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Abstract

Osteoporosis, defined by low bone mineral density (BMD), is common among postmenopausal women. The distribution of
BMD varies across populations and is shaped by both environmental and genetic factors. Because the candidate gene
vitamin K epoxide reductase complex subunit 1 (VKORC1) generates vitamin K quinone, a cofactor for the gamma-
carboxylation of bone-related proteins such as osteocalcin, we hypothesized that VKORC1 genetic variants may be
associated with BMD and osteoporosis in the general population. To test this hypothesis, we genotyped six VKORC1 SNPs in
7,159 individuals from the Third National Health and Nutrition Examination Survey (NHANES III). NHANES III is a nationally
representative sample linked to health and lifestyle variables including BMD, which was measured using dual energy x-ray
absorptiometry (DEXA) on four regions of the proximal femur. In adjusted models stratified by race/ethnicity and sex, SNPs
rs9923231 and rs9934438 were associated with increased BMD (p = 0.039 and 0.024, respectively) while rs8050894 was
associated with decreased BMD (p = 0.016) among non-Hispanic black males (n = 619). VKORC1 rs2884737 was associated
with decreased BMD among Mexican-American males (n = 795; p = 0.004). We then tested for associations between VKORC1
SNPs and osteoporosis, but the results did not mirror the associations observed between VKORC1 and BMD, possibly due to
small numbers of cases. This is the first report of VKORC1 common genetic variation associated with BMD, and one of the
few reports available that investigate the genetics of BMD and osteoporosis in diverse populations.
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Introduction

The candidate gene vitamin K epoxide reductase complex

subunit 1 (VKORC1) was first identified as part of the vitamin K

epoxide reductase multiprotein complex (VKOR) in 2004 [1,2].

The product of VKORC1 is a rate-controlling enzyme in the

vitamin cycle and is essential for the production of vitamin-K-

dependent, c-carboxylated proteins such as clotting factors II, VII,

IX, X protein C, S, and Z. Thus, VKORC1 has broad implications

for clotting, a property well-appreciated: even before the gene was

identified, VKOR has long been the target of warfarin, a

commonly prescribed anticoagulant used to prevent stroke and

other thromboembolic events. It is now known that rare mutations

in VKORC1 cause warfarin resistance, and common polymor-

phisms in VKORC1 account a large proportion of the variability of

warfarin dosing in most populations studied [3].

In addition to having broad effects on the coagulation cascade,

the vitamin K cycle is also essential in the formation of the bone

matrix. Vitamin K, which is synthesized by plants (K1) and

bacteria in the gut (K2), is a required co-enzyme for the c-

carboxylation of three glutamic acid (Glu) residues in osteocalcin,

converting them to gamma-carboxyglutamic acid (Gla). This post-

translational Glu to Gla modification of osteocalcin, a bone and

dentin protein produced by osteoblasts, is necessary for calcium

binding. Evidence suggests that vitamin K1 deficiency is associated

with decreased BMD [4,5] and that high-dose vitamin K

supplementation prevents fractures in at-risk patients [6]. Also,

some inconsistent evidence suggests that long-term warfarin

therapy, which by design inhibits the vitamin K cycle and

prevents the Glu to Gla modification, is associated with low BMD

in patients compared with patients not on warfarin-therapy [5,7].

This latter observation in humans, however, is not supported by

recent experiments in male rhesus macaques that demonstrate

long-term warfarin therapy does not affect BMD while on a diet

high in calcium and vitamin D [8].

