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Intratumor graph neural network recovers hidden
prognostic value of multi-biomarker spatial
heterogeneity

Lida Qiu"2°, Deyong Kang3?, Chuan Wang®®, Wenhui Guo?® Fangmeng Fu?, Qingxiang Wu® ', Ganggin Xi,
Jiajia He!, Ligin Zheng!, Qingyuan Zhang?, Xiaoxia Liao®, Lianhuang Li® '™, Jianxin Chen® '™ & Haohua Tu’-8%

Biomarkers are indispensable for precision medicine. However, focused single-biomarker
development using human tissue has been complicated by sample spatial heterogeneity. To
address this challenge, we tested a representation of primary tumor that synergistically
integrated multiple in situ biomarkers of extracellular matrix from multiple sampling regions
into an intratumor graph neural network. Surprisingly, the differential prognostic value of this
computational model over its conventional non-graph counterpart approximated that of
combined routine prognostic biomarkers (tumor size, nodal status, histologic grade, mole-
cular subtype, etc.) for 995 breast cancer patients under a retrospective study. This large
prognostic value, originated from implicit but interpretable regional interactions among the
graphically integrated in situ biomarkers, would otherwise be lost if they were separately
developed into single conventional (spatially homogenized) biomarkers. Our study demon-
strates an alternative route to cancer prognosis by taping the regional interactions among
existing biomarkers rather than developing novel biomarkers.
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iomarkers improve patient care and impact therapeutics

development!. The risk of a disease, e.g., recurrence of

cancer, is routinely assessed by prognostic biomarkers2. The
development of tissue prognostic biomarkers for breast cancer
(exemplary of most diseases) has historically followed the one-
biomarker-at-a-time approach, in which candidate biomarkers
underwent representative multiregion sampling to suppress the
spatial intratumor heterogeneity highlighted by multiregion
sequencing and gene expression>. The multiregion sampling may
take a virtual form such as multiple microscopic views of one
histologic tissue section, or a physical form such as multiple
microdissections from one tissue section, multiple tissue sections/
blocks or tumor microarray cores from one primary tumor, and
specific multisite sampling®. The former is frequently used in
standard (H&E) histology and immunohistochemistry (IHC),
whereas the latter in molecular profiling® (MP) such as multigene
assays®. Regardless of the associated natures (morphological vs.
molecular) and methods (H&E, IHC, and MP), single spatially
homogenized biomarkers robust against the intratumor hetero-
geneity have been sequentially developed from underlying in situ
biomarkers and included into various multivariate prognostic
models for clinical use (Fig. 1a).

This homogenization of biomarkers is beneficial due to: (i)
reliable pathology reports with less interobserver discordance; (ii)
simple patient stratification for biomarker validation; and (iii)
easy integration with other non-in-situ biomarkers into various
prognostic models’. On the other hand, it is costly due to: (i) the
discordances between primary tumors and distant metastases,
e.g., discordance of estrogen receptor (ER) (or progesterone
receptor PR) observed in 7-25% (or 16-49%) of breast cancer
patients8; (ii) the subjectivity of disease-dependent criteria and
thresholds, e.g., the histological grade based on averaged tubule
formation but the highest mitotic count and degree of nuclear
pleomorphism over sampled regions/views’; and (iii) small
number of homogenized biomarkers in comparison to in situ
biomarkers, which contributes to few reported biomarkers
implemented into clinical practicel®. A natural question arises
whether the homogenization self-evidently leads to a high benefit-
to-cost ratio, or whether it is self-evident to conduct breast cancer
prognosis using the homogenized (rather than in situ) biomarkers
(Fig. 1b).

In the simplest case of 1-to-1 correspondence between one
homogenized biomarker and one in situ biomarker (e.g., regional
percentage of ER + tumor nuclei vs. ER overall status, Fig. 1a),
the benefits of the homogenization generally outweigh the cor-
responding costs because the candidate biomarker (ER) is not
placed in the context of (does not spatially interact with) other
biomarkers. However, ER overall status is rarely used as a stan-
dalone prognostic biomarker but routinely combined with other
single homogenized biomarkers in a multivariate prognostic
model. In this case of N-to-N correspondence between homo-
genized and in situ biomarkers, the balance of benefit-to-cost
ratio may tip against the homogenization owing to the loss of
information on implicit biomarker-biomarker interactions from
multi-biomarker spatial heterogeneity (Fig. 1c). That is, multiple
in situ biomarkers with co-registered multiregion sampling may
derive differential prognostic value from these interactions over
the multivariate non-graph prognostic model wherein the in situ
biomarkers are developed into the corresponding homogenized
biomarkers (Fig. 1c). This “hidden” prognostic value has not been
demonstrated to date possibly due to: (i) technical difficulty to
spatially co-register many in situ biomarkers among consecutive
sections and different microscopic methods or scales (H&E and
IHC); (ii) high cost of multiregion MP for a large cohort of
patients; and (iii) lack of a computational representation for the
biomarker-biomarker interactions.

