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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope 
virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are 
a puzzling form of thrombophilia that has elevated D-dimer but only modest effects 
on other parameters of coagulopathy. This is combined with severe inflammation, 
often leading to acute respiratory distress and possible lethality. Coagulopathy and 
inflammation are interconnected by the transmembrane receptor, tissue factor (TF), 
which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa 
(FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to 
trigger profound changes via protease-activated receptors (PARs) in many cell types, 
including SARS-CoV-2–trophic cells. Therefore, aberrant expression of TF may be the 
underlying basis of COVID-19 symptoms. Evidence suggests a correlation between 
infection with many virus types and development of clotting-related symptoms, rang-
ing from heart disease to bleeding, depending on the virus. Since numerous cell types 
express TF and can act as sites for virus replication, a model envelope virus, herpes 
simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the 
envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains 
clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 in-
fection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable 
antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells 
and may stimulate and integrate host cell TF, like HSV1 and other known coagulo-
pathic viruses. Combined with this possibility, the features of COVID-19 suggest that 
it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
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Essentials

• Severe acute respiratory syndrome coronavirus 2 is an envelope virus that causes coagulopathy and acute inflammation in coronavirus 
disease 2019.

• Model coagulopathic viruses have envelope tissue factor (TF) required for infection in mice.
• TF is a key membrane cofactor linking clotting factor Xa (FXa) production and inflammation.
• TF/FXa-specific anticoagulants are antiviral and likely broadly relevant to envelope viruses.

1  | INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2 
is a novel envelope3 virus that causes life-threatening thrombotic 
coagulopathy4-10 and inflammation,1,11,12 the hallmarks of corona-
virus disease 2019 (COVID-19).2 SARS-CoV-2 is highly virulent and 
despite the introduction of social distancing, has infected 5 million 
people on all inhabitable continents in approximately 6 months.13 
The overall mortality rate of confirmed infections is > 1.5%, al-
though this is likely an overestimate since it is known that there 

is a dangerously significant number of unaccounted asymptomatic 
carriers14 and mass screening is not yet practical. Medical scientists 
from all pillars of investigation have united from around the globe 
toward developing therapeutics that will mitigate the morbidity and 
mortality of COVID-19 and stop the virus replication cycle. Here, we 
draw attention to the fact that SARS-CoV-2 is an extreme example 
within a broad spectrum of coagulopathic envelope viruses. The pa-
thology manifested is specific to the virus but may be explained by a 
unifying constituent, tissue factor (TF), the physiological initiator of 
coagulation and potent cell-modulating cofactor. Thus, therapeutics 

F I G U R E  1   Tissue factor (TF) in viral D-dimer production. TF activity localized on the stimulated cell or on the envelope virus surface 
combines with the protease factor VII (FVIIa) to accelerate factor Xa (FXa) generation in the presence of anionic phospholipid (green 
polar head groups) and calcium. Release of FXa from the nascent TF/FVIIa/FXa complex facilitates thrombin production (factor IIa [FIIa]). 
Thrombin is the pivotal effector of fibrin clot formation by proteolytic excision of fibrinopeptides (green) from fibrinogen triggering 
noncovalent (red lines) polymerization of soluble fibrin. Thrombin also activates the transglutaminase factor XIII (FXIII), which crosslink-
stabilizes the interfibrin associations (green bars). Both the TF/FVIIa/FXa complex and thrombin are potent protease-activated receptor 2 
(PAR2) agonists, which may induce the release of tissue-type plasminogen activator (t-PA) from cells to enhance plasminogen (Pg) to plasmin 
(Pn) activation, resulting in D-dimer and fibrin degradation product formation. Thus, inhibition of FXa with small molecule inhibitors (eg 
apixaban) may attenuate both signaling and procoagulant branches of TF function toward D-dimer formation
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targeting TF are prime candidates to consider for SARS-CoV-2 
intervention.

2  | COVID-19–INDUCED COAGULOPATHY

SARS-CoV-2 infection is associated with coagulopathy.15 The compel-
ling clinical laboratory evidence is that COVID-19 results in elevated 
D-dimer,11,16-29 which is a dogmatic metric of hypercoagulation. 
D-dimer is a fragment of factor XIIIa (FXIIIa)-crosslinked fibrin and is 
produced when tissue-type plasminogen activator (t-PA) converts plas-
minogen to the activated fibrinolytic protease plasmin in response to 
thrombin-driven clot accumulation (Figure 1). Therefore, D-dimer may 
also suggest hyperfibrinolysis. Supporting this possibility in COVID-19, 
elevated plasminogen has been reported as a risk factor.25 Thrombin is 
also known to stimulate the secretion of t-PA, priming the local milieu 
for a fibrinolytic response.30-32 When stratified according to severity 
of disease or need for mechanical ventilation, D-dimer is found to be 
a predictor of COVID-19 disease progression.28 There is a clear trend 
showing progressive elevation of D-dimer from time of COVID-19 
identification in nonsurvivors, whereas levels remain normal in survi-
vors.27,28 A similar trend was seen for other fibrin degradation prod-
ucts.27,33 Combined, these data suggest that thrombin generation may 
be enhanced as virus replication persists and amplifies pathology.

