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Abstract: Numbers of patients with coronavirus disease 2019 (COVID-19) have increased rapidly
worldwide. Plasma levels of full-length galectin-9 (FL-Gal9) and osteopontin (FL-OPN) as well as
their truncated forms (Tr-Gal9, Ud-OPN, respectively), are representative inflammatory biomarkers.
Here, we measured FL-Gal9, FL-OPN, Tr-Gal9, and Ud-OPN in 94 plasma samples obtained from
23 COVID-19-infected patients with mild clinical symptoms (CV), 25 COVID-19 patients associ-
ated with pneumonia (CP), and 14 patients with bacterial infection (ID). The four proteins were
significantly elevated in the CP group when compared with healthy individuals. ROC analysis
between the CV and CP groups showed that C-reactive protein had the highest ability to differen-
tiate, followed by Tr-Gal9 and ferritin. Spearman’s correlation analysis showed that Tr-Gal9 and
Ud-OPN but not FL-Gal9 and FL-OPN, had a significant association with laboratory markers for
lung function, inflammation, coagulopathy, and kidney function in CP patients. CP patients treated
with tocilizumab had reduced levels of FL-Gal9, Tr-Gal9, and Ud-OPN. It was suggested that OPN is
cleaved by interleukin-6-dependent proteases. These findings suggest that the cleaved forms of OPN
and galectin-9 can be used to monitor the severity of pathological inflammation and the therapeutic
effects of tocilizumab in CP patients.

Keywords: COVID-19; COVID pneumonia; infectious diseases; full-length galectin-9; truncated galectin-9;
full-length osteopontin; undefined osteopontin; tocilizumab; inflammatory markers; therapy

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1] caused a pandemic
of coronavirus disease 2019 (COVID-19) with more than 125 million cases and more than
2.75 million deaths as of the end of March 2021. Severity is highly variable, ranging
from asymptomatic infections, mild cold symptoms, severe pneumonia to respiratory
failure requiring mechanical ventilation and death from multiple organ failure [2]. Risk
factors for aggravation have been clarified including older age, smoking, obesity, and
pre-existing conditions such as hypertension, diabetes mellitus, cardiovascular diseases,
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chronic lung diseases, cancer, and chronic kidney disease [3]. However, even if the patients
have mild symptoms at their initial visit to the clinic, they may suddenly develop fatal
acute respiratory syndrome and/or multiple organ failure over the course of the illness [4].
Biomarkers are strongly desired that can predict the final severity of COVID-19 in the early
stages of SARS-CoV-2 infection.

Acute respiratory syndrome is caused or accompanied by cytokine storm [5], where
high levels of cytokines and proinflammatory molecules are present in the plasma. These
molecules are thought to cause tissue injury, especially in the lungs [6]. The monitoring
of cytokines including interleukin-6 (IL-6), IL-10, and tumor necrosis factor-α was recom-
mended for the early detection of severe disease in patients [7]. Levels of IL-6 correlated
with COVID-19 severity and IL-6 has a key role in cytokine storm and the inflammatory
cascade [6,8]. Signaling inhibitors of IL-6 are candidate drugs for cytokine storm and
tocilizumab (TCZ), a humanized monoclonal antibody that recognizes membrane-bound
and soluble IL-6 receptors, which might be useful to treat COVID-19 pneumonia. A previ-
ous study of TCZ administration showed a significant clinical improvement in COVID-19
patients with pneumonia requiring a ventilator [9,10]. However, clinical improvement and
mortality were not improved by TCZ therapy [11], and ICU admission and mortality rates
were not reduced [12,13]. It should be noted that TCZ therapy is associated with severe
infections [14], and a possible correlation between TCZ therapy and medication-related
osteonecrosis of the jaws was indicated [15].