We aim to demonstrate this value by representing the recently
reported tumor-associated collagen signatures'! (TACS1-8), i.e.,
multiple co-registered biomarkers from multiphoton microscopy
(MPM), with a graph neural network!? of primary breast
tumor!3, It should be noted that TACSs and other collagen-based
biomarkers have been extensively studied!4 and explored for
clinical translation!”. The resulting prognostic model of intratu-
mor graph neural network (IGNN) not only forms a high-
performance kernel to include additional in situ biomarkers
(from H&E, IHC, MP, etc.), but also provides post hoc inter-
pretations of various implicit interactions among the included
biomarkers with distinct biological/medical insights (Fig. la—c).
Our distance-less IGNN model based on MPM may motivate the
development of similar models based on other imaging and non-
imaging tissue assessment technologies (Supplementary Table 1),
as long as the biomarkers possess spatial heterogeneity.

Results

Construction of personized IGNN structure. For a breast cancer
patient characterized by one histologic formalin-fixed paraffin-
embedded (FFPE) tissue block, the co-registration between H&E
and MPM from two consecutive histologic tissue sections (4 um)
ensured the localization of several local MPM regions in global
H&E-revealed tumor area and extraction of in situ TACS datall.
One section was stained with H&E for whole slide imaging, in
which a pathologist confirmed the presence of tumor cells and
their borders. Dependent on the size of tumor area for sufficient
sampling, several (4-20) ~2.8-mm-sized non-overlapping regions
of interest (ROI) were located mainly at the tumor invasive front
and then labeled (numbered) in the H&E images. The other
(unstained) section was deparaffinized by alcohol and xylene to
collect label-free dual-modal MPM of second harmonic genera-
tion (SHG) and two-photon excited (intrinsic) fluorescence
(TPEF) images! for all labeled ROIs (Fig. 1d).

Based on the resulting personized MPM regions and hetero-
geneous regional distribution of TACS1-8 (8 in situ binary
biomarkers), we constructed the IGNN to represent the MPM
regions (nodes) with specific TACS1-8 distributions (node
attributes present as 8-bit vectors) and their interactions (edges)
with learnable parameters (Fig. 1d). This structure cast the
prognostic prediction of many patients as a supervised Cox
proportional hazards regression learning task by establishing a
nonlinear mapping between TACS1-8 spatial heterogeneity and
observed prognosis (Supplementary Fig. 1 and Supplementary
Fig. 2). It consisted of multiple stacked nonlinear functional layers
(Fig. 1d, Supplementary Fig. 3, and Supplementary Table 2),
which were trained end-to-end by back propagation algorithm.
First, graph convolution was used to represent intratumor graph
nodes and infer their regional interactions. Two graph convolu-
tion layers followed neighborhood aggregation framework!” in
which the node attribute embeddings of graph structure were
alternately updated by implementing message-passing
mechanism!8. Then, attention mechanism and optional gated
recurrent units (GRU)1? were introduced within graph convolu-
tion layers to capture more distinguishing features and reduce the
gradient disappearance and over-smoothing problems during the
model training phase. Later, the convoluted graph representation
from all node attribute embeddings was further aggregated within
a global pooling layer and abstracted by a fully connection layer.
Finally, the graph representation was converted into IGNN score
by a prognostic risk prediction layer to predict patient prognosis.

As a framework based on neural network, our IGNN might
incorporate other quantifiable prognostic biomarkers as multi-
modal input by adding the appropriate multilayer perceptron
module?? and feature fusion layer before the first full connection
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Fig. 1 GNN representation of primary breast tumor and related prognostic models. a Development of breast cancer prognostic biomarkers. b Main
strategies of biomarker development for disease prognosis. € Co-registered multi-biomarker spatial heterogeneity (IGNN) in primary breast tumor with
biomarker-biomarker interactions unavailable from corresponding single-marker heterogeneity (TACS1-8). d Personalized TACS1-8 reginal distributions in
co-registered images (H&E, MPM of second harmonic generation SHG, and MPM of two-photon excited fluorescence TPEF) from one exemplary patient
(9 regions/nodes, each of which encoded with an 8-bit vector) that result in one graph structure input for IGNN model and another non-graph input for
TACS1-8 model. In the IGNN model that ends with an IGNN score, GRU based attention blocks execute node information propagation and aggregation
along the graph structure and keep or remove node information related to prognostic prediction, whereas graph convolution and full connection extract
prognostic graph representation and high-dimensional features sequentially. H&E hematoxylin and eosin, IHC immunohistochemistry, MP molecular
profiling, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor receptor 2, Ki67 specific nonhistone nuclear protein, MPM
multiphoton microscopy, TPEF two-photon excited (intrinsic) fluorescence, SHG second harmonic generation, TACS (TACS1-8) tumor-associated collagen
signatures, IGNN intratumor graph neural network, GRU gated recurrent units, SELU scaled exponential linear units.

