurate information. Data and methods: Open data for this study was obtained from the 
BCSC Data Resource (http://breastscreening.cancer.gov/). We conducted two ablation-type experiments to compare the 
robustness of different classifiers where we randomly switched known information to missing with a missing probability 
of pm in one experiment, and randomly corrupted the existing information with a probability of pc in another experiment. 
We considered three prominent machine-learning classifiers such as Logistic regression (LR), Random Forests (RF) 
and a custom Neural Network (NN) architecture and compared their degradation of discrimination performance as a 
function of increasing probability of missing or inaccurate data. Results: LR, RF and custom NN resulted in an Area 
Under Curve (AUC) of 0.645, 0.643 and 0.649, respectively, on a test set with 500,000 total observations. When we 
manipulated the data by varying probabilities pm and pc from 0 to 1, NN resulted in better performance in terms of 
AUC compared to RF and LR as long as less than half the data was missing/inaccurate (that is, for values of pm < 0.5 
and pc < 0.5). However, for missing (pm) or corruption (pc) probabilities above 0.5, LR gave similar performance as 
the custom NN. RF resulted in overall poorer performance when the data had additional missing or incorrect entries. 
Conclusion: In cases where the input information is missing or inaccurate, our experiments show that the proposed 
custom NN provides reliable risk estimates in medical datasets like BCSC. These results are particularly important in 
health care applications where not every attribute of the individual participant might be available.

Keywords: Breast cancer risk- machine learning- artificial neural networks- missing values- inaccurate data

RESEARCH ARTICLE

Robust Estimation of Breast Cancer Incidence Risk in Presence 
of Incomplete or Inaccurate Information

cancer detection facilities for improving access (Bagacchi, 
2016; Kalyanpur, 2008; Ragavan, 2008). It has been found 
that risk-based population screening is more effective than 
unselective population screening. The use of multifactorial 
mathematical models to predict individual risk may help 
to promote self-awareness and equip individuals with 
the necessary information to address their situation. 
Previous studies show that an individual’s absolute risk 
is modulated by known health and environmental factors 
(Amir et al., 2003; Barlow et al., 2006; Claus et al, 1991; 
Colditz et al., 1996; Dupont and Page, 1985; Evans 
and Howell, 2007; Ford et al., 1998; Gail et al., 1989; 
Hartmann et al., 2005; McPherson et al., 2000), presence 
of any BRCA genetic mutation (Claus et al, 1991; Ford 
et al., 1998; Thompson et al., 2004) and having a family 
history of breast cancer (Claus et al, 1991; Colditz et al., 
1996; McPherson et al., 2000). 

Among the prominent risk models, the Gail model 
(Gail et al., 1989) assesses risk based on a participant’s 
current age, age at menarche, age at first childbirth, 
race, ethnicity, number of first-degree relatives with a 
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history of breast cancer and the number of breast biopsy 
examinations. This risk model was based on the data 
collected from the Breast Cancer Detection Demonstration 
Project (BCDDP) in 1980. The Claus model (Claus et 
al., 1991) derives the risk score from age and detailed 
family cancer history involving the number of first- and 
second-degree relatives and the age of onset of breast 
cancer in a relative. Amir et al. (Amir et al., 2003) used 
age, body mass index, age at first childbirth, age at 
menarche, menopausal status, the number of first- and 
second-degree relatives with cancer, age of onset of breast 
cancer in a relative, bilateral cancer in a relative, ovarian 
cancer in a relative, hormonal exposure and benign breast 
disease history to predict risk. Recently, Barlow et al. 
(Barlow et al., 2006) used data collected through the Breast 
Cancer Surveillance Consortium (BCSC) (BCSC, 2018) 
to assess risk using a comprehensive list of risk factors, 
as shown in Table 1.

However, the above widely used risk prediction 
models in literature are no longer usable if any of the 
required parameters are missing or incorrect. Complete 
medical histories may not always be available in the real 
world; especially in developing countries, individuals 
often choose not to disclose details due to fear of social 
stigmatization, or they may report incorrect information 
due to a flawed recollection. A predictive classifier 
algorithm intended to be used for risk estimation in this 
setting should, therefore, be tested for robustness with 
respect to either missing and/or incorrect data. Our focus 
in this investigation was to compare the robustness of 
risk prediction models under the constraint of limited or 
incorrect information.