Clinical laboratory results further linking COVID-19 and a hy-
percoagulable state is suggested by prothrombin time (PT) mea-
surements, which are prolonged in nonsurvivors compared to 
survivors27,28 and indicate depletion of clotting factors. However, 
this is a subtle effect of approximately 2 seconds that is relatively 
small. Conversion to International Normalized Ratio may conceal this 
relatively moderate effect.23

Additional evidence of coagulopathy is provided by a meta-analysis 
of 9 studies reporting data on platelet counts from 1779 patients with 
COVID-19, of which 399 were severe.34 The weighted mean difference 
in this report revealed an ~ 15% drop in platelet number, which is re-
duced another ~ 10% for nonsurvivors. While numerous factors may 
contribute to a reduced platelet count in virus infection,35 thrombo-
cytopenia is usually attributed to enhanced thrombin production with 
consequent platelet activation and subsequent senescence.

Fibrinogen, clinically evaluated in the diagnosis of coagulopathy, 
is reported to increase in patients during severe disease compared 
to mild COVID-1927,36-38 and may be the result of an acute-phase 
response. Interestingly, an exception to this trend was observed at 
late hospitalization when 2 severely diseased patients became hypo-
fibrinogenemic.27 This late-stage observation is consistent with the 
parameters of conventional disseminated intravascular coagulation 
(DIC).39

Together, these observations make a compelling argument for 
SARS-CoV-2–induced coagulopathy. Although elevated D-dimer al-
ludes to DIC, COVID-19 does not satisfy the other prominent char-
acteristics of overt thrombin generation consistent within the ISTH 
definition39; COVID-19 does not have prolonged PT of > 3 seconds, 
platelet count dropping to < 100 × 109/L or fibrinogen dropping 

to < 1 gm/L. It follows that COVID-19 coagulopathy does not lead 
to a hemorrhagic condition but rather to a prothrombotic state. 
To substantiate this, there is overwhelming evidence for prevalent 
pulmonary embolism, thrombotic microangiopathy, and arterial 
thrombosis.4-10 Whether the virus causes these events or patient 
predisposition to hypercoagulation favors infection, or both, is 
unknown.

3  | COVID-19–
DEPENDENT INFLAMMATION

Severe pneumonia and the associated respiratory distress, originally 
attributed as the leading cause of death in COVID-19,1,11 is now 
known to involve pulmonary embolism.4-10 The severity of the hall-
mark pulmonary inflammation correlates to lymphocyte subgroups40 
and glassy alveolar opacities have been documented in computed to-
mography images.6 When uncontrolled, the prolonged inflammatory 
imbalance ultimately leads to multiple organ failure. This progres-
sion may be influenced by the broad tissue distribution of the virus’s 
primary host cell docking site, the angiotensin-converting enzyme 2 
(ACE2) receptor,41,42 found in the lungs, kidneys, brain, gastrointes-
tinal tract, and cardiovascular system.43,44

The severity of COVID-19 presentation and disease progression 
range widely for unknown reasons, and thus treatment options vary. 
However, prophylactic anticoagulation is the accepted standard. 
General predictors of poor outcome were identified quite early 
in the SARS-CoV-2 pandemic as advanced age and male sex,45,46 
while comorbidities include, diabetes,16,28 hypertension, cardio-
vascular disease,12 and obesity.47 These underlying pathologies are 
all characterized by chronic inflammation, presenting clinically as 
elevated levels of acute-phase reactants, most notably C-reactive 
protein.11,16,20,21,29 Secretion of high levels of circulating proinflam-
matory cytokines, interleukin (IL)-6, IL-1, interferon-γ, and tumor 
necrosis factor have also been documented and attributed to an 
immune-surveillance response.11,16,28 While most virus infections 
are opportunistic and enhanced by immunosuppression, elevation 
of COVID-19 or other coronavirus diseases in immunosuppressed 
transplant recipients is atypical and does not increase.48 Similarly, in 
a transgenic mouse model deficient in the innate immune response 
to pathogens that promotes inflammation and neutralization, com-
plement component C3 was shown to facilitate respiratory dys-
function and cytokine increase upon infection by other coronavirus 
family members49 compared to wild-type controls. Combined, these 
reports indicate that both symptoms and virus replication may be 
amplified by the innate immune response.

4  | TF CONNECTS COAGULATION 
AND INFLAMMATION

It is not surprising that evidence is accumulating to show the eti-
ology of COVID-19 pneumonia is both coagulopathic (ie, elevated 
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D-dimer) and inflammatory (ie, elevated IL-6), since the 2 pathways 
are intimately connected. The molecular bridge between hemosta-
sis and the innate inflammatory response is the coagulation trigger, 
TF.50 TF has been unequivocally identified as a mechanistic patho-
physiological mediator in numerous mouse models of disease and 
clinical correlations have been made; examples include cancer,51,52 
sickle cell disease,53,54 obesity and diabetes,55-57 rheumatoid arthri-
tis,58,59 and cardiovascular disease.60,61 Thus, TF is a probable effec-
tor of the progression and severity of thrombosis and inflammation 
seen in COVID-19.