Despite the discordant observations between humans and

macaques, preliminary studies in humans suggest that VKORC1

common variation is associated with mean undercarboyxlated

osteocalcin [9] and dietary vitamin K intake [9,10]. Based on role

of VKORC1 in the vitamin K cycle and based on the preliminary

data presented in other studies, we hypothesized that common

VKORC1 genetic variation is associated with BMD in humans. To

test this hypothesis, we genotyped six VKORC1 SNPs (rs9923231,

rs9934438, rs2359612, rs8050894, rs2884737, rs7294) in the

Third National Health and Nutrition Examination Survey

(NHANES III) and tested for associations with measures of
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BMD. Four of these tagSNPs (rs9923231, rs9934438, rs2359612,

and rs8050894) are known to be in strong linkage disequilibrium

with one another and are associated with warfarin dosing in

populations of European-descent [3,11,12]. We also tested for

associations between VKORC1 SNPs and osteoporosis, an extreme

phenotype of BMD. Unadjusted and adjusted results suggest that

VKORC1 SNPs are associated with these bone phenotypes in

human, but their effect size is likely small compared with other

genetic and non-genetic factors.

Materials and Methods

Study Population
Participants were consented by the Centers for Disease Control

and Prevention (CDC) at the time of the survey and sample

collection, and consent included the storage of data and biological

specimens such as blood for future research [13]. The present

study was approved by the CDC Ethics Review Board. Because

the study investigators did not have access to personal identifiers,

this study was considered non-human subjects research by the

Vanderbilt University Internal Review Board.

NHANES III was conducted between 1988 and 1994 by the

National Center for Health Statistics (NCHS) at the CDC.

NHANES is a nationally representative cross-sectional survey

designed to represent non-institutionalized Americans at the time

of ascertainment [14,15]. NHANES is also a complex, multi-stage

survey that oversamples minorities (non-Hispanic blacks and

Mexican-Americans), children, and the elderly. Sampling weights

are calculated and provided for analysis to account for non-

response bias and to adjust for the oversampling of specific groups

so that all estimates are nationally representative. All participants

were asked to complete a household interview and physical

examination in the Mobile Examination Center (MEC). If the

participant was not able to visit the MEC, a home examination

was arranged. During Phase 2 of NHANES III (1991–1994), cell

lines were established from blood samples of participants .12

years of age. The total number of NHANES III phase 2

participants was 16,530, and sample weights were recalculated

using methods previously described [16] for participants with

DNA samples to avoid non-response bias. NHANES III DNA

samples became available to study investigators beginning in 2002

[13,17–19].

BMD of the proximal femur was measured during the physical

exam on non-pregnant female and male participants at least 20

years of age using dual energy x-ray absorptiometry (DXA) [20].

Bone mineral content and BMD are available for the femur neck

region (gm/cm2), the trochanter region (gm/cm2), the inter-

trochanter region (gm/cm2), the Ward’s triangle region (gm/cm2),

and the total region (gm/cm2). Cotinine levels were determined in

participants using STC Diagnostics cotinine enzyme immunoassay

(EIA) kits (Bethlehem, PA). Serum vitamin D levels were

determined in participants using the DiaSorin radioimmunoassay

(RIA) kit (formerly the INCSTAR 25-OH-D assay; Stillwater,

MN) [21].

Genotyping
NHANES III DNA samples were distributed as aliquots of

crude cell lysates to study investigators. NHANES III DNA

concentrations vary and are estimated to range from 7.5–65 ng/

mL with an average of approximately four micrograms in 100 ul.

NHANES III DNA samples are distributed in 96-well plates along

with four 96-well plates of CDC-supplied blinded duplicates and

blank controls. NHANES III experimental DNA samples are

randomly distributed across plates without regard to race/

ethnicity, sex, or case/control status. NHANES III DNA samples

represent several major racial/ethnic groups, including non-

Hispanic whites (n = 2,631), non-Hispanic blacks (n = 2,018),

Mexican-Americans (n = 2,073), and other racial/ethnic groups

(n = 437).

TagSNPs were selected using LDselect [22] and the MultiPop-

TagSelect algorithm [23] as previously described [3] for non-

Hispanic whites and non-Hispanic blacks. A total of 16 tagSNPs

were considered for genotyping. VKORC1 rs17880887 could not

be successfully converted into a genotyping assay and was omitted

from further genotyping attempts. Five tagSNPs were targeted for

genotyping because they represent the vast majority of common

variation in European-descent populations [3]. These five tagSNPs

also represent the haplotypes associated with warfarin dosing in

both non-Hispanic whites and non-Hispanic blacks [12,24]. A

sixth SNP (rs9923231), which is redundant with rs9934438 in both

non-Hispanic whites and non-Hispanic blacks, was targeted for

genotyping given that there is evidence this is the functional SNP

in the association with warfarin dosing [11,25].