Detailed immunological analyses of COVID-19 patients showed significant increases
in proinflammatory or anti-inflammatory cytokines, including T helper type-1 and type-2
cytokines, chemokines, and galectins. Galectin (Gal)-1, Gal-3, and Gal-9 were increased
in patients compared with controls [16,17]. In addition, high plasma levels of granulo-
cyte macrophage colony stimulating factor, IL-18, C-C motif chemokine 2, C-X-C motif
chemokine ligand 10, and osteopontin (OPN) confirmed the importance of monocytes
in pneumonia associated with COVID-19 [18]. Gal-9 and OPN are matricellular proteins
that interact with cellular receptors and proteases [19,20]. The full-length Gal-9 (FL-Gal9)
is the active form and the cleavage by proteases degrades the activity [21,22], while the
cleaved form of OPN demonstrates distinct immunological properties compared with
the FL-OPN [23]. We reported that FL-Gal9 was elevated in the plasma of patients with
acute HIV [24], dengue [25], or malaria [26] and that their levels reflected disease severity.
Furthermore, the FL and cleaved forms of OPN were elevated in the plasma of dengue pa-
tients [27]. Gal-9 is cleaved by neutrophil elastase, matrix metalloproteinase (MMP)-3 [28],
and thrombin [29], and OPN is cleaved by thrombin, MMP-3, MMP-7, and MMP-9 [30,31].
Thrombin is involved in COVID-19-associated coagulopathy and is highly expressed in
inflamed lesions and sites of tissue remodeling [32,33]. These enzymes might cleave Gal-9
and/or OPN in inflamed tissues; therefore, we measured their FL and cleaved forms to
provide in-depth pathophysiological information on COVID-19 patients. We previously
reported that analysis by enzyme-linked immunosorbent assay (ELISA) differentiated
between the levels of the cleaved form of OPN (undefined (Ud)-OPN) and FL-OPN [27].
Recently, we established the ELISA system which can differentiate the truncated form
of Gal-9 (Tr-Gal9) and FL-Gal9 [34], and reported that plasma levels of Tr-Gal9 reflected
inflammation and the severity of disease in acquired immunodeficiency syndrome (AIDS)
and AIDS associated with tuberculosis (AIDS/TB) patients [35].

As a systemic inflammatory marker, C-reactive protein (CRP) was associated with
disease development and showed good performance in predicting severity in an early stage
of COVID-19 [36]. CRP is known to be synthesized by IL-6-dependent and -independent
pathways [37]. Cytokine, soluble interleukin-2 receptor α (sIL-2R), also known as CD25,
released mainly from lymphocytes and monocytes, appears to play a role in the biology of
COVID-19 and reflects its severity [38,39]. Patients with COVID-19 with markedly elevated
d-dimer levels may require hospitalization, despite the severity of clinical presentation,
according to the International Society of Thrombosis and Hemostasis guideline [40]. The
elevations of d-dimer and ferritin, another inflammatory coagulation marker, were also
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known to be associated with poor outcome of the patients [41]. It is known that kidney
diseases are associated with COVID-19 infection and creatinine levels are elevated in these
patients [42]. Patients with elevated urinary β2-microglobulin (B2M) and creatinine levels
showed lower rates of discharge [43].

In this study, we measured the levels of FL-OPN, FL-Gal9, and their truncated forms
in COVID-19 patients and investigated the correlation with the above clinically commonly
used indicators of inflammation, renal function, and abnormal coagulation. We also
determined whether they reflect clinical severity and the therapeutic efficacy of TCZ in
COVID-19 patients.

2. Results
2.1. Clinical Findings

Febrile patients were recruited from the Outpatient Department of Sendai City Hospital
(SCH) from July 2020 to October 2020. COVID-19-infected patients were divided into pa-
tients with mild clinical symptoms (CV), COVID-19 patients associated with pneumonia (CP).
Bacterial-infected patients not infected with COVID-19 (ID) were also studied (Figure 1).

Figure 1. Patients over the age of 20 years participated in this study. Adults who did not have
sufficient judgment, were unconscious, or who need consideration for the name of the disease were
excluded. Laboratory tests included C-reactive protein (CRP), chest CT and SpO2. COVID-19-infected
patients with mild clinical symptoms (CV), COVID-19 patients associated with pneumonia (CP), and
patients with bacterial infection (ID) were studied. Patients suspected of having cytokine storm (CS)
were treated with TCZ. The treatment policy depended on the patient’s clinical situation.

There were 23 patients in the CV group, 25 in the CP group, and 14 in the ID group.
There were significant differences in age, sex, aminotransferase, CRP, and serum albumin
levels were significantly different between the three groups (Table 1).

CP patients suffered from complications including hypertension, hyperlipidemia,
diabetes mellitus, and cerebral infarct. More patients in the CP group had clinical symp-
toms including cough, diarrhea, and dyspnea compared with patients in the CV and ID
groups. The severity of symptoms in each patient was assessed with reference to the WHO
classification [44] (Table 2).
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Table 1. Patient demographics.