TF is a transmembrane receptor essential for mammalian life.62-

64 It is pivotal in the blood clotting mechanism and best understood 
as the extrinsic tenase cofactor,65 functioning to accelerate factor 
VIIa (FVIIa)-dependent proteolytic activation of factor X (FX) to FXa 
in the presence of an anionic phospholipid (aPL)-containing mem-
brane and calcium (Figure 1). However, TF also participates to ac-
celerate FVIIa activity toward the initial activation of factor IX (FIX) 
to FIXa and FVIII to FVIIIa, and autoactivation of FVII.66-70 The co-
agulopathic consequence of enhanced clotting factor activation is 
that downstream thrombin acts as its own feedback amplifier for 
subsequent clot formation. Thus, enhanced TF activity may be ex-
trapolated using clinical laboratory values of D-dimer elevation as a 
surrogate marker.

Of equal or greater importance to the clotting function of TF is 
its critical role as a cell-signaling cofactor from within the TF/VIIa co-
factor/protease and nascent TF/FVIIa/FXa cofactor/protease/prod-
uct complexes.71 These facilitate cell signaling via protease activated 
receptors (PARs) (Figure 1). PAR extracellular domains are cleaved 
by the TF-enhanced protease, and the new N-terminus acts as a 
tethered ligand that sends a transmembrane signal transduced by 
G-protein– and β-arrestin–coupled intracellular pathways.72 These 
stimulate fundamental biochemical pathways such as kinase cycles, 
gene transcription, and protein synthesis.73,74 The biological result 
may be profound, ranging from effects on storage granule release 
(eg, cytokines) to cell trafficking, which likely impacts COVID-19–de-
pendent pulmonary inflammation.

The stimulatory effects of the TF-protease complexes are pre-
dominantly conferred through PAR1 and PAR2, although indirect 
effects on PAR3 and PAR4 also occur through mobilization of ef-
fector proteases. TF is prevalent throughout the body and is con-
stitutively expressed by fibroblasts, pericytes, smooth muscle cells, 
epithelial cells, astrocytes, and cardiomyocytes, and inducibility 
expressed on endothelial and monocyte lineage cells.64 Similarly, 
PARs have an extremely broad cellular and tissue distribution that 
includes key contributors in COVID-19 progression: vascular en-
dothelium, platelets, leukocytes, smooth muscle cells, and airway 
epithelium.75 Thus, the TF-PAR pathway is positioned at crucial in-
terfaces where a multitude of relevant physiological and pathologi-
cal processes occur.71,76,77

TF/FVIIa exclusively cleaves and activates PAR2 with rela-
tively low affinity; however, the cofactor signaling effects of TF 
are greatly enhanced after thiol oxidation and in the presence of 
nascent FXa.71 Within the ternary TF/FVIIa/FXa complex, FXa 

becomes the proteolytic subunit. TF-mediated signaling is en-
hanced by additional cell-specific receptors. On the endothelial 
cell vascular lining and alveolar epithelial lining,78 a major site of 
SARS-CoV-2 infection, the endothelial protein C receptor–TF/
FVIIa/FXa complex cleaves and activates PAR2 and PAR1.79,80 
Consequently, the effective concentration of FVIIa is reduced by 
more than 10-fold.79,80 Thrombin is also an efficient activator of 
PAR1 and does not require an accessory cofactor because PAR1 
has a high-affinity binding site.81 The combined effects of cell 
surface–localized hemostatic proteases in the vicinity of PARs 
creates a potent trigger for inflammation and other pathophys-
iological consequences. To stimulate discussion in a novel area 
of clinical intervention strategies to alleviate COVID-19, here an-
ticoagulation of the TF-PAR axis is proposed as having an addi-
tional antiviral therapeutic value.

5  | TF AND VIRUSES

Different viruses manifest diverse illnesses because of the unique 
proteins encoded by their genome and the cell and organ tropism 
dictated by those proteins. As an example, the SARS-CoV-2 envelope 
surface “spike” protein facilitates fundamental docking with the cell 
surface receptor ACE2. However, contrary to the dogma that each 
virus encodes unique proteins and must therefore give rise to unique 
pathology, numerous virus types have in common the modulation of 
the blood clotting system with correlations to hemostatic pathology. 
The symptoms range widely depending on the virus type and are 
driven by complicated virus-host mechanisms, involving hemostatic 
proteins (clotting, anticoagulant, and fibrinolytic),82-88 platelets,35 
endothelial cells,89,90 leukocytes,91 and complement proteins.92 
In some cases, clotting protein activation may lead to thrombosis, 
such as for HIV.93,94 For other viruses, clotting factors may become 
depleted due to extensive activation and clearance, which contrib-
utes to the bleeding seen during infection of hemorrhagic viruses 
like dengue virus.83,95-98 To highlight the prevalence and importance 
of the virus-hemostasis association, in addition to the reports ac-
cumulating for SARS-CoV-2, other important and highly prevalent 
virus examples include the hepatitis C virus (HCV),88,99,100 influenza 
virus,101,102 Ebola virus,89,103,104 Zika virus,105 genital herpes (herpes 
simplex virus type 2 [HSV2]),106,107 cytomegalovirus (CMV),108,109 
and the cold sore virus (herpes simplex virus type 2 [HSV1]).110-113 
We propose that a mutual molecular basis explains this diverse and 
extensive list.