In a recent paper, Deist et al., (2018) compared 
various machine learning (ML) classifiers for medical 
situations such as lung cancer, head and neck cancer, 
laryngeal cancer and meningioma detection. They 
observed that relatively simple approaches such as logistic 
regression and random forests resulted in broadly better 
discriminatory performance if complete and accurate 
information was available. However, this analysis was 
only applied to complete cases with no missing values 
and assumed no corrupted values.

In this paper, we evaluated the robustness of multiple 
machine learning-based classifier algorithms for risk 
prediction in the presence of incomplete and inaccurate 
information. For this, we added simulated incomplete and 
inaccurate information into a large medical dataset and 
measured the degradation of discrimination performance. 
Section 2 of this paper discusses the dataset and our 
proposed methodology, followed by results in section 3. 
In section 4, we discussed the comparative performance 
of the machine learning classifiers. We also considered a 
visualization of results for better clinical interpretation of 
the predicted risk scores.

Materials and Methods

Dataset
The data for this study was obtained from the 

BCSC Data Resource (more information at http://
breastscreening.cancer.gov/). The BCSC (BCSC, 2018) 

dataset aggregated risk factors of women who attended 
breast cancer screening from 1st January 1996 to 31st 
December 2002 from seven data registries covering 
most mammography clinic locations in the United States. 
The detailed information of 2.4 million observations, 
of women aged between 35 and 85 years, attending a 
mammography clinic was collected by a questionnaire 
for the BCSC study. Specific exclusions were: women 
with prior breast cancer or breast augmentation, or women 
who had already undergone breast cancer screening in 
the preceding 12 months. The primary endpoint was 
diagnostic confirmation of either ductal carcinoma in situ 
or invasive breast carcinoma after one year. Overall, the 
participation rate was highest in the 50-54 age group as 
shown in Table 1. Women from a diverse range of ethnic 
backgrounds were included. Approximately 20% of values 
were initially missing in the BCSC dataset. These missing 
values were due to incomplete or withheld responses on 
the survey questionnaires. 

The BCSC dataset recorded: menopausal status, age, 
breast density, race, Hispanic ethnicity, Body Mass Index 
(BMI), age at first childbirth, number of first-degree 
relatives affected with breast cancer (NRBC), information 
about previous breast medical procedures, result from 
last mammogram, incidence of surgical menopause and 
treatment by Hormone Replacement Therapy (HRT). All 
data elements were coded as categorical variables.

In total, 2 392 998 rows of observations were available 
of 1,007,660 unique subjects that met the following 
criteria: (1) at least one previous mammogram within the 
preceding 5 years, (2) had not undergone mammography in 
the last one year from the time of registration and (3) had 
no prior history of breast cancer. Each BCSC risk factor 
was categorized according to the coding schema shown 
in Table 1. A total of 11,638 women were diagnosed with 
breast cancer within one year of screening, out of which 
9,335 cases were invasive breast cancer and 2,303 were 
ductal carcinoma in situ.

Selection of machine learning classifiers 
We selected three of the most commonly used types 

of ML classifiers for our analysis – namely logistic 
regression, random forest and deep neural networks. While 
this selection of ML-based classifiers is similar to a recent 
paper (Deist et al., 2018), our focus is on analyzing the 
performance of these models in the presence of additional 
missing elements and inaccurate data entry. 

Logistic regression (Walker and Duncan, 1967) models 
aim to optimize the linear relationship between the log of 
odds (logit) of the dependent variable (outcome) and the 
independent variables such that the overall error between 
predicted and true outcomes for different observations is 
minimized. 

Random forests (Ho, 1995) create a large ensemble 
of individually distinct decision trees, such that the 
final classification is derived from the majority voting 
result taken over all trees. In our experiments, we have 
considered a random forest of 200 decision trees with a 
maximum depth of 10 for each decision tree.

Neural Networks (NN) establish complex non-linear 
relationships between the inputs and the output using 
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or inaccurate information. To quantify the robustness of 
different classifiers in this setting, we conducted the two 
experiments as described below.

Experiment 1: Robustness to incomplete data
In order to evaluate the robustness of the classifiers to 

missing or incomplete data, we randomly switched one 
of the existing known values to missing values with a 
probability of ‘0 < pm < 1’ during validation and testing. 
We varied the value of ‘pm’ in steps of 0.1. We first trained 
each of the classifiers by introducing additional 10% of 
missing values in the training set.