Reference Range CV (n = 23) CP (n = 25) ID (n = 14) p Value

Basic
information

Age (range) 36.7 (19–102) 54.8 (20–99) 70.11 (23–90) 0.0002
Male 13 (56.5%) 22 (88%) 7 (50%) <0.0001

Blood routine test
WBC 1 (103/µL) 3.7–8.5 4.82 (1.44) 2 5.2 (1.22) 9.08 (4.71) 0.0046
PLT 3 (104/µL) 0.15–3.55 22.7 (4.1) 20.6 (7.42) 20.9 (5.11) 0.1894
RBC 4 (106/µL) 3.9–5.3 4.93 (0.80) 4.72 (0.50) 4.05 (1.06) 0.0137

Biochemical test

ALT 5 (U/L) 3–40 21 (16.6) 63.6 (55.1) 21.6 (13.3) <0.0001
AST 6 (U/L) 8–35 21.6 (6.88) 51.6 (32.4) 31.9 (24.7) <0.0001

CRP 7 (mg/dl) 0.00–0.3 0.24 (0.56) 4.36 (5.12) 6.31 (4.31) <0.0001
Alb 8 (g/dl) 3.8–5.2 4.54 (0.60) 3.90 (0.56) 3.36 (0.76) <0.0001

Coagulation system PT 9 (sec) 11.2 12.0(0.85) 11.7 (1.14) 11.6 (6.34) 0.0893
1 WBC: white blood cell count; 2 (): the numbers in parentheses are the standard deviation, 3 PLT: platelet count; 4 RBC: red blood cell count;
5 ALT: alanine aminotransferase; 6 AST: aspartate aminotransferase; 7 CRP: C-reactive protein; 8 Alb: albumin; 9 PT: prothrombin time.

Table 2. Clinical characteristics of patients in this study.

CV (n = 23) CP (n = 25) ID (n = 14)

Complications

High blood pressure 0 9 2
Hyperlipidemia 0 2 2

Diabetes mellitus 1 7 1
Coronary artery disease 0 0 1

Cerebral infarction 0 1 2

Clinical symptoms

Cough 6 18 3
Diarrhea 4 10 1
Dyspnea 0 8 4

Fever 13 17 17

Clinical classification

Asymptomatic 4 0 0
Mild 16 2 1

Moderate 1 3 6
Severe 2 16 7
Critical 0 4 0

2.2. Levels of Gal-9 and OPN in Patients

The levels of Gal-9 and OPN in the groups and the healthy control (HC) group were
compared (Figure 2). The levels of Tr-Gal9, FL-OPN, and Ud-OPN in the CV group were
significantly higher than in the healthy controls (HC) group. The levels of all four proteins
in the CP group were significantly higher than in the HC group. Only FL-Gal9 and Tr-Gal9
had higher levels in the CP group compared with the CV group. The levels of Tr-Gal9,
FL-OPN, and Ud-OPN were significantly higher in the ID group compared with the HC
group. The levels of FL-Gal9 in the ID group were significantly lower than in the CP group,
and the Ud-OPN levels in the ID group were significantly higher compared with the CV
group. Ratios of Tr-Gal9/FL-Gal9 showed no significant changes between the HC, CV, and
CP groups, but its ratio is significantly lower in the CP group as compared with the ID
group (Supplementary Figure S1). Ud-OPN/FL-OPN ratios showed the highest in the ID
group, and the ratios of the ID and CP groups were significantly higher than that of the
HC group. There were no significant differences between the CV and CP groups.

2.3. Levels of Inflammatory, Coagulation, Kidney and Respiratory Indicators in
COVID-19 Patients

The levels of CRP, sIL-2R, and ferritin in the CP group were significantly increased
compared with those in the CV group (Figure 3A,C,D). Similarly, the levels of percutaneous
oxygen saturation (SpO2), the SpO2 fraction of inspiratory oxygen (FiO2) (S/F) ratio, and
the numbers of lymphocytes were significantly lower in the CP group compared with the
CV group (Figure 3B,H,I). The levels of CRP, sIL-2R, d-dimer, and B2M in the ID were
significantly increased compared with the CV group (Figure 3A,C,E,F).
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Figure 2. Levels of FL-Gal9 (A), Tr-Gal9 (B), FL-OPN (C), and Ud-OPN (D) in CV, CP, ID, and HC. HC: healthy control;
CV: COVID-19 infection with mild clinical symptoms; CP: COVID-19 associated with pneumonia; ID: infectious diseases
FL-Gal9; Full-length Gal-9, Tr-Gal9; truncated Gal-9, FL-OPN; full-length OPN, Ud-OPN; undefined OPN, **** p < 0.0001,
*** p < 0.001, ** p < 0.01, * p < 0.05.

Figure 3. Levels of inflammatory, coagulation, kidney and respiratory indicators in COVID-19 patients (CV, CP) and patients
with bacterial infection (ID). Only those with data are shown in the figure. CRP (A), Lymphocyte number (B), sIL-2R;
soluble IL-2 receptor α (C), Ferritin (D), D-dimer; d-dimer (E), B2M; urinary β2-microglobulin (F), Crea; creatinine (G),
SpO2; peripheral capillary oxygen saturation (H), S/F; SpO2/FiO2 ratio (I). CRP, ferritin, and creatinine were measured in
plasma and d-dimer was measured in serum. **** p < 0.0001, ** p < 0.01, * p < 0.05; ns; not significant.