Each of the viruses above and many more have an envelope 
as a common structural feature, which is a surrounding phos-
pholipid bilayer acquired from infected host cellular membranes. 
Within the envelope are membrane-associated proteins. Some of 
these envelope proteins are encoded by the virus genome, like the 
SARS-CoV-2 spike protein.114,115 However, many other proteins 
are associated with the envelope but are encoded by the host and 
derived from the cell where the virus replicates and acquires the 
envelope. While much is known about the roles of virus-encoded 
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envelope proteins and their roles in the infection mechanism, the 
functions of host-encoded proteins on the virus surface have been 
given relatively little consideration in the prevailing paradigm.116 
Many cells known to bear TF are permissive to infection by clin-
ically important enveloped viruses, including SARS-CoV-2,117 
HSV1,118 Ebola,119 influenza,120 HIV,121 dengue,122 Zika virus,123 
HCV,124 and others. It is reasonable to speculate that the sur-
face of these and other viruses display TF, which may account 
for hemostatic and inflammatory symptoms associated with their 
infection. Therefore, the TF-initiated mechanisms may serve as 
a broad-specificity target to alleviate viral pathology, such as in 
COVID-19.

6  | TF ON THE VIRUS ENVELOPE

To investigate TF as a general surface constituent of envelope vi-
ruses, we have studied HSV1 as a model virus. Over two-thirds of 
the world’s population is infected by HSV1, which is the leading 
cause of infectious blindness,125 sporadic encephalitis,126 and geni-
tal herpes127,128 and is associated with intestinal dysregulation.129 
Although known as the cold sore virus and typically not life threat-
ening, there are numerous correlations between HSV1 and other 
members of the herpesvirus family to cardiovascular disease,130,131 
suggesting links to TF: (i) HSV1 seropositivity is associated with a 
2-fold increase in myocardial infarction incidence and death due to 
coronary heart disease113; (ii) fibrin deposits in the microvasculature 
are linked to HSV1 infection132,133; (iii) DIC in neonates may occur 
during severe HSV1 infection134; (iv) HSV2 is linked to ischemic and 
hemorrhagic stroke due to DIC107,135; (v) a history of CMV infection 
is linked to subclinical and clinical arterial thickening136-138; (vi) CMV 
is strongly correlated to accelerated atherosclerosis in immunosup-
pressed organ transplant recipients139-142; and (vii) CMV infection 
is a strong risk factor for restenosis after angioplasty.143,144 When 
paired with other known cardiovascular risk factors, viral correlation 
to vascular disease is strong.110-113 A clear cause-and-effect relation-
ship has been established in several animal models, which confirm 
that herpesviruses accelerate thrombosis and atherosclerosis.145-147 
Indeed, HSV1 and CMV are known to induce TF activity on vascular 
endothelial cells,148,149 which support infection and from which the 
replicative viruses derive their envelope.74

Electron microscopy can definitively identify the presence of 
a macromolecular structure associated with the surface of a virus. 
Using HSV1 propagated in TF-expressing cultured cells and purified 
by sucrose gradient differential ultracentrifugation,74 multiple-sized 
electron-dense gold beads were used to simultaneously distinguish 
3 constituents on a single HSV1.150 Figure 2 shows several trans-
mission electron micrograph examples of particles that have the 
diameter and morphology of HSV1, which are triple labeled. Each 
identically stained representative example clearly demonstrates that 
multiple TF molecules exist on the HSV1 surface. Since the HSV1 
genome does not encode TF, the source must be of host cell in origin 
and implies any envelope virus may assimilate TF.

Only when grown in TF-bearing cell types do purified HSV1 
preparations initiate plasma clotting106,150 and FVIIa-dependent 
FX activation in experimental systems using purified pro-
teins.106,150-152 Demonstrating specificity, these activities are 
inhibited by direct antagonists of TF function.150,151 These data 
imply the availability of envelope aPL for macromolecular as-
sembly of the viral TF-FVIIa-FX complex (Figure 1). Consistent 
with these observations, the aPL-binding protein, annexin A5, 
labeled with a medium-diameter gold bead, binds to TF-positive 
HSV1 indicating a calcium-dependent interaction with the virus 
(Figure 2). These data show the 2 essential cellular initiators of 

F I G U R E  2   Coagulation initiators tissue factor (TF) and anionic 
phospholipid (aPL) are available on the herpes simplex virus type 
1 (HSV1) surface 150. Representative triple-labeled immunogold 
electron micrographs simultaneously identifying the HSV1 marker, 
glycoprotein C (gC; 15 nm gold bead), aPL (10 nm bead), and TF 
(6 nm gold bead). (Scale bars = 100 nm. n = 3)
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coagulation, TF and aPL, are trafficked to the virus during enve-
lope formation.