A total of six SNPs were genotyped in 7,159 DNA samples in

NHANES III: rs9923231, rs9934438, rs8050894, rs2359612,

rs2884737, and rs7294 (Table 1 and Table S1). All SNPs were

genotyped using Applied Biosystem’s TaqManH SNP Genotyping

Assays (Foster City, CA) except for rs2884737, which was

genotyped using Sequenom’s iPLEXH Gold coupled with

MassARRAY MALDI-TOF MS detection (San Diego, CA).

The SNP genotyping call rates ranged from 90% to 99%, with an

average call rate of ,95%. All SNPs were in Hardy Weinberg

Equilibrium (HWE) at p.0.05, and all SNPs passed CDC quality

control measures based on tests of HWE on the experimental

DNA samples and 368 blinded duplicates on CDC-supplied

control plates. All genotypes have been deposited into CDC’s

Genetic NHANES database and are available for secondary

analysis.

Statistical Analysis
All analyses were conducted remotely in SAS v9.2 (SAS

Institute, Cary, NC) and SUDAAN (Research Triangle Institute,

Research Triangle Park, NC) using the Analytic Data Research by

Email (ANDRE) portal of the CDC Research Data Center in

Hyattsville, MD. All analyses presented here were performed

weighted. Unweighted analyses were not substantially different

compared with weighted analyses (data not shown).

Linear regressions stratified by sex and race/ethnicity were

performed where BMD was the dependent variable. Models were

adjusted for the following variables: age (in years; continuous),

body mass index (kg/m2; continuous), current smoking status

(defined by ‘‘do you smoke cigarettes now?’’ or cotinine levels

.15 ng/ml; binary); family history of osteoporosis (‘‘Doctor told

mother she had osteoporosis’’; binary), thyroid disease (‘‘Doctor

ever told you had thyroid disease’’; binary), menopause (defined as

a woman .60 years of age answering ‘‘no’’ to ‘‘have you had a

period in the past 12 months’’ or as a woman with bilateral

oophorectomy answering ‘‘yes’’ to ‘‘have you had one or both

ovaries removed’’ and ‘‘both removed’’; binary); hysterectomy

(‘‘have you had a hysterectomy’’; binary), education (defined as

less than high school, high school, and greater than high school

from ‘‘highest grade or year completed’’; categorical), use of

hormone replacement therapy (defined as ‘‘ever/never’’ from

three questions: ‘‘ever take estrogen by mouth,’’ ‘‘have you ever

taken or used estrogen or female hormones in the form of vaginal

cream,’’ and ‘‘have you ever used female hormones in the form of

patches that are placed on the skin’’; binary), and oral

contraceptive use (‘‘have you ever taken birth control pills for
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any reason?’’; binary). Dietary variables such as calcium (mg;

continuous) and alcohol consumption (gm; continuous) were

defined from the 24-hour dietary recall.

Logistic regression was performed where osteoporosis was the

dependent variable. Osteoporosis was defined as less than or equal

to 22.5 standard deviations from the mean BMD total region.

The mean BMD used to define cases and controls is based on

participants 20–29 years of age in each sex and race/ethnicity

group, which is based on the criteria outlined by WHO in 1994 (as

described in [26]). We adjusted models using the same variables

from the linear regression.

SNPs were included in both the linear and logistic regression

models assuming an additive genetic model (genotypes coded as 0,

1, and 2). SNPs were first included in the model without

adjustment and then included in the fully adjusted models.