2.4. Receiver Operating Characteristic (ROC) Analysis of Inflammatory, Coagulation, Kidney and
Respiratory Indicators

Area under curve (AUC) values were obtained by ROC analysis between CV, CP, ID
and HC. Detailed analytical results are shown in Table S1 FL- and Ud-OPN had the highest
AUC values (>0.97), followed by Tr-Gal9 (0.88) in the CV group. Ud-OPN and Tr-Gal9 had
very high values (>0.99) in the CP group indicating cleavage occurred in this group. FL-
and Ud-OPN values were 1.00 in the ID group, indicating the significant elevation of OPN
during bacterial infection (Figure 4A–C).
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Figure 4. ROC analysis of Gal-9 (FL-Gal9 and Tr-Gal9) and OPN (FL-OPN and Ud-OPN) between the HC and CV groups
(A), the CP group (B) and the ID group (C).

It is important to detect the development of pneumonia; therefore, ROC analysis
was performed between the CV and CP groups and we compared Gal-9 and OPN levels
with inflammatory, coagulation, and kidney indicators commonly used in clinical practice
(Figure 2). The AUC of Gal-9 and OPN showed that Tr-Gal9 had the highest value (0.89),
followed by Ud-OPN (0.81), FL-Gal9 (0.80), and FL-OPN (0.70) (Figure 5A). The ROC
curve of other inflammatory markers showed that CRP had the highest AUC value (0.94),
followed by ferritin (0.88), and sIL-2R (0.76) (Figure 5B). The SpO2 and SpO2/FiO2 values
were 0.76 and the creatinine and lymphocytes values were below 0.70 (Figure 5C).

Figure 5. ROC analysis of inflammatory, coagulation, kidney and respiratory indicators between the CV and CP groups.
Gal-9 and OPN (A), inflammatory markers (B), and respiratory, kidney and hematological markers (C).

2.5. Correlations between Inflammatory, Coagulation, Kidney and Respiratory Indicators

To understand the relevance of the elevated levels of Gal-9 and OPN in three groups,
they were compared with inflammatory and respiratory markers. In the CV group, FL-
Gal9 and FL-OPN were not significantly associated. A moderate association of FL-Gal9,
Tr-Gal9, FL-OPN, and Ud-OPN with sIL-2R was found (Figure 6A). CRP levels showed a
moderate association with FL- and Ud-OPN. In CP patients, FL-Gal9 was associated with
Tr-Gal9 (Figure 6B). FL-Gal9 and FL-OPN were not associated with any other inflammatory
markers. However, Ud-OPN and Tr-Gal9 had a moderate association with CRP, sIL-2R,
ferritin and d-dimer. Tr-Gal9 also showed a high and moderate correlation with creatinine
and B2M, respectively. However, these levels were not associated with blood urea nitrogen
(data not shown). Ud-OPN and Tr-Gal9 had a moderate negative correlation with SpO2
and S/F ratio. A weak negative association between CRP and SpO2 with S/F ratio and a
moderate positive association between CRP levels with sIL-2R and d-dimer was found.
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Figure 6. Associations of studied indicators in the CV (A), CP (B), and ID (C) groups. The correlation was measured by the
Spearman t-test. The correlation R-value is written in each well and displayed as colors ranging from blue to red as shown
in the legend key. p-value is written significant as * p < 0.05.

In the ID group, FL-Gal9 was negatively associated with FL-OPN but there was no
association of the cleaved form with the FL form (Figure 6C). Ud-OPN, sIL-2R and d-dimer
had a strong negative association with SpO2. We also observed a positive association
of Ud-OPN with sIL-2R and d-dimer, which indicates that the cleavage of OPN may be
associated with lung involvement, immune activation or coagulopathy in the ID group.

Notably, FL-OPN and FL-Gal9 showed negative associations, which might indicate
that the responses of OPN and Gal-9 could be different in bacterial infections from viral
infection. A negative association of Tr-Gal9 with CRP and a high Ud-OPN/FL-OPN ratio
in ID (Supplementary Figure S1B) suggested this possibility.