Confirming the identity of the particle as HSV1, the largest gold 
bead shown in Figure 2 denotes HSV1 encoded glycoprotein C 
(gC). gC is a multifunctional contributor to virus infection known to 
participate in virus attachment to the cell through association with 
heparan sulfate proteoglycan and in the evasion of host defense 
by complement.153,154 When expressed on the surface of infected 
cells, gC has been shown to be involved in FX activation and bind-
ing,148,155,156 which is another reason it was selected as a marker to 
confirm virus identity. We have reported that purified gC and gC on 
the virus surface mimics the cofactor function of TF toward FVIIa-
enhanced FXa generation.150,151 Like TF, it binds directly to both 
FVIIa and FX forming a cofactor-protease-substrate complex.150 A 
further similarity to TF is that FX stabilizes gC-FVIIa cofactor-prote-
ase assembly, which for TF would rigorously localize the hemostatic 
response to sites of aPL accessibility. This similarly applies to the 
virus surface and would initiate symptomatic consequences with 

severity dependent on accessory constituents on the envelope and 
the cells that are affected.

7  | TF ENHANCES VIRUS INFECTION 
IN VITRO

The mimicry of TF by gC implies an advantage to the virus when 
hemostatic proteases are activated at the site of virus-cell docking. 
Pretreatment of endothelial cell monolayers with nanomolar con-
centrations of proteases known to trigger PARs, including FVIIa, 
FXa, thrombin, and plasmin, enhanced viral plaque formation by up 
to an order of magnitude when in combination,73,74 as did in situ FX 
zymogen activation.74 To discriminate between viral and cellular ef-
fects of TF in the infection cycle, a novel panel of HSV1 was created 
using a TF-inducible human A7 melanoma cell line157 and combin-
ing this with engineered HSV1 deficient in gC production.74 Thus, 
HSV1/TF–/gC–, HSV1/TF+/gC–, HSV1/TF–/gC + and HSV1/TF+/

F I G U R E  3   Viral tissue factor (TF) 
and hemostatic proteases enhance 
infection via protease-activated receptors 
(PARs) in vitro.73,74 (A) Human umbilical 
vein endothelial cells (HUVECs) were 
incubated with a constant amount of TF+ 
(left panel) or TF– (right panel) herpes 
simplex virus type 1 (HSV1; 4.5 × 105 vp/
mL) and thrombin (IIa; 10nM), factor Xa 
(FXa; 1nM), or factor VIIa (FVIIa; 2.5 nM) 
with mouse IgG (55 nM) plus enzyme 
(IgG) or enzyme plus anti-TF (55nM). 
The data were corrected for the amount 
of infection detected without added 
protease (n = 4; data are presented as 
mean ± SEM). *P ≤ .05 compared with 
mouse IgG plus enzyme. (B) HUVECs were 
incubated with TF + HSV1 (4.5 × 105 vp/
mL) and thrombin (IIa; 10nM), FXa (1nM), 
FVIIa (2.5 nM) or plasmin (50 nM) with 
control mouse IgG (control; 50 M) plus 
enzyme, anti- PAR1 (α-PAR1; 150 nM) plus 
enzyme, or anti-PAR2 (α-PAR2; 50 nM) 
plus enzyme. The data were corrected for 
the amount of infection without added 
protease in the presence of control IgG 
(n = 4; data are presented as mean ± SEM). 
*P ≤ .05 compared with control IgG plus 
enzyme
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gC + derive their envelope from the same cell background, with TF 
and gC being the only known membrane protein differences.

Under conditions that facilitated FVIIa-dependent in situ FX 
activation during inoculation of cultured endothelial cell monolay-
ers, TF on the virus enhanced infection as measured by standard 
plaque assays.74 Using purified proteases, the enhancement due to 
envelope TF required FXa and FVIIa and was inhibitable by an an-
ti-TF antibody (Figure 3A). The anti-TF antibody had no impact on 
thrombin-mediated enhancement of virus infection, since its cell sig-
naling is not directly affected by TF. Further dissecting the cell sur-
face hemostatic mechanism exploited by the virus, antibodies that 
specifically inhibited the stimulation of either PAR1 or PAR2 were 
used. The enhancement of HSV1/TF + infection due to pretreating 
endothelial cells with FXa, FVIIa, or plasmin was only inhibitable by 
anti-PAR2, whereas pretreatment with thrombin was inhibitable by 
anti-PAR1 (Figure 3B).73,74 These observations reveal that TF and 
PARs are antiviral therapeutic targets.