layer. To evaluate whether combined IGNN score and traditional
clinicopathological factors could synergistically improve the
performance of cancer prognosis, we developed an extended
model (IGNN-E) by incorporating clinical information (routine
prognostic biomarkers) to the basic IGNN model (Supplementary
Fig. 3 and Supplementary Table 3), just like how an extended
model (Nomogram) of multivariate Cox proportional hazard

regression was

developed by incorporating this clinical

information to the basic TACS1-8 model'l2l, The cost of
biomarker homogenization was assessed by the differential
prognostic value of the IGNN (or IGNN-E) model over the
TACS1-8 (or Nomogram) model (Fig. 1c, d).

Differential prognostic value from diverse patients. We com-
pared four prognostic models with different biomarkers (Sup-
plementary Table 4). Using a training cohort of 731 patients, we
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performed the pre-validation?? based on 3-fold cross-validation
for each of the four models (Supplementary Fig. 1). Personalized
prediction scores for each instance held out during cross-
validation were computed, and then all results from single
cross-validation steps were combined as the model-specific vali-
dation results for the training cohort to assess their risk stratifi-
cation capabilities (Supplementary Fig. 4 and Supplementary
Table 5, see Methods). We subsequently retrained these models
using the whole training cohort and finally validated the trained
models using an independent validation cohort of 264 patients to
further assess their prognostic value (Supplementary Fig. 1). For
both cohorts in external validation, a correlation analysis was
conducted between model scores and disease-free survival (DFS)
through the Pearson correlation, which indicated stronger asso-
ciation of IGNN (or IGNN-E) score with DFS than TACS (or
Nomogram) score (Supplementary Fig. 5a). The relative strength
of various prognostic biomarkers to predict DFS, which was
assessed by multivariate Cox proportional hazard regression
analysis (Supplementary Table 6), indicated stronger dominance
over other prognostic biomarkers by the IGNN score than the
TACS score (Supplementary Fig. 6). Just like the TACS score, the
IGNN score functioned as an independent prognostic factor
along with tumor size, lymph node status, and molecular subtype
(Supplementary Table 6).

We next calculated model-dependent survival curves in which
patients in the training (or validation) cohort were stratified into
low- and high-risk groups via the optimal cutoff point dictated by
the two-sided log-rank test statistics in model training phase. In
comparison to the TACS1-8 (or Nomogram) model, the IGNN
(or IGNN-E) model produced more diverged survivals for low-
and high-risk patients and more diverged distributions of
predicted score for patients with DFS less versus more than 5
years (Supplementary Fig. 5b). The stronger prognostic strength
of the IGNN (or IGNN-E) model over the TACSI1-8 (or
Nomogram) model was also revealed by larger values of hazard
ratio (HR) (stratification ability), concordance index (C-index),
integrated cumulative/dynamic AUC (iAUC), the associated area
under receiver operating characteristic curves (AUC) (Fig. 2a),
and specificity/sensitivity to predict 5-year DFS rate (Supple-
mentary Table 7). The relatively large number of patients from
rather disparate populations and institutions in southern
(training cohort) and northern China (validation cohort)
strengthened the statistical significance of the IGNN model free
of new biomarkers.

All these results demonstrated the differential prognostic value
of the IGNN over TACS1-8 model by simply accounting for the
biomarker-biomarker interactions from multi-biomarker spatial
heterogeneity. With no new biomarker beyond TACSI-8 (8
in situ biomarkers), our IGNN recovered this differential
prognostic value from regional interactions among TACS1-8,
which approximated the differential prognostic value from the
combination of routine biomarkers (ie., the Nomogram over
TACS1-8 model) (Fig. 2a), particularly for patients with a small
(<2 cm) tumor (Fig. 2b). These two differential prognostic values
were largely additive from the TACS1-8 to IGNN-E model
(Fig. 2a, b), indicating rather independent prognosis of these
regional interactions from the routine prognostic biomarkers.
Thus, the combined IGNN score and traditional clinicopatholo-
gical factors synergistically empower cancer prognosis.