Results

The study population characteristics are given in Table 2. For

each VKORC1 SNP, unadjusted tests of association for BMD total

region were performed assuming additive genetic model stratified

by race/ethnicity and sex (Table 3). Among non-Hispanic black

males, two SNPs were significantly associated with increased BMD

(rs9923231, p = 0.015 and rs9934438, p = 0.004), and one SNP

was significantly associated with decreased BMD (rs8050894,

p = 0.014). One SNP, rs7294, was associated with decreased BMD

among non-Hispanic white males (p = 0.011). No significant

associations were identified in non-Hispanic white females, non-

Hispanic black females, or Mexican American males or females.

Adjustment for age, body mass index, smoking status, maternal

family history of osteoporosis, thyroid disease, menopause,

hysterectomy, oral contraceptive use, hormone replacement

therapy, education level, alcohol consumption, dietary calcium

and vitamin K, and serum levels of vitamin D did not appreciably

alter the associations observed in the unadjusted analyses (Table 4).

That is, SNPs rs9923231 and rs9934438 were both associated with

increased BMD (p = 0.039 and 0.024) and rs8050894 was

associated with decreased BMD among non-Hispanic black males

(p = 0.016). VKORC1 SNP rs7294 was no longer associated among

non-Hispanic white males. SNP rs2884737, which was not

significant in unadjusted models, was significantly associated with

decreased BMD among Mexican-American males (p = 0.004).

Given that VKORC1 SNPs were associated with BMD total

region, we tested whether VKORC1 SNPs were associated with

osteoporosis. In unadjusted tests of association, only rs7294 was

associated with osteoporosis. This significant association

(p = 0.001) was observed only among non-Hispanic white males

(odds ratio = 0.60; 95% confidence interval = 0.45, 0.79; Table

S2). After adjustment for age, body mass index, smoking status,

maternal family history of osteoporosis, thyroid disease, education

level, alcohol consumption, dietary calcium and vitamin K, and

serum levels of vitamin D, the association between rs7294 and

osteoporosis among non-Hispanic white males remained signifi-

cant (p = 0.04; OR = 0.65; 95% CI = 0.44, 0.98; Table S3).

Adjusted models also revealed a significant association not

observed in unadjusted analyses (Table S3). Specifically,

rs8050894 was associated with osteoporosis in Mexican-American

males (p = 0.03; OR = 1.40; 95% CI = 1.04, 1.87).

Discussion

We genotyped six SNPs in the candidate gene VKORC1 in 7,159

participants of NHANES III to determine if these common genetic

variants contribute to the variability in BMD in the general

population. Previous studies suggested that the vitamin K cycle is

essential to the formation of the bone matrix. Furthermore, patients

on long-term warfarin therapy, of which VKORC1 is the target, have

on average lower BMD compared with those not on long term

warfarin [7]. Our results suggest that common variants in VKORC1

are indeed associated with BMD and perhaps osteoporosis, but many

of these results are limited to African Americans. Also, the VKORC1

SNPs, while associated at p,0.05, contribute very little to variability

of BMD (,1%) compared with other risk factors, making it unlikely

that this locus is a major contributor to BMD as a main effect.

The weak contribution of VKORC1 SNPs on BMD and

osteoporosis is not surprising given that BMD and osteoporosis

Table 1. VKORC1 SNP alleles, SNP location, and minor allele frequency by race/ethnicity.

Genotype frequencies

(minor allele frequency)

SNP SNP Location Non-Hispanic white Non-Hispanic black Mexican-American

(major allele/minor allele) (n = 2,631) (n = 2,108) (n = 2,073)

rs9923231 59 flanking 0.38/0.47/0.15 0.81/0.18/0.01 0.30/0.50/0.20

(G/A) (0.38) (0.10) (0.45)

rs2884737 59 flanking 0.56/0.37/0.07 0.91/0.08/0.01 0.74/0.24/0.02

(A/C) (0.26) (0.05) (0.49)

rs9934438 Intronic 0.38/0.47/0.15 0.81/0.18/0.0.01 0.31/0.49/0.20

(G/A) (0.38) (0.10) (0.45)

rs8050984 Intronic 0.34/0.50/0.17 0.49/0.42/0.09 0.25/0.51/0.23

(C/G) (0.42) (0.30) (0.49)

rs2359612 Intronic 0.39/0.47/0.14 0.65/0.31/0.04 0.30/0.50/0.20

(G/A) (0.38) (0.20) (0.45)

rs7294 39 untranslated region 0.39/0.48/0.13 0.31/0.49/0.19 0.36/0.49/0.16

(C/T) (0.37) (0.19) (0.40)

doi:10.1371/journal.pone.0015088.t001
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Table 2. Study population characteristics for participants $20 years of age stratified by race/ethnicity and sex.