2.6. Time Course of Inflammatory, Coagulation, Kidney and Respiratory Indicators during
TCZ Therapy

Of 25 patients, 11 were given TCZ. The samples collected before therapy, after 4 days,
8 days, and at discharge (15–36 days) were analyzed. The values of various indicators of
changes over time in each patient being treated with TCZ therapy showed the decrease
of the values of FL-Gal9 (A), Tr-Gal9 (B), Ud-OPN (D), CRP (E), and the increase of the
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values of lymphocyte numbers (F) and S/F ratios (H) (Supplementary Figure S2). In the
analysis of each group, at day 4, the levels of FL-Gal9 and Tr-Gal9 decreased to 13.8% and
9.8%, respectively, but were not significant as compared with the value at before therapy. A
significant reduction was observed at 15–36 days of FL-Gal9 (93.4%) and Tr-Gal9 (68.7%)
(Figure 7A,B). The levels of FL-OPN did not change significantly; however, a significant
reduction of Ud-OPN was observed in all the samples at day 4 (47.5%), day 8 (51.6%), and
15–36 days (65.2%) (Figure 7C,D). The marked reduction of CRP levels was also observed at
day 4 (70.6%), day 8 (95.4%), and 15–36 days (99.2%), and lymphocyte numbers significantly
increased (Figure 7E,F)). An apparent increase of SpO2 and S/F ratio during TCZ was seen
but was not significant (Figure 7G,H). Levels of B2M, sIL-2R, and ferritin did not change
significantly (data not shown). To confirm that these changes could be attributed with TCZ,
these indicators were also monitored in the sample collected from 8 patients without TCZ
therapy but treated with other drugs given in the TCZ group (Supplementary Figure S3).
Due to the lack of cytokine storm, these patients were discharged earlier and the data from
15–36 days were not available. Apparent reduction in the levels of FL-Gal9, Ud-OPN, and
CRP was observed, but was not statistically significant.

Figure 7. Effects of TCZ therapy on markers. Only those with data are shown in the figure. FL–Gal9 (A), Tr-Gal9 (B),
FL-OPN (C), Ud-OPN (D), CRP (E), Lymphocyte (F), SpO2 (G), S/F ratio (H). TCZ; tocilizumab, **** p < 0.0001, *** p < 0.001,
** p < 0.01, * p < 0.05.

3. Discussion

Here, we investigated whether the plasma levels of Gal-9 (FL- or Tr-) or OPN (FL- or
Ud-) reflected the severity of disease in COVID-19-infected individuals and the efficacy of
TCZ treatment.

OPN levels were significantly higher in COVID-19-infected severe patients com-
pared with non-severe cases [45]. Gal-9 levels were elevated in subjects infected with
COVID-19 [16,17] or dengue febrile illness and reflected the severity of the disease [25].
We investigated these proteins because OPN protects macrophages from apoptosis [46]
and enhances Th1-mediated inflammatory responses [47], whereas Gal-9 induces apop-
tosis [48]. Very recently, Gal-9 induces autophagy by activating AMP-activated protein
kinase (AMPK) [49]. Our results are novel because we measured the FL and cleaved forms
of the products. ROC analysis demonstrated that FL-OPN and Ud-OPN had higher AUC
values in the CV group compared with the HC group. In the CP group, Ud-OPN (1.00) had
the highest AUC value followed by Tr-Gal9 (0.99), indicating that the cleaved forms were



Int. J. Mol. Sci. 2021, 22, 4978 9 of 17

more specific in CP patients. Notably, FL- and Ud-OPN had the highest AUC values (1.00)
in the ID group.

We previously reported that Tr-Gal9 was noticeable with AUC values of 0.9991 and
1.0000 in TB vs. AIDS and in TB vs. AIDS/TB, respectively [35]. COVID-19 develops over
a shorter period compared with AIDS or AIDS/TB, and we observed the metabolism of
these proteins in vivo over a very short period. It is important to detect the development
of pneumonia in COVID-19 patients quickly to prevent their death. For this purpose, we
studied nine markers that are often used in clinical practice and compared them with
Gal-9 and OPN. ROC analysis between the CV and CP groups showed that CRP (0.94)
had the highest AUC value followed by Tr-Gal9 (0.89), and ferritin (0.88). Ud-OPN had a
higher AUC value (0.81) than frequently used biomarkers including sIL-2R (0.76), d-dimer
(0.72), and B2M (0.67). Spearman’s analysis of the CV group showed a weak negative
association of FL-OPN with the SpO2 and S/F ratio. The negative associations of Tr-Gal9
and Ud-OPN with the SpO2 and S/F ratio were more prominent in the CP group than the
CV group, which indicates that the cleaved form reflects pulmonary involvement. In the
CV group, the FL- and cleaved forms of OPN and Gal-9 moderately correlated with sIL-2R.
It is known that these molecules might have been shed from activated T cells because Gal-9
and CD 25 are expressed by lymphocytes from COVID-19 patients [50,51]. The associations
of Tr-Gal9 and Ud-OPN with sIL-2R were greater than those of FL-Gal9 and FL-OPN in in
the CP group, which indicates that the cleavage of these molecules was highly active in
the CP group. A previous study reported that interferon γ-induced protein 10, monocyte
chemotactic protein-3, IL-1 receptor antagonist, IL-6, IL-8, IL-10, sIL-2R, IL-1®, IL-4 and
IL-18 might be involved in the major biological processes of severe COVID-19 patients
and reflect the level of systemic hyperinflammatory state [50]. Additionally, M-CSF and
HGF are proposed to be involved in the major biological processes of severe COVID-19,
mirroring the level of systemic hyperinflammatory state [38].