Assessment on patient subgrouping and informed treatment.
To examine how the observed differential prognostic value
benefited different subgroups of patients, we combined the
patients in both cohorts (n = 995) and divided them into different
subgroups according to various clinicopathological factors

(Supplementary Table 8). Interestingly, the observed differential
prognostic value of patients with a small <2 cm tumor approxi-
mated that from the combination of routine biomarkers, whereas
patients with a moderate 2-5 cm or large >5 cm tumor obtained a
less significant result (Fig. 2b). The observed disparity in differ-
ential prognostic value was likely caused by the representative
(nonrepresentative) multiregion sampling of a small (large)
tumor wusing one section from a FFPE tissue block
(~2x 2 x 0.4 cm?). This disparity might be correlated with similar
disparities observed from different histological grades, nodal
statuses, and TNM-stages (Supplementary Fig. 7).

The single most surprising result was the large differential
prognostic value from patients with a small tumor (n=445).
Consistently, the dominance of the IGNN score (in contrast to
the TACS score) over other prognostic biomarkers was more
pronounced in this subgroup of patients than the whole group
(Fig. 2c vs. Supplementary Fig. 6). This implied that the recovery
of previously neglected regional biomarker-biomarker interac-
tions among existing biomarkers could empower cancer prog-
nosis more than the addition of new prognostic biomarkers.
Thus, for this subgroup of patients, in situ biomarkers should be
chosen over homogenized biomarkers for more accurate cancer
prognosis.

To evaluate the benefit of the IGNN model beyond risk
assessment, we investigated the corresponding utility to inform
the postoperative adjuvant therapy of all 995 patients according
to the consensus treatment guideline?3. Both TACS score and
IGNN score reclassified a significant portion of low-risk (high-
risk) patients according to the guideline into high-risk (low-risk)
patients, and thus could minimize undertreatment (overtreat-
ment) (Fig. 3a). Based on the retrospectively determined 5-year
DES rate, in contrast to the TACS score that might spare 125/112
patients from overtreatment/undertreatment according to the
guideline, the IGNN score would spare 138/106 patients from this
undertreatment/overtreatment (Fig. 3b). As to the 445-patient
subgroup, in contrast to the TACS score that might overtreat 94
patients, the IGNN score would overtreat 52 patients and thus
spare 42 patients from this overtreatment (Fig. 3c, d).

To sum up, the shift from the TACS to IGNN model not only
empowered cancer prognosis but also could improve subsequent
informed treatment, particularly for patients with a small tumor
(representative multiregion sampling).

Post hoc interpretations of biomarker-biomarker interactions.
How the IGNN model learns the implicitly prognostic interac-
tions among TACS1-8 is valuable to understand the TACSI-8
themselves beyond morphology. The message passing of the
graph convolutional layers allows nodes to progressively aggre-
gate the most relevant messages from their neighborhoods via the
attention mechanism. In the training process, observable and
understandable model responses are important to investigate how
the node states evolve in individual patients. Without loss of
generality, we randomly interrupt a training process of the IGNN
model after sufficient training without any prior knowledge (see
Methods), then obtain the corresponding feature vectors from the
input and graph convolutional layers of the trained IGNN
(Fig. 1d) and compute the similarity between regional pairs
through the heat map of Pearson correlation coefficient matrix
(Supplementary Fig. 8). The initial node state is encoded
according to regional presence of TACS(s). The correlation of the
regional pair with the initial state reflects the extent to which they
contain the same TACS(s). However, as nodes and their neigh-
bors interact through the graph convolutional layers, the node
state vectors are constantly updated, resulting in the correlation
changes among the nodes.
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Fig. 2 Performance of four prognostic models in external validation. a, b HR from multivariate Cox proportional hazards regression analysis (in error bars,
circles and upper/lower boundaries indicate mean value and 95% Cls, respectively. A two-sided log-rank test was performed to determine significance),
distributions of C-index and iAUC from time-dependent AUC analysis (in boxplots, middle line represents the median value, the upper and lower
boundaries of boxes indicate 25th and 75th percentile, the whiskers reflect 1.5 times of interquartile range, the upper and lower tails indicate the maxima
and minima, and single points indicate the outliers. A two-sided unpaired t-test was performed to determine significance), and receiver operating
characteristic (ROC) curves with AUC, for different groups of patients. € Tumor size distribution for patient cohorts (upper panel) and relative

contributions of prognostic biomarkers in predicting DFS of 445 patients with a

< 2 cm tumor from multivariate Cox proportional hazard regression analysis

(lower panels). Chi-squared test was performed to determine significance. HR hazard ratio, C-index concordance index, AUC associated area under
receiver operating characteristic curves, iAUC integrated cumulative/dynamic AUC, TACS (TACS1-8) tumor-associated collagen signatures, Nomogram,
extended model of multivariate Cox proportional hazard regression, IGNN intratumor graph neural network, IGNN-E extended IGNN model with clinical

information. Source data are provided as a Source Data file.