Non-Hispanic whites Non-Hispanic blacks Mexican-Americans

Females Males Females Males Females Males

(n = 1,327) (n = 884) (n = 809) (n = 619) (n = 726) (n = 795)

Mean age (years) 47.17 45.17 42.46 41.38 38.43 36.95

(1.12) (1.01) (0.86) (0.79) (0.75) (0.80)

Mean BMI (kg/m2) 26.26 27.04 29.42 26.77 28.54 27.12

(0.32) (0.17) (0.28) (0.26) (0.19) (0.19)

Current smokers (%) 26.33 36.73 33.76 44.67 16.88 32.78

Family history of maternal
osteoporosis (%)

6.86 2.88 1.68 1.19 2.72 1.44

Thyroid disease (%) 9.66 2.67 3.35 1.04 3.78 0.96

Menopause (%) 24.11 n/a 8.62 n/a 9.58 n/a

Hysterectomy (%) 25.25 n/a 19.50 n/a 15.01 n/a

Oral contraceptive use (%) 61.84 n/a 61.93 n/a 58.76 n/a

Hormone replacement therapy (%) 21.27 n/a 12.32 n/a 8.61 n/a

High school education (%) 56.86 49.89 62.89 59.70 48.46 42.21

Mean alcohol consumption (gm) 5.83 14.69 5.03 18.04 3.33 19.25

(0.68) (1.94) (0.28) (1.69) (0.78) (1.48)

Mean dietary calcium (mg) 741.70 1074.43 546.71 786.92 754.58 972.51

(19.21) (36.02) (15.29) (24.17) (21.33) (16.95)

Mean serum vitamin D (ng/mL) 31.46 33.46 17.48 20.21 23.22 28.32

(0.59) (0.63) (0.60) (0.80) (0.50) (0.75)

Mean total region BMD (gm/cm2) 0.87 0.99 0.98 1.11 0.93 1.04

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

Weighted means (standard errors of the mean) and proportions are provided for each variable. Sample sizes given are based on the counts available for total bone
mineral density.
Abbreviations: Body mass index (BMI), bone mineral density (BMD).
doi:10.1371/journal.pone.0015088.t002

Table 3. Unadjusted and weighted single SNP tests of associations, by race/ethnicity and sex, for bone mineral density total region
(gm/cm2).

Non-Hispanic whites Non-Hispanic blacks Mexican-Americans

Females Males Females Males Females Males

SNP Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value

(SE) (SE) (SE) (SE) (SE) (SE)

rs9923231 ,0.01 0.837 0.01 0.370 0.01 0.473 0.01 0.015 ,20.01 0.604 ,0.01 0.689

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

rs9934438 ,0.01 0.860 0.01 0.440 0.01 0.550 0.05 0.004 ,20.01 0.733 0.01 0.487

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

rs8050894 ,20.01 0.969 20.01 0.426 0.01 0.408 20.04 0.014 0.01 0.506 20.01 0.543

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

rs2359612 ,0.01 0.799 0.01 0.530 0.01 0.700 0.02 0.317 ,20.01 0.783 ,0.01 0.721

(0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

rs2884737 20.01 0.270 ,20.01 0.665 0.03 0.082 20.05 0.167 20.01 0.606 20.02 0.097