The parallels between the cofactor effects of TF and gC on 
FX activation by FVIIa suggest that gC may be similar in PAR2-
mediated infection. Comparing HSV1/TF–/gC + to HSV1/TF–/gC– 
demonstrated a novel binary gC/FXa combination that increased 

PAR2-mediated infection.74 Interestingly, unlike purified protein 
experiments where gC and TF function independently in FX acti-
vation by FVIIa, TF was required for gC to appreciably enhance FXa 
generation on the virus envelope,150 implying the involvement of ad-
ditional virus surface constituents. The combined findings of our in 
vitro assay designed to study the early events of virus infection that 
influence the first hour of cell infection, support a model where co-
agulation pathway protease activation initiated by envelope TF and 
gC engage PAR2 and PAR1 to enhance virus replication.

8  | TF ENHANCES VIRUS INFECTION 
IN VIVO

The effects of envelope TF on infection have been investigated in 
mice using HSV1/TF±.158 These experiments were designed to rep-
resent a model of viremia with general applicability to any envelope 
virus, therefore mice were inoculated via the tail vein. Unlike our 
well-defined in vitro model of infectivity, the pathophysiological ef-
fects of envelope TF accumulate over 3 days in vivo prior to har-
vesting organs for analysis. These effects could include those on the 

F I G U R E  4   Tissue factor (TF) on herpes simplex virus type 1 (HSV1) enhances infectious virus production in mice.158 (A) Eight-week-
old female BALB/c mice were inoculated intravenously with 5 × 105 plaque-forming units (PFUs) of either TF-competent (TF+; n = 24) or 
TF-deficient (TF−; n = 13) herpes simplex virus type 1 (HSV1) via the tail vein. Three days after infection, the mice were processed and the 
amounts of infectious virus (plaque-forming units/mg) were determined. (B) Additional experiments were conducted after preimmunization 
of mice with mouse IgG or a mixture of three anti-TF IgG1 monoclonal antibodies (5G9, 9C3, and 6B4; 0.33 mg each per mouse; n = 10), 4 h 
prior to injection of the virus. In all panels, data are expressed as mean ± SEM. As determined with Student’s t test, *P ≤ .05 when compared 
with the TF + virus alone
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TF-triggered innate immune response, which was not present in the 
in vitro model.

Substantiating the in vitro assays, a remarkable all-or-noth-
ing difference was seen in the infectability of all 5 organs that 
were investigated depending on the availability of envelope TF 
(Figure 4A).158 Viral plaques were undetectable in samples from 
mice that were inoculated with HSV1/TF–, although HSV1/
TF + and HSV1/TF– had equivalent in vitro infectivity measured 
by traditional viral plaque assays where no clotting factor prote-
ases are available. This in vivo model provides an ideal platform to 
unambiguously determine if therapeutic modulation of envelope TF 
affects infection. Using anti-TF antibodies that specifically recog-
nize human TF, only the TF on the purified HSV1/TF + envelope 
was engaged and not the TF endogenous to the mouse. Like a TF 
deficiency on the virus, Figure 4B shows that therapeutically re-
ducing viral TF activity in vivo significantly attenuates replication in 
each of 5 organs analyzed.

Further studies were conducted to exploit the viral TF pathway 
as an antiviral prophylactic target. The effects of highly specific 
small molecule inhibitors were evaluated in vivo. Figure 5 shows 
that when administered at the time of inoculation, a thrombin in-
hibitor (hirudin),159,160 a TF/FVIIa/FX(a) complex inhibitor (nem-
atode anticoagulant protein c2 [NAPc2]),161 or a FXa-specific oral 
anticoagulant (apixaban),162 each have potent antiviral activity. Of 
these, apixaban is a well-tolerated anticoagulant currently pre-
scribed for several thrombotic conditions.162 Like all anticoagulants, 
apixaban must be considered as a risk to bleeding. In the current 
mouse antiviral experiments, apixaban was used at a dose that is 
similar to those previously reported (1.0 mg/kg) that facilitated an-
ticoagulation in mice163,164 and, like these studies, had no evidence 
of bleeding. While this is nearly twice the therapeutic dose in hu-
mans, it facilitated complete inhibition of virus infection, implying 

a much lower antiviral dose will also be efficacious but this remains 
untested. Consistent with in vitro PAR studies,74 these in vivo data 
show that directly anticoagulating the nascent TF/FVIIa/FXa com-
plex or the proteases subsequently generated in the TF pathway, 
FXa and thrombin, is antiviral.

While the specific involvement of TF in coagulopathy induced 
by SARS-CoV-2 or other viruses has not yet been widely studied, 
enhanced TF activity has been associated with the primary compli-
cation of COVID-19, acute respiratory distress syndrome (ARDS).165 
ARDS typifies severe influenza virus infection, and this correlates 
to patient microvesicle-associated TF.166 TF is known to play a role 
in Ebola virus–induced coagulopathy,89,167 where NAPc2 reduced 
symptoms and increased survival of infected rhesus macaques. Of 
note, NAPc2 treatment also reduced virus load.104 Combined with 
HSV1 results (Figures 4 and 5), TF is emerging as a key effector of 
viral pathophysiology and replication cycle.