Experiment 2: Robustness to inaccurate data
In a similar manner to Experiment 1, we randomly 

modified the data by replacing the feature values with a 
different value, with probability of ‘0 < pc < 1’.  As before, 
we varied the value of pc in steps of 0.1.

To assess the degradation of discrimination 
performance, we used an Area Under Receiver Operating 
Characteristic curve (AUC) metric (Zweig and Campbell, 
1993). AUC measures the probability of correctly 
classifying the subjects according to a binary outcome. For 
perfect classification, we would obtain an AUC value of 
1. For a model that had no discriminatory power beyond 
random guessing, we would expect an AUC value of 0.5. 
It is generally interpreted that a higher value of AUC 
suggests better performance in differentiating between 
the two available outcomes. 

Training and cross-validation settings
The entire BCSC dataset was randomly divided into 

a model development set (75%) and a model testing set 
(25%). The training and validation sets had the same 
proportion of non-cancer and cancer findings. For 
cross-validation, we further split the training set in a ratio 
of 3:1 into training and cross-validation subsets.

Results

We first compared the performance of all three 
classifiers on the original BCSC dataset. Table 2 shows 
the mean AUC values across 10 repeated trials for logistic 
regression, random forests and the custom NN. The NN 

interconnected hidden layers. Given that we have 
a sufficiently large dataset, use of NN was feasible 
(Bishop, 1995). We experimented with a variety of 
NN configurations and found that a simple 3-layer NN 
architecture generalized well for breast cancer risk 
prediction on the BCSC training dataset.

The first stage of the NN architecture consisted 
of non-linear transformations to produce 64 different 
non-linear variations of each individual risk factor 
using (1x1) convolution filters and ReLU activations. 
The resulting 64 channels were then convolved with 32 
(1x1) filters followed by ReLU activations to reduce the 
dimensionality. The resulting intra-input variations were 
mixed using a fully inter-connected dense layer consisting 
of 1,024 nodes to learn the non-linear inter-relations across 
different risk factors. A dropout layer (Goodfellow et 
al., 2016) was applied immediately after the dense layer 
for regularization and to avoid over-fitting. The final 
output layer consisted of two output nodes with soft-max 
activation, representing the class probabilities of getting 
cancer in the next year and the probability of not getting 
cancer in next year, respectively.

The starting weights of the NN were initialized 
randomly. We then used an Adam optimizer for updating 
NN parameters iteratively based on the training set 
because of its reported superior results. The Adam 
optimizer was set to learning rate 0.001 and a batch size 
of 15,000 and dropout probability of 0.5 was used for 
training. Categorical cross-entropy (Goodfellow et al., 
2016) was used as the loss function to measure the error 
between predicted and true probability distributions. The 
output corresponding to the probability of cancer obtained 
from the soft-max layer was used as the absolute final 
risk score in our analysis. The NN was implemented with 
the Keras (Keras, 2018) python library and a Tensorflow 
back-end (Abadi et al., 2016). 

Performance evaluation
As mentioned in the Introduction, incomplete or 

inaccurate information may be encountered during 
real-world health data collection, which could result 
in inaccurate risk estimation. A good classifier needs 
to be robust to these errors and should result in a risk 
value that is close to the true risk, in spite of missing 

Figure 1. Shows Variation of Mean AUCs with Missing Probability, pm, for All the Three Classifiers on (a) validation 
set (b) test set.
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resulted in slightly better performance followed by logistic 
regression and random forests. 

Performance of classifiers with incomplete information
Figure 1a and 1b show the variation of mean AUCs 

with missing probability pm for logistic regression, random 
forests and the NN on the cross-validation and model 
testing sets, respectively. As expected, the performance 
of all the classifiers were degraded with an increase in 
the percentage of missing information. Overall, the mean 
AUC was observed to be high for NN when compared to 
other classifiers up to  pm < 0.5. But when the percentage 
of missingness exceeded 50%, both logistic regression 
and NN performed equally well. The values of mean 
AUCs at  pm = 0 were slightly different from Table 2, as 
these values were obtained after retraining the classifiers 
by introducing additional 10% missing values during the 
first training.