(0.01) (0.01) (0.02) (0.03) (0.01) (0.01)

rs7294 0.01 0.145 20.03 0.011 0.01 0.491 ,20.01 0.965 ,20.01 0.700 ,20.01 0.491

(,0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

doi:10.1371/journal.pone.0015088.t003

VKORC1 and Bone Mineral Density in NHANES III

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15088



are complex traits likely influenced by both genetics and the

environment. Twin and family studies suggest 40–80% of the

variability observed in BMD in various study populations can be

attributable to genetics [27–33]. Likewise, for osteoporosis, a

family history of the condition is strongly associated with cases

compared with controls [34,35]. To date, the genetic component

described in these twin and family studies seems to consist of many

common genetic variants, each with very small effects. That is,

candidate gene [36–39] and genome-wide association studies

[28,40–46] have identified .20 genes or genomic regions

associated with hip and spine BMD and/or osteoporosis, each

with effect sizes explaining ,1 to 4% of the variability in BMD or

with an odds ratio of ,1.5 for osteoporosis.

This is the first report of an association between BMD and

osteoporosis and these VKORC1 SNPs in the literature. VKORC1

genetic variation on chromosome 16 is not in linkage disequilib-

rium with genetic variation known to be associated with BMD

(such as ESR1 variants on chromosome 6 [47]) through GWAS

and candidate gene studies. Thus, the associations reported here

could represent false-positive findings or could represent associa-

tions that fall below the accepted threshold for significance in

genome-wide association studies (p,5.061028). It is interesting to

note, however, that our associations in BMD are mostly limited to

African American males. To date, few GWAS studies have been

performed in populations of non-European descent for BMD or

osteoporosis, and none have been reported for populations of

African-descent. This latter situation has an impact on our ability

to replicate the associations described here as GWA studies

available in dbGaP [48], the public repository for genotypes and

phenotypes, are not from populations of similar genetic ancestry

(i.e., the Framingham Heart Study is of European-descent). For

early replication studies, the preferred sequence of events is to first

replicate and confirm associations in populations of similar genetic

ancestry before performing characterization studies in other

racial/ethnic populations [49].

Indeed, differences in genetic variation and linkage disequilib-

rium patterns may explain, in part, the population-specific

associations described here. As already previously described

[3,50], the linkage disequilibrium pattern in VKORC1 differs

between European-descent and African-descent populations, with

the latter having less pair-wise LD. Four of the six SNPs

(rs9923231, rs9934438, rs8050894, and rs2359612) genotyped in

NHANES III are in strong LD in the non-Hispanic white

subpopulation, but only two (rs9923231 and rs9934438) are in LD

in the non-Hispanic black subpopulation. Intronic rs8050894 is

not in LD with other genotyped VKORC1 SNPs in non-Hispanic

blacks and was associated with decreased BMD in males. This

SNP, along with the three in LD with it, was not associated with

BMD in the non-Hispanic white population. It is possible this

independent association observed in non-Hispanic black males is

tagging a genetic variant not genotyped in this study that is more

common in African-descent populations compared with Europe-

an-descent populations. In contrast, the two SNPs in LD in non-

Hispanic black males were associated with increased BMD, but,

again, neither these SNPs nor the two SNPs in LD with them were

associated with BMD in non-Hispanic whites. The lack of

association observed in non-Hispanic whites is less straightforward

given that experimental evidence suggests 59 flanking rs9923231

affects VKORC1 gene expression [25]. Nevertheless, it is still

possible that the association with increased BMD in non-Hispanic

blacks also represents an unknown genetic variant tagged by

rs9923231 and rs9934438.

In relation to VKORC1’s association with warfarin dosing, it is

interesting that the minor alleles of rs9923231 and rs9934438 are

associated with increased BMD in non-Hispanic black males. The

minor alleles of these two VKORC1 SNPs are also associated with

decreased warfarin dose compared with the major alleles [11].

And, several studies have shown that these VKORC1 minor alleles

are associated with decreased VKORC1 expression in liver [12,25].

NHANES III participants are drawn from the general population,

so the relationship between warfarin dose, BMD, and VKORC1

could not be directly assessed in this population.