Like severe COVID-19, D-dimer is elevated in Ebola virus infec-
tion.103 In surviving Ebola-infected animals, treatment with NAPc2 
reduced D-dimer. Clinical studies to establish the corollary parameter 
would also be of great value. Is D-dimer a prognostic indicator of recov-
ery from SARS-CoV-2 infection? Following the finding that the use of 
predominantly low-molecular-weight heparin (LMWH) gave improved 
survival in COVID-19 patients stratified for high D-dimer and sep-
sis-induced coagulopathy score,23 the ISTH established management 
guidelines that involves LMWH treatment.168 Viewed predominantly 
as an anticoagulant, LMWH and larger polymeric forms of heparin have 
multiple therapeutic effects that may impact COVID-19 treatment, not 
the least of which is well-established anti-inflammatory benefit.169,170 
Heparin is also known to compete against initial weak virus-cell hepa-
ran sulfate proteoglycan interactions, such as for dengue virus.171

Whether anticoagulant and anti-inflammatory effects are 
provided by LMWH treatment of COVID-19 in addition to virus 

F I G U R E  5   Infection of BALB/c mice is inhibited by anticoagulation.158 Eight-week-old female BALB/c mice were inoculated intravenously 
with 5 × 105 plaque-forming units (PFUs) of tissue factor (TF)-competent (TF+; n = 24) HSV1 alone or simultaneously with hirudin (1 mg/
kg, n = 9), nematode anticoagulant protein c2 (NAPc2) (1 mg/kg, n = 18), or apixaban (1 mg/kg, n = 18), via the tail vein. In each case, 3 days 
after infection, the mice were processed, and the amount of infectious virus (PFUs/mg) was determined in each organ. In all panels, data are 
expressed as mean ± SEM. As determined with Student’s t test, P ≤ .05 as compared with the TF + virus alone for all data points except liver 
treated with hirudin
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receptor-mediated effects is unknown. However, based on the find-
ing that hindering the TF/FVIIa/FXa signaling mechanism will curtail 
virus infection, it may be possible to attenuate thrombosis and virus 
replication with a single anticoagulant. LMWH affects coagulation 
indirectly predominantly by accelerating antithrombin-mediated 
inhibition of FXa inhibition, and this is precluded when FXa and 
other hemostatic proteases are in complex with other macromole-
cules.172-174 Therefore, FXa-specific small direct oral anticoagulants 
(DOACs), such as apixaban, that are not susceptible to the steric lim-
itations of antithrombin would be preferable as potential dual-pur-
pose antiviral-anticoagulant agents. Numerous patient factors must 
be considered, such as the heterogeneity in patient presentation 
and risk factors, and oral versus intravenous mode of drug delivery. 
However, simultaneously mitigating thromboinflammation and the 
underlying basis, persistent virus replication, will reduce the dura-
tion of morbidity and mitigate tissue damage.

To address the high prothrombotic rates that are being re-
ported for COVID-19,4-10 thrombolysis with recombinant 
t-PA has been used to treat patients with respiratory distress 

syndrome.175 In this case report, 3 patients initially showed 
symptomatic improvement, with 1 surviving. However, the 
downstream enzyme produced by t-PA, plasmin, has been pre-
dicted to proteolytically prepare the SARS-CoV-2 spike-protein 
for entry into ACE2-containing cells.25 Thus, the demise of the 
other patients treated with thrombolytic agent may be due to a 
surge in viral pathogenicity.

While not typically measured unless symptomatically indicated, 
like SARS-CoV-2 D-dimer is elevated in other virus infections, such 
as HIV,176,177 influenza H5N1,178 and chikungunya179 viruses. For 
HIV, IL-6 has been identified as a stronger predictor of the sever-
ity of clinical events than D-dimer.180 Drawing on recent evidence 
from another inflammatory pathology, sickle cell disease, a mouse 
model has shown that endothelial cell–specific deletion of TF and 
separate deletion of PAR1, attenuated IL-6 production and averted 
inflammation and symptoms.181,182 These authors furthermore used 
another FXa-specific DOAC, rivaroxaban, to avert symptoms in their 
sickle cell model.182 These examples combined with our direct ob-
servations that reduction of TF activity in mice decreases infection 