More recently, six proteins (IL-6, Cytoskeleton-associated protein 4, Gal-9, Interleukin-
1 receptor antagonist, Leukocyte Immunoglobulin-Like Receptor B4, and Programmed
cell Death ligand 1) among 368 proteins, were identified to be associated with disease
severity [51].

Therefore, Tr-Gal9 and/or Ud-OPN might be used as biomarkers of disease severity
in the CP group. Notably, Tr-Gal9 levels had a negative association with lymphocytes.
Lymphopenia is a common feature of severe COVID-19 and is thought to be caused, at least
in part, by massive lymphocyte death mediated by pyroptosis [52]. This would release
Gal-9, a cytoplasmic protein, into the extracellular space, acting as a danger-associated
molecular pattern to transduce danger signals to activate innate and adaptive immune
systems. T cells in active COVID-19 disease were reported to be inactive with an exhausted
phenotype characterized by the expressions of PD-1+ and Tim-3+ [50]. Recently, Gal-9
was shown to bind to PD-1 as well as Tim-3 to form a lattice structure comprised of the
three proteins, which was necessary for T cells to maintain the exhausted phenotype [53].
Therefore, elevated levels of Tr-Gal9 might reflect the severity and exhaustion of T cells.

Furthermore, the negative correlation of Tr-Gal9 with SpO2 suggests the involvement
of Gal-9 in pneumonia. Ultra-high resolution CT analysis showing local lung volume loss
caused by alveolar collapse is a hallmark of COVID-19 pneumonia [54]. Alveolar collapse is
caused by alveolar cell damage, in which alveolar cells in the lungs undergo programmed
cell death [55]. In addition, cytokine storm is involved in apoptosis of the alveolar cells [56].
Therefore, whether Gal-9 can induce apoptosis of the alveolar epithelial cells should be
determined in the future.

Ud-OPN but not FL-OPN had a strong negative correlation with SpO2 and the involve-
ment of monocytes in the production of OPN in COVID-19 pneumonia was previously
proposed [18]. Furthermore, OPN but not CRP correlated with the severity of community-
acquired pneumonia [57]. OPN knockout mice survived longer than wild-type mice upon
intranasal infection of Streptococcus pneumoniae, which indicates the detrimental effect of
OPN on anti-bacterial defense in the pulmonary compartment during pneumonia [58].
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During COVID-19 infection, OPN-induced furin may enhance the entry of SARS-CoV2 to
target cells [59]. Furthermore, OPN levels were associated with the severity of COVID-19
infection and white blood cell numbers [45]. Recently, activated neutrophil markers in-
cluding IL-8 and MMP-8 were proposed to distinguish patients at risk of future clinical
decompensation, although OPN and Gal-9 were not examined [60]. The associations of
IL-8 and OPN were previously reported in patients with tuberculosis [61].

These findings suggest that Gal-9 and OPN might be therapeutic targets to ameliorate
COVID-19 infection. A new brefelamide derivative inhibits the synthesis of OPN and Gal-9,
which might serve as a therapeutic agent for COVID-19 [62].

The association of Tr-Gal9 with creatinine and d-dimer suggests their involvement in
kidney diseases and coagulopathy, which are often associated with COVID-19 infection [33,63].
None of our patients met the criteria for acute kidney injury or severe coagulopathy, and
Tr-Gal9 levels did not correlate with neutrophil numbers, blood urea nitrogen, or prothrombin
time (data not shown); however, Gal-9 was reported to be involved in kidney diseases [64]
and atherosclerotic stroke [65]. Therefore, further analysis of the role of Gal-9 in COVID-19
coagulopathy is necessary.

Our results suggest that the moderate association of FL-OPN with CRP and sIL-2R,
observed in the CV group was decreased in the CP group, which indicates that it might be
rapidly cleaved in inflammatory environments. OPN was released in the form of exosome
from a lipopolysaccharide-stimulated macrophage cell line and enhanced encapsulation
of FL-OPN was reported, suggesting that the exosomes may be a suitable vehicle for
transferring OPN to target cells [66]. We should determine whether OPN needs to be
present in plasma in the form of exosomes to exert its biological functions.

Multiple humoral factors have been claimed to be associated with the severity or
morbidity in COVID-19 patients. To assess their exact roles, the application of the strategy
used in the VA COVID-19 (VACO) should be developed using nationwide medical admin-
istrative data [67]. In HIV study, higher Veterans Aging Cohort Study index scores were
associated with higher levels of neopterin, cystatin C, tumor necrosis factor receptor 1 and
Gal-9 in individuals under therapy [68].