Performance of classifiers with inaccurate information
Figure 2a and 2b show the variation of mean 

AUCs with corruption probability pc for all the three 
classifiers, on the cross-validation and model testing sets, 
respectively. Similar to the above, the mean AUC reduced 
with the increased percentage of incorrect information for 
all the classifiers. NN resulted in superior performance 
in terms of AUC on the cross-validation sets, whereas on 
the independent test set, the performance was very close 
to logistic regression and random forests when more 
than 50% of the data was incorrect. It is important to 
note that the mean AUCs at pc = 0 were slightly different 
from the mean AUC’s at  pm = 0 since these values were 
obtained by introducing the incorrect feature values with 
0.1 corruption probability during training.

Discussion

The primary aim of this work was to evaluate three 
commonly used classifiers in terms of their robustness 
towards missing and inaccurate data when predicting 
breast cancer incidence risk. The original BCSC dataset 
itself came with approximately 20% of missing data. 
NN showed superior results to logistic regression and 
random forests on this dataset as shown in Table 2. This 
superiority remained the same even when the percentage 
of missingness or incorrect information increased to 
50%. When more than half the data was incorrect (pc > 
0.5) or missing ( pm > 0.5), NN and logistic regression 

Risk Factor Allowed values (number of occurrences)

Menopause status Pre-menopausal: 0 (568,215)

Post-menopausal or age ≥ 55: 
1(1,642,824)

Age group
(did not contain 
missing values)

35 to 39: 1 (42,758)

40 to 44: 2 (287,281)

45 to 49: 3 (387,246)

50 to 54: 4 (428,312)

55 to 59: 5 (334,132)

60 to 64: 6 (263,521)

65 to 69: 7 (231,904)

70 to 74: 8 (203,106)

75 to 79: 9 (145,102)

80 to 84: 10 (69,636)

Breast density Almost entirely fatty: 1 (148,209)

Scattered fibro-glandular densities: 2 
(782,384)

Heterogeneously dense: 3 (674,008)

Extremely dense: 4 (136,011)

Race White: 1 (1,738,015)

Asian / Pacific Islander: 2 (102,998)

Black: 3 (121,534)

Native American: 4 (28,359)

Other or mixed: 5 (22,288)

Hispanic ethnicity No: 0 (1,749,604)

Yes: 1 (157,340)

Body mass index 
(BMI)

10.00 to 24.99: 1 (508,897)

25.00 to 29.99: 2 (325,352)

30.00 to 34.99: 3 (144,823)

35.00 or greater: 4 (77,821)

Age at birth of first 
child

Under 30: 0 (722,195)

30 or over: 1 (141,287)

Nulliparous: 2 (201,222)

Number of first-
degree relatives 
affected with breast 
cancer (NRBC)

None: 0 (1,718,360)

One: 1 (295,768)

Two or more: 2 (15,551)

Prior breast procedure 
performed

No: 0 (1,722,256)

Yes: 1 (420,430)

Last mammography 
result

Negative: 0 (1,799,934)

False Positive: 1 (34,046)

Surgical menopause Natural only: 0 (717,966)

Surgical: 1 (427,332)

Not menopausal: 9 (568,215)

Ongoing Hormone 
Replacement Therapy

No: 0 (729,196)

Yes: 1 (683,350)

Not menopausal: 9 (568,215)

Table 1. Risk Factors and Coding Schema Used in the 
BCSC Dataset. Any category other than age that was 
not explicitly coded or was missing/unknown had been 
assigned a fixed code. (*) represents the total incidence 
for that category. The number of occurrences for each 
category is given in the parentheses. Validation mean AUC Test mean AUC

Logistic 
Regression*

0.639 (range: 0.637-0.641) 0.645 (range: 0.644-0.645)

Random 
Forest

0.636 (range: 0.633-0.639) 0.643 (range: 0.642-0.643)

3- layer NN 0.642 (range: 0.638-0.650) 0.649 (range: 0.647-0.651)

Table 2. Comparison of the Discrimination Metric in 
the Validation and Test Sets (mean AUC, and range of 
AUC derived from bootstrap sampling) Using Either 
the Native BCSC Dataset Encoding or (*) One Hot 
Encoding to the Data.
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resulted in similar performance.  The performance of RF 
remained low compared to other classifiers with varying 
missing data. 