We apply the above method to the training cohort and find
that node (ROI) state feature output from graph convolutional
layer 2 exhibits distinct pattern and order according to regional
interactions among TACSs. The heat map clearly divides

thousands of MPM regions from 731 patients into three clusters.
The regions with TACS5 or TACS6 accounts for 79% in Cluster 1,
the regions with TACS4 accounts for 90% in Cluster 2, and the
regions with TACS1 accounts for 92% in Cluster 3 (Fig. 4a).
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Fig. 3 Comparison between IGNN and TACS1-8 models in external validation. a Kaplan-Meier survival analysis of patients with the treatment guideline-
derived low/moderate- and high-risk, re-stratified into high (red line) and low risk group (blue line) based on two prognostic models. A two-sided log-rank
test was performed to determine significance, showing HR values with confidence intervals and exact p values. b Corresponding boxplots (left panels)

showing TACS and IGNN scores for patients with DFS less and more than 5 years (in boxplots, middle line represents the median value, the upper and
lower boundaries of boxes indicate 25th and 75th percentile, the whiskers reflect 1.5 times of interquartile range, the upper and lower tails indicate the
maxima and minima, and single points indicate the distribution of values. A two-sided unpaired t-test was used to compare risk subgroups and determine
significance from exact p values), and percentage histogram (right panels) showing survival distributions for model-based risk subgroups indicative of

undertreatment and overtreatment. ¢, d Similar information obtained from 445 patients with a small (<2 cm) tumor. HR hazard ratio, DFS disease-free
survival, TACS (TACS1-8) tumor-associated collagen signatures, IGNN intratumor graph neural network. Source data are provided as a Source Data file.

Analysis of similarities (ANOSIM) of the output feature vectors
from the graph convolutional layer 2 for the nodes (ROIs) shows
significant differences between the three clusters (Fig. 4a). Similar
results are obtained from the validation cohort (Fig. 4b) and
patients with a small tumor (Fig. 4c), indicating that the IGNN
model captures prognostic value of TACSI1-8 interactions by
learning from a specific task.

A number of post hoc interpretations of TACS1-8 emerge in
consistency with their morphologies (Fig. 4d): (i) high positive
correlation between regions with TACS5 and TACS6 indicates
their converging function and possibly synergistic interaction in

tumor cell invasion; (ii) low correlation between regions with
TACS4 and TACS5,6 implies that their effects on tumor cell
invasion are relatively independent or different (TACS4 appears
to block tumor cell invasion); (iii) low or negative correlations
between regions with TACS1 and regions with TACS4,5,6
confirm that TACS] is characteristic more of tumorigenesis than
tumor cell invasion; and (iv) no clusters with high correlation
between intra-cluster regions contain a high percentage of regions
with TACS2, TACS3, TACS7, and TACS8, which may be due to
the relative rarity of TACS2,3,7,8 in the samples. Additionally, the
proportions of TACS2,3,7,8 are unevenly distributed across
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Fig. 4 Implicit interactions among TACSs interpreted by IGNN learning. a, b, ¢ Automatic separation of patients into three clusters by the similarity of
node state output from graph convolution layer 2 using Pearson correlation matrices of IGNN nodes (top), percentages of TACSs in the clusters (middle),
learned node features projected to two dimensions for visualizing the clusters via t-distributed stochastic neighbor embedding (t-SNE technology) (bottom
left), and ANOSIM that reveals the dissimilarities between the samples from different clusters (bottom right). In ANOSIM, the boxplots marked by
“Between”, “1", “2" and “3" show the Bray-Curtis rank distribution for ROl sample pairs between two clusters under comparison and within clusters 1-3,
respectively. In boxplots, middle line represents the median value, the upper and lower boundaries of boxes indicate 25th and 75th percentile, the whiskers
reflect 1.5 times of interquartile range, and the upper and lower tails indicate the maxima and minima. Wilcoxon rank sum test was performed to compare
the significant difference between clusters without any adjustments for multiple comparisons, with statistic R ranges between the values —1.0 to 1.0,
wherein a value close to 1.0 suggests dissimilarity between clusters while a value <O suggests greater dissimilarities within clusters than between clusters
(observed R value over the null distribution was used to assess R statistic from exact p values, and the significance was defined as p < 0.05). d Post hoc
interpretations of the nature of TACS1-8 and their regional/spatial interactions. e Correlation analysis between individual TACSs and TACS score and
IGNN score. ROI regions of interest, TACS (TACS1-8) tumor-associated collagen signatures, GNN graph neural network, IGNN intratumor graph neural
network, t-SNE t-distributed stochastic neighbor embedding, ANOSIM Analysis of similarities. Source data are provided as a Source Data file.
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different clusters (Fig. 4a-c, middle), and ANOSIM shows that
ROIs with TACS3 or TACS8 correlate more with Cluster 1 than
other clusters while ROIs with TACS2 (TACS7) correlate more
with Cluster 3 (Cluster 2) (Supplementary Fig. 9). Considering
collagen morphologies, we hypothesize that TACS2,3,7,8 affect
survival by interacting with other TACSs. For example, sparsely
distributed collagen fibers at the tumor invasion front (TACS8) is
conducive to TACS5,6 that enables tumor cell migration, while
densely distributed collagen fibers at the tumor invasion front
(TACS7) is conducive to TACS4 that restricts tumor cell
migration. It should be noted that these insightful interpretations
are not available from the TACS1-8 model with homogenized
TACSs!L.