A major finding of this study was the cleavage of OPN and Gal-9 in CP patients.
The cleavage of OPN and Gal-9 by various proteases including MMPs and thrombin and
the involvement of these proteases in inflammatory responses was previously reported.
Among various inflammatory markers, MMP-9 was strongly associated with the P/F
ratio and distinguished between patients with and without respiratory failure [69]. In
addition, an increase in MMP-9 reflects neutrophil activation and may be associated with
the development of thrombotic events [70]. It is not clear whether the biological effects of
OPN and Gal-9 might be inactivated by their cleavage, because the cleaved products also
have distinct biological activities [23]. These complex interactions of biological molecules
may be important for the resolution of inflammation.

The patients studied here were treated with multiple agents including favipiravir
(FAV) [71]. It was reported that TCZ with or without FAV effectively improved pulmonary
inflammation and symptoms of COVID-19 patients [72,73]. A recent randomized trial
of hospitalized patients with severe COVID-19 pneumonia reported the potential benefit
of TCZ in the period until hospital discharge and during ICU stay [13]. Evaluation of
a minority patients treated with TCZ showed that TCZ lowered the composite rate of
mechanical ventilation or death [74]. The optimal time to prescribe TCZ was reported to be
the early stages of inflammation and the initial reduction in O2 saturation [75]. All patients
survived in this study, probably due to early administration of TCZ and other possibly
effective agents such as azithromycin [76], ciclesonide [77], nafamostat mesilate [78], and
FAV. It is better to follow the new guideline of TCZ therapy in the future [79]. TCZ binds to
the IL-6 receptor to inhibit the IL-6 signaling pathway; however, IL-6 levels were increased
after treatment with TCZ [10]. This study also confirmed a decrease in Tr-Gal9 and Ud-OPN
levels after TCZ therapy, although sIL-2R, ferritin, and B2M levels were not significantly
reduced. The reduction seen in TCZ-treated patients was not observed in patients not
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treated with TCZ, but more patients are needed to conclude the results. CRP levels declined
so rapidly that they were not suitable for monitoring TCZ therapeutic effects, because CRP
synthesis is partially dependent on IL-6 [37]. The prominent decrease in Ud-OPN cannot
be explained by the reduced protein expression, because FL-OPN levels did not decrease.
It is possible that IL-6-dependent stat3-mediated protease activation [80] is involved in
the generation of Ud-OPN and was impaired by TCZ therapy. This is a novel finding
demonstrating cleavage of OPN by IL-6-dependent proteases in vivo. Therefore, Tr-Gal9
might be suitable to monitor the therapeutic effect of TCZ on COVID-19 patients with
cytokine storm. However, we emphasize that other monitoring tools should also be used
because TCZ increased d-dimer levels [72] and the development of multiorgan failure was
reported [81]. Alternatively, Ud-OPN could be produced by intrinsic protease activities
in COVID-19 pneumonia patients. FL-OPN was not reduced by TCZ therapy probably
because not only IL-6-dependent pathway [82], but also IL-6 independent of OPN synthesis
was involved [83]. It should be noted that persistent elevation of OPN was also observed
after ATR therapy in AIDS patients [84], and chemotherapeutic drugs may induce the
synthesis of OPN [85].

In summary, we showed that OPN and Gal-9 were released in COVID-19-infected
patients, and their cleaved products might be useful biomarkers for assessing the severity
of COVID-19 pneumonia. Furthermore, levels of the cleaved products might be useful to
monitor the therapeutic effect of TCZ in cytokine storm complicated in CP patients.

The disadvantages of this study included the relatively small number of patients
enrolled from a single medical hospital. None of the treated patients received TCZ alone
because they received multiple medications.

4. Materials and Methods
4.1. Study Design and Participants

This was a cross-sectional analytical study, and patient samples were collected at
SCH, Sendai, Japan, from July 2020 to October 2020. Among 4897 patients in the out-
patient department, 157 febrile patients were screened by a SARS-CoV-2 PCR test using
a sample obtained from a nasopharyngeal swab as previously described [72]. Among
49 positive cases, one patient who had been suffering from pulmonary embolism was
excluded. Among 108 negative cases, informed consent was obtained from 18 cases, and
14 patients who were clinically suspected of bacterial infection were enrolled (Figure 1). Of
the 23 CV patients, 12 were hospitalized and the remaining 11 were outpatients.

Various drugs were given to the patients, including azithromycin (500 mg/day), ciclesonide
(200 µg inhaler; two inhalations per day) [77], nafamostat mesilate (0.06 mg/kg/day) [78], FAV
(3600 mg on the first day, 1600 mg thereafter) [71] and TCZ (8 mg/kg) administered by a single
intravenous injection when patients showed signs of cytokine storm [9,10].