Of note, also, is the sex-specific nature of the associations

described here. It is already known that mean BMD differs by

Table 4. Adjusted and weighted single SNP tests of associations, by race/ethnicity and sex, for bone mineral density total region
(gm/cm2).

Non-Hispanic whites Non-Hispanic blacks Mexican-Americans

Females Males Females Males Females Males

SNP Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value

(SE) (SE) (SE) (SE) (SE) (SE)

rs9923231 ,0.01 0.400 ,0.01 0.622 ,20.01 0.743 0.03 0.039 ,20.01 0.283 0.01 0.393

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

rs9934438 ,0.01 0.321 ,0.01 0.847 ,20.01 0.757 0.03 0.024 ,20.01 0.513 0.01 0.275

(0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

rs8050894 ,20.01 0.630 20.01 0.497 0.01 0.393 20.03 0.016 0.02 0.219 20.01 0.403

(,0.01) (0.01) (0.02) (0.01) (0.01) (0.01)

rs2359612 ,0.01 0.460 ,0.01 0.830 ,20.01 0.487 0.01 0.518 ,20.01 0.363 0.00 0.560

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

rs2884737 ,0.01 0.864 ,20.01 0.703 0.01 0.643 20.04 0.138 0.01 0.473 20.03 0.004

(0.01) (0.01) (0.03) (0.02) (0.01) (0.01)

rs7294 0.01 0.154 20.02 0.066 ,0.01 0.238 20.00 0.736 ,0.01 0.647 20.01 0.192

(,0.01) (0.01) (0.01) (0.01) 0.01 (0.01)

Single SNP test of association are adjusted by variables given in Table 2.
doi:10.1371/journal.pone.0015088.t004
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both sex and race/ethnicity [20,51], and sex differences are also

supported in mouse models [52]. Additionally, previous segrega-

tion, linkage, and association studies support sex-specific genetic

effects for BMD [53,54] and osteoporosis-related fractures [37]. It

is unlikely that power explains the lack of associations observed

among non-Hispanic black females given that the sample size for

this subgroup (n = 809) is larger than the non-Hispanic black male

subgroup (n = 619). Also, in adjusted analyses, we included the

same demographic and dietary variables in all sex-specific models,

with the only differences related to female-only variables (such as

menopause, oral contraceptive use, and hormone replacement

therapy). We cannot rule out the possibility that unknown

variables (confounders) are responsible for the observed associa-

tions in males only; nevertheless, the sex-specific effects are

intriguing and warrant further study.

This is a large, population-based study of a diverse sample from

the United States. Despite the strength of sample size for BMD,

this study has several limitations. First, the age range of the study is

wide, as participants in NHANES III aged 12 years and greater

are available for Genetic NHANES III, and those $20 years have

BMD measurements available. Attempts to examine older adults

with BMD are hampered by small sample sizes within any one

subgroup, as evidenced by the small number of cases of

osteoporosis. Second, our study is a candidate gene study and

necessarily limited compared with genome-wide association

studies. Third, we did not adjust for multiple comparisons using

Bonferroni correction given this method is conservative when

SNPs are linkage disequilibrium with one another [55]. Even if we

chose to adjust using Bonferroni, it is not clear how to implement

this correction given each subpopulation has a distinct pattern of

linkage disequilibrium for this candidate gene [3]. Therefore, we

present here unadjusted p-values. Finally, Genetics NHANES III

does not have ancestry informative markers or GWAS data

available to adjust for population stratification. We used self-

reported race/ethnicity to stratify NHANES prior to analysis.

While population stratification may still be a concern in this study,

it is worth noting that previous studies have found self-reported

race/ethnicity is highly concordant with genetic ancestry deter-

mined by genetic markers [56].

In conclusion, we describe several sex- and race/ethnic-specific

associations between BMD and VKORC1 SNPs in adults

ascertained for a large, population-based cross-sectional survey

of the United States. This is the first report of VKORC1 SNPs

associated with BMD; therefore, further studies are required to

replicate and characterize the association to establish this

candidate gene as a locus relevant to BMD and perhaps associated

phenotypes such as osteoporosis.
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