Another post hoc interpretation arises from the correlation
analysis between individual TACSs and TACS/IGNN score,
which shows a generally lower correlation of individual TACSs
with IGNN score in comparison to the TACS score (Fig. 4e).
Because the IGNN model accounts for the interactions among
TACSs, the prognostic importance (absolute values of Spearman’s
rank correlation coefficients) of TACSs becomes less in the IGNN
model vs. TACS1-8 model (Fig. 4e).

Discussion

The results demonstrated in this study promote a shift of disease
prognosis from conventional (spatially homogenized) biomarkers
to in situ biomarkers that reflect intratumor heterogeneity
(Fig. 1a, b). Also, for existing homogenized biomarkers (e.g., ER
in Fig. 1a), the corresponding in situ biomarkers may be added to
TACS1-8 to further improve the IGNN-E model (Fig. 2a). The
required co-registration of in situ biomarkers among MPM, IHC,
and H&E can be ensured by collecting and examining consecutive
FFPE tissue sections. Moreover, the individual biomarkers of
IGNN may be expanded from binary biomarkers (TACS1-8) to
those with multiple or continuous values (e.g., regional percen-
tage of ER+ tumor nuclei, Fig. 1a), in order to retain full prog-
nostic information. Finally, further optimization of region size
(2.8 mm in this study) for more informative spatial biomarker
distribution (Supplementary Fig. 10) and optimization of model
depth for a larger patient size may increase the performance of
prognosis. Thus, cost-effective precision medicine may be
obtained by taping current underappreciated biomarkers rather
than developing novel biomarkers, because the hidden prognostic
value of regional biomarker-biomarker interactions can be
recovered by an IGNN model.

This study exploits intratumor heterogeneity to improve bio-
marker utility, defying the conventional wisdom that intratumor
heterogeneity is dismal for biomarker development?4. A few other
studies attempted to derive prognostic values from the spatial
heterogeneity of cellular?® or genetic biomarkers?®27. However,
whether biomarker intratumor heterogeneity can serve as a
practical prognostic biomarker remains controversial?32°. Here
we avoid this controversy by deriving prognostic values from
regional biomarker distributions (TACS1-8 model) and
biomarker-biomarker interactions (IGNN model) originated
from the intratumor heterogeneity, rather than from the diversity
of regionally distributed TACS1-8 corresponding to the intratu-
mor heterogeneity itself.

As an early attempt to exploit the benefits of intratumor het-
erogeneity, we have chosen a size of ~2.8 mm for ROIs, each of
which produces ~1.3 distinct features of TACS1-8 (Supplemen-
tary Table 9). For this size, representative sampling of the tumor
invasion front of a typical histological section requires 4-20 ROlIs,
depending on the dimension of the tumor area. The number of
ROIs seem adequate because random removal of 20% of ROIs for

individual patients results in rather small inconsistency in prog-
nosis (Supplementary Table 10). Thus, it is unlikely that our
particular choice of ROIs (number and position) introduces an
arbitrary level of intratumor heterogeneity. However, our com-
bination of ROI size, sampling site (invasion front), and number
of ROIs may not be optimal to attain the full potential of the
IGNN model. Future efforts to balance the trade-off between ROI
size (content of TCASs in one region) and ROI number (content
of TACS-TACS interaction among regions), and the trade-off of
overall TACS content versus cost, may yield better overall per-
formance in a clinical setting. The extension of TACS content
from tumor invasion front to tumor center may further improve
the performance.