Four and thirteen patients in the CV and CP groups, respectively, did not show signs
of cytokine storm and were treated with the above drugs without TCZ. Other patients in
the CV group were not treated because of a lack of disease symptoms. Twelve patients
suspected of cytokine storm in the CP group were treated with five or six drugs including
TCZ. Plasma from peripheral blood samples was obtained in EDTA tubes at admission,
during therapy, and before discharge. Patients in the ID group were examined only at
admission. All patients had improved symptoms and were discharged except for two
patients in the ID group, who died during hospitalization. EDTA plasma was stored at
−80 ◦C to measure FL-Gal9, Tr-Gal9, FL-OPN, and Ud-OPN. Thirty normal human plasma
samples that were negative for HIV, SARS-CoV-2, and hepatitis B and C viruses were
obtained as HC from Bioivt (Hicksville, NY, USA). Their age ranged from 19–64 years with
an average of 43.7. There were 23 women accounting for 76%.

4.2. Laboratory Analyses

The SpO2, SpO2/FiO2 ratio, conventional laboratory analyses, and chest CT were
obtained through Sendai City Hospital (Table 1) as described [72].
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4.3. Determination of FL-OPN and Ud-OPN

To identify FL-OPN, an ELISA kit (JP27158, IBL, Gunma, Japan) was used. Ud-OPN
was determined using the Human OPN DuoSet ELISA Development System kit (DY1433,
R&D Systems, Minneapolis, MN, USA) [27].

4.4. Determination of FL-Gal9 and Tr-Gal9

FL-Gal9 was measured using a human Gal-9 ELISA kit (GalPharma Co., Ltd., Taka-
matsu, Japan). An ELISA for Tr-Gal9 was constructed using two monoclonal antibodies
against the N-terminal carbohydrate-recognition domain of human Gal-9, in which 9S2-3
(GalPharma) and biotinylated ECA8 (MBL, Nagoya, Japan) were used as the capture and
the detection antibodies, respectively, as described previously [34,35]. Ten mM lactose in
dilution buffers for specimen and detection antibodies were used to prevent Gal-9 from
forming a complex with carbohydrates.

4.5. Ethical Statements

This study adhered to the ethical considerations and ethical principles set out in
relevant guidelines, including the Declaration of Helsinki, WHO guidelines, International
Conference on Harmonization-Good Clinical Practice, Data Privacy Act of 2012, and
National Ethics Guidelines for Health Research 2017. This research was approved by the
Ethics Review Unit of Sendai City Hospital (SCH 338-20202001). Written informed consent
was obtained from all patients prior to enrollment.

4.6. Statistical Analysis

Statistical analysis was performed using R Statistical Software (version 3.5.3; R Foundation
for Statistical Computing, Vienna, Austria) and Prism 8 (GraphPad software, San Diego, CA,
USA). The Mann–Whitney U-test and Kruskal–Wallis test were used to assess the differences
between two groups and among multiple groups, respectively. Correlations between a data
set were examined using Spearman’s rank correlation coefficient. ROC analysis, including
the corresponding AUC calculation, was conducted to analyze the ability of biomarkers to
discriminate between a selected pair of the HC, CV, CP, and ID groups.

5. Conclusions

FL-OPN, Ud-OPN, FL-Gal9, Tr-Gal9, and commonly used inflammatory and respi-
ratory markers of patients with CV, CP, and ID were analyzed. FL-OPN, Ud-OPN, and
Tr-Gal9 levels in the CV group were significantly higher than in the HC group. ROC
analysis showed that the cleaved form had a high discriminating power between the HC
and CV or CP groups and between the CV and CP groups. Spearman’s analysis showed
that FL-OPN and Ud-OPN had moderate associations with CRP, sIL-2R, and d-dimer
but FL-Gal9 and Tr-Gal9 showed the moderate association only with sIL-2R in the CV
group. However, Tr-Gal9 and Ud-OPN levels were more associated with inflammatory
or respiratory functional parameters compared with FL-Gal9 or FL-OPN in the CP group.
The levels of FL-Gal9, Tr-Gal9, Ud-OPN, and CRP were significantly decreased in the
TCZ-treated group. The decrease of Ud-OPN could be ascribed to the impaired synthesis
of IL-6-dependent protease, because the FL-Gal9 levels did not decrease. Therefore, the
cleaved forms of Gal-9 and OPN are useful to assess the severity of COVID-19 pneumo-
nia and Tr-Gal9 may be useful to determine the therapeutic effect of TCZ in COVID-19
pneumonia. Further studies are necessary to support our hypothesis.
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