F I G U R E  6   Viral tissue factor (TF) in infection. A model envelope virus is depicted showing a phospholipid bilayer. Several pools of TF 
may be resent during virus infection including, cellular, viral or associated with extracellular vesicles. Based on studies with herpes simplex 
virus type 1 (HSV1), TF is embedded in the envelope and assembled with factor VIIa (FVIIa). The known domain organization of proteins 
is depicted including an active site on respective protease domains (cleft). The TF/FVIIa tenase activates factor X (FX) to FXa bound to 
viral anionic phospholipid polar headgroups (green). The nascent FXa may either remain bound and engage in signaling through protease-
activated receptor 2 (PAR2) or dissociate and participate in downstream thrombin (factor IIa [FIIa]) generation. When early events of 
infection were monitored in the absence of the immune system in vitro, both PAR2 via TF/FVIIa/FXa or protease-activated receptor 1 
(PAR1) via thrombin-enhanced infection. In mice, the absence of envelope TF prevented infection of HSV1 in all organs evaluated. In these 
in vivo experiments, PAR1 continued to enhance HSV1/TF + virus infection. Highlighting a switch in the role of PAR2 function compared 
to only evaluating the early stages of infection in vitro (eg, cell attachment and entry), PAR2 reduced virus infection in vivo, presumably 
through innate immune cell recruitment
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suggest that use of a FXa-specific DOAC may also attenuate IL-6 
driven inflammation.

9  | PROTEASE-ACTIVATED RECEPTOR 
INHIBITORS IN VIRUS INFECTION

For therapeutic intervention of the TF pathway as an antiviral strat-
egy, careful consideration must be taken because of the risk of 
bleeding. However, TF-dependent cell signaling by hemostatic pro-
teases via PARs is also a fundamental aspect of the innate immune 
system and inflammation. Thus, inhibition by DOACs or other anti-
coagulants could have complex and unpredictable consequences183 
and must be approached cautiously. The important role of PARs has 
been summarized in a comprehensive review.87 The general model 
that is emerging from several labs is that PAR2-mediated stimula-
tion initiates an intricate mechanism. This enables a network of pro-
teases, including thrombin, that additionally engage PAR1, PAR3, 
and PAR4. Inflammatory cells are consequently recruited. However, 
the results from PAR knockout (KO) animals are somewhat conflict-
ing since inflammation may both resolve the virus and have a delete-
rious impact on tissues.

As examples of envelope viruses that may carry host cell-derived 
TF on their surface, influenza and HSV1 have been studied in PAR2 
or PAR1 KO mice. Because of distinct sets of parameters that are 
measured, it is difficult to unambiguously conclude whether virus 
replication, immune clearance, or pathological inflammation are 
affected exclusively or in combination. In experiments conducted 
using PAR2 KO mice, PAR2 was found to exacerbate influenza in-
fection severity184 or improve outcome to the animal in influenza185 
or HSV1158 infection. Similarly, there is reported discrepancy in the 
infection of PAR1 KO mice, where PAR1 was concluded to either 
contribute to reducing influenza virus load,186 or increase influenza 
symptoms187 or increase HSV1 titer.158 An interesting consistency 
between groups is the preparation of virus inoculum in cells known 
to express TF158,185,187 or not,184,186 which may indicate biases in sig-
naling mechanisms during infection.

For infection models of HSV1, in vitro74 and in vivo158 exper-
iments both showed that PAR1 participates to enhance infection. 
Like the PAR1 results, HSV1 infection of cells in culture was also 
increased by PAR2.74 However, in a mouse KO model of infection, 
the presence of PAR2 attenuated the infection of most organs eval-
uated by HSV1,158 which contradicts the in vitro experiments. This 
inconsistency likely involves effects of immune surveillance, which 
plays a role only in the in vivo model and timing is also a probable 
factor (Figure 6). It is reasonable to speculate that the earliest stage 
of virus infection, consisting of virus-cell attachment and entry, is 
enhanced by PAR1 and PAR2. These events are reported by the in 
vitro virus plaque formation assays that consist of a 1-hour inocula-
tion period 74. During the 3-day duration of the in vivo experiments, 
the multifunctional effects of PARs are enabled. While the roles 
localized to the site of virus-cell docking may still be progressing, 
these are overwhelmed by opposing roles of PAR2 in the immune 

and inflammatory responses,71,76 which impair propagation of the 
virus. These latter effects may involve PAR2 signaling that is distal 
from the initial role played by envelope TF. Thus, the timing that 
anticoagulant therapy is delivered may impact its concomitant anti-
coagulant, antiviral, and anti-inflammatory properties.

10  | CONCLUSION

Envelope TF may be a virulence effector and the long-sought com-
mon denominator linking numerous prevalent envelope viruses. The 
monumental question is how to singularly exploit TF as an antivi-
ral target and to diminish inflammation when its roles in physiology 
are vast? FXa-specific DOACs have been reported as having both 
antiviral158 and anti-inflammatory182 effects when administered 
early in mouse models of disease. This may be similar for infection 
by SARS-CoV-2 and other viruses that can propagate in TF-bearing 
cells. If administered early in the infection cycle, DOACs may have 
antiviral, anti-inflammatory, and their intended anticoagulant ben-
efit, whereas later-stage infection may predominantly alleviate 
symptomatic thrombotic and inflammatory disease. Both early and 
late stages of infection involve TF, and both are prime targets for 
combinations of anticoagulation, anti-PAR, and anti-inflammatory 
innovations.
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