Our multi-biomarker IGNN enables unique integrative
research on tumor microenvironment from the perspective of
cancer risk. The corresponding model based on MPM-revealed
extracellular matrix remodeling®® achieves a high performance
(Figs. 2 and 3) among tumor microenvironment-centered
prognostic models based on MP-revealed stromal gene
expression3!, H&E-revealed stromal architectures3?, H&E-
revealed tumor-infiltrating lymphocytes33 or stromal cells?4,
and THC-revealed specific immune cells®>. This high perfor-
mance may arise from the general role of extracellular matrix in
modulating the hallmarks of cancer3¢. High-performance can-
cer prognosis has not been attained in previous studies!'*37 on
TACS1-3 and aligned collagen possibly due to their emphasis
on developing single and/or homogenized biomarkers. To fur-
ther improve the IGNN model, it is reasonable to complement
TACS1-8 with the above tumor microenvironment components
by co-registering the corresponding biomarkers (Fig. 1c). A
more complete picture of tumor microenvironment should
further include tumor cell components (e.g., histological or
molecular type discussed above). The crosstalk among various
tumor cell and microenvironment components may be inter-
preted post hoc from the regional biomarker-biomarker inter-
actions (Fig. 4). It will be interesting to compare the
independent generation of prognostic values under the condi-
tions of single- versus multiple-biomarker spatial heterogeneity
(Fig. 1c).

The graph-based prognostic model improves the performance
of its conventional non-graph counterpart, and at the same time,
retains or enhances the interpretability of the underlying bio-
markers. In contrast to various prognostic morphological bio-
markers derived from graph-based®® and non-graph machine/
deep learning in computational histopathology3*~42, our in situ
biomarkers (regional heterogeneity of TACS1-8) were identified
in a discovery process!! independent of subsequently developed
IGNN prognostic model (Fig. 1b), so that they are more
amendable for human interpretations (Fig. 4). Also, the con-
textual information connecting sampling regions are conveniently
represented by the edges connecting the nodes (Fig. 1d), relieving
the somewhat challenging task in typical deep learning to model
the spatial correlations between neighboring patches (by com-
bining low- and high-resolution inputs)*>. Our IGNN sig-
nificantly departs from prior GNN research that centers graph
nodes on cells*4, which assumes that tumor cell-cell distances and
interactions have the highest prognostic value!3. Strikingly, the
“functional” interactions among TACSs recover a differential
prognostic value larger than that of combined routine prognostic
biomarkers for small tumors (Fig. 2b), without accounting for
internode distances in the graph edges (see Methods). It is rea-
sonable to assume that future inclusion of these distances may
further improve the performance of cancer prognosis, particularly
that associated with large tumors after more representative
multiregion sampling,
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One perceived weakness of our approach to manually recog-
nize TACS1-8 may be overcome by an automatic recognition
procedure after weakly supervised deep learning®®. Also, our
IGNN model is restricted to adjuvant therapy patients, and is not
applicable to neoadjuvant therapy patients whose tumors and
TACS features have been perturbed by the neoadjuvant therapy*°.
Moreover, the insufficient sampling of a tumor with specific
selection of ROIs may introduce prognosis uncertainty at indi-
vidual level (but not necessarily population level) due to uncertain
intratumoral heterogeneity such as stroma versus cellularity ratio.
On the other hand, our IGNN highlights an overlooked advan-
tage of biospecimen sampling using multiple laser-capture
microdissections and tissue microarray cores from one sample
over homogenized tissue sampling?” and liquid biopsy. Although
this study is limited to a specific disease (breast cancer) and
prognostic prediction (predicting DFS), similar methodology can
be adopted for other diseases and prognostic predictions, e.g.,
predicting treatment response to a therapy/drug.

Methods

Patients, samples, image acquisition, and TACS recognition. This research used
anonymous data for retrospective study and was conducted under a protocol
approved by the Institutional Review Boards (IRB) of Fujian Medical University
Union Hospital and Harbin Medical University Cancer Hospital. Our study
included a training cohort of 731 patients from Fujian Medical University (FMU)
Union Hospital and a validation cohort of 264 patients from Harbin Medical
University (HMU) Cancer Hospital. The demographic and clinicopathologic
characteristics of patients, sample preparation, MPM image acquisition, and TACS
recognition have been reported previously!'l. Only a small portion (~5%) of
patients has multifocal tumors, and in this case, the sample preparation was per-
formed on one of the foci with the largest size. Raw data including TACS coding
observed from MPM imaging, clinical factors and follow-up information of
patients is available with this paper.

Graph dataset. As typical graph machine learning models, IGNN and IGNNE
were implemented with specific irregular graph structures as input. We developed a
toolset based on the PyTorch-Geometric library to build special graph structures
from raw data of patients and generate specialized graph dataset (TACS_G) con-
taining node-level attributes and connectivity matrix from a batch of graph
structures, and the toolset and pre-established TACS_G dataset for this study are
available within the source code.