Overall, the NN was observed to be a marginally 
superior choice for risk estimation of breast cancer from 
structured data like BCSC dataset, even when there was 
a large amount of missing and incorrect information. 
We also believe that these superior results with NN 
could be replicated on other health care datasets where 
there are high chances of incomplete or inaccurate 
information. In addition, the use of NN reduces the need 
for explicit feature engineering steps such as feature 
elimination, dimensionality reduction and missing values 
imputation, due to the capability of NN to learn non-linear 
transformations from inputs to outputs. To effectively train 
an NN to deal with incomplete and inaccurate information, 
future work could attempt to increase the probabilities of 
missing ( pm) and incorrect information (pc) during the 
training of NN instead of fixed ‘0.1’ as discussed in our 
experimentations. This may aid the NN to see the possible 
instances of missing or inaccurate information that might 
happen in the real setting.

To communicate the risk score so that it is more 
interpretable and explainable, we expressed this result 

as the relative risk compared to all women of the same 
age bracket. For example, Female A was a naturally 
menopausal 57-year old woman of Asian descent, with 
BMI under 25 and having her first child while under 30 
years of age. She had no family history of breast cancer 
nor any prior breast surgical procedure. All her previous 
mammograms were negative, but her breast tissue density 
was not recorded (see Figure 3). was not recorded (see 
Figure 4). Our best model estimates that Female A has 
slightly less risk than the overall average risk of all 
women in her similar age group. In contrast, Female B 
was a nulliparous 57-year-old woman of Asian descent 
with a BMI of 35. She had dense breast tissue and two 
of her relatives died of breast cancer. However, none of 
her previous mammograms were positive and she had no 
previous breast surgical procedures. Our model illustrates 
that Female B has three times extra risk of breast cancer 
compared to women in this age group.  

We believe that the above-mentioned approaches 
could be used to help screening programmes to be 
more resource- and cost-effective by identifying high 
risk persons in an asymptomatic population. Individual 
risk-based screening can be extremely helpful when 
there is a constraint on the diagnostic resource usability, 

Figure 2. Shows Variation of Mean AUCs with Probability, pc, for All the Three Classifiers on (a) validation set (b) 
test set.

Figure 3. Illustration of Two Hypothetical Examples (Female A and Female B, as discussed in the text). For each 
example, the predicted risk of breast cancer within 1 year of screening is superimposed over the observed proportion 
of breast cancer diagnoses in the BCSC population as a function of age bracket.

a b
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which is a frequently encountered scenario in developing 
countries. Risk estimation can direct these scarce 
diagnostic resources available for women who would 
need utmost, therefore it complements efforts to improve 
general access to screening. Also, the use of multiple risk 
factors can produce a better estimate of risk compared to 
traditional approaches (Deandrea et al., 2016) involving 
age alone as a risk criterion. We have currently hosted the 
risk estimation model proposed in this paper on our online 
website at https://www.niramai.org for public access. 

At this time, the wider clinical generalizability of this 
study is limited on a few fronts. First, we have not yet been 
able to independently validate the models using a more 
recent dataset or in the Indian population, due to a current 
lack of open access anonymized data. That is the focus of 
our future work and we further plan to validate our models 
in the Indian setting. Since the model is already trained to 
understand a diverse spread of risk factors from the BCSC 
data, convergence of a revised model in a new population 
setting is expected to be achieved much faster. Secondly, 
the combination of risk factors encompassing genetics, 
family history and individual phenotype is hypothesized 
to improve our ability to estimate breast cancer risk. 
Currently, there are no publicly available datasets with all 
the risk factors for the same population. A last observation 
would be that it is possible to either impute the missing 
values or detect potentially incorrect information by 
means of a conditional generative adversarial framework 
(Mirza and Osindero, 2014), but is outside the scope of 
the present study.

In conclusion, we compared three commonly used 
classes of machine learning classifiers - logistic regression, 
random forests and neural networks - for their robustness 
towards missing values and inaccurately reported 
values that are inherently present in population survey 
datasets such as the BCSC. The NN yielded marginally 
higher AUCs even when the data is missing or incorrect 
especially when their individual incidences are less than 
50% for a breast cancer dataset. However, the performance 
of NN and logistic regression was equivalent when 
missing/inaccurate data was above 50%. Additional work 
is needed to validate the models in the Indian population, 
if these models are to be used to aid in selecting women 
for breast cancer screening. 
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