Personalized IGNN structure. For each given tissue section (patient), TACS
distribution is encoded in a graph data structure defined as G = (V, E), which
consists of an N-node set V and an edge set E. Each ROI in MPM image in the set
ROl = {ROI}, ROL,, ... , ROIy} is regarded as a node object in V. An 8-bit binary
coding vector v; € R"® forms the initial feature vector of the ROI-associated
node i € V to describe the TACS1-8 distribution in ROI; (e.g., ROI; including
TACS4 and TACS? resulted in v; = 01001000), and F = [v7, - ,v]" € R¥*® is
defined as the initial node feature matrix of G. The edge e;; € E between node i and
j is then constructed according to the k-nearest neighbor algorithm

ey = 1,if j € KNN(i) andv; - v/ 20 (1)

where the inner product v; - va[OA -+, 8] indicates the number of TACS types
presented in both ROI; and ROI; and KNN(i) indicates k-nearest neighbors of node
i. Finally, personized TACS information is converted into an IGNN structure.

Architectures of IGNN and IGNN-E models. The IGNN model takes the IGNN
graph structure data as input and outputs a score for prognostic prediction (IGNN
score). Given a set of G = {Gy, G, ... ,Gn} With corresponding survival status labels
Y = {y1, y2 ... ,yn}> the IGNN model constructs a multilayer nonlinear mapping to
extract significant representation from graph structure data for prognostic pre-
diction. It contains three components: (a) graph convolution network module; (b)
fully connected network modules; and (c) prognostic regression layer.

The core part of graph convolution network module contains multiple stacked
graph convolution layers, designed as a “message-passing” architecture that drives
nodes to aggregate information with their neighbors along edges and perceives
their interactions. The graph convolution is separated into two steps: node
information propagation and node information aggregation. In the first step, node
features are propagated as the information of node state along the edge between
neighboring nodes. Attention mechanism is incorporated into the propagation
step, which follows a self-attention strategy to aggregate the neighboring node
states of node i by attending over them with different weights. The propagation

scheme conducted in the attention layer is formulized as

Y aHY
PE N (2)

X =
where the set N(i) = {j € Vle; = 1} represents the set of 1-hop neighbors of node
i € V in the graph, . represents the calculated weighted aggregation result of state
information propagated from the neighbors of node i, Hj(-t) e R* represents the

c()-dimensional feature vector of state information for node j € V in the ¢-th graph
convolutional layer, a;; is the attention-based weight coefficient of state information
propagated by node j to node i according to the attention mechanism of

() g Ow® O
exp(B HOWY HOWYY)
4 = o (:> <§ 0 (: ® G)
ZkeN(i) exp(B” (H; "Wy, Hi ' W)

where ﬁf” € R is learnable normalized weight adjustment parameter, Wg) €

R %< i the learnable weight matrix shared among all the nodes in t-th graph
convolutional layer, (-) denotes the inner product operator on two vectors. In the
second step, each node in the graph updates the current state Hgt“) by aggregating
past state information from itself (HE”) and its neighbors (XE[) ). The attention
weight a;; are assigned to different nodes and edges according to the underlying
dependencies to direct the network to the most prognostic parts of the TACS-based
graph structure.

In addition, an optional aggregator based on Gated Recurrent Units (GRU) is
designed to alleviate the potential over-smoothing issue during the information
aggregation process as the network depth increases

) ) . .
Y GRU (Hgt , Xﬁt ), GRU is available @
' H" + X! GRU is unavailable
and the basic recursive formula of GRU aggregator is
HEHrl) —z0 o ﬁitﬂ) 41— Z(”) 10 Hgt)
~ (141
HEH ' = Tanh (X'Wy, + (RO O HY )Wy, +by) )

Z([) = Selu (X?t)wxz + Hgt)whz + bZ)
RY = Selu (X?)er + Hﬁ”Wh, +by)

where © denotes elementwise multiplication, Tanh (-) is hyperbolic tangent
nonlinear activation function, Selu () is the nonlinear activation function termed

. . . (1) (1)
as scaled exponential linear units, W, W,,, Wy, Wiy, Wy, Wy, € RS and
O . . ’
by, by, br € R'" indicate learnable weight matrixes and bias parameters,

respectively. The reset gate denoted as R® € R is used to control how the
previous node state is merged into the current candidate node state, and update

gate denoted as Z" € R is used to control how node states are updated by
combining past states with current candidate state. Node information propagation
and aggregation is performed hierarchically along the layers. The ¢-th graph
convolutional layer takes the node state information feature matrix

T T T.T g
HO =[®H) ,HY) ,. . ,(Hg\',)) ] e RV*@as input, and outputs a new feature

T T T T
matrix H+D = [(HYH)) ,(H{ZHI)) o ,(Hg\t,H)) ] € RVx<” updated via node

information propagation and aggregation operations. Specially, in the non-linearity

. . - T
mapping process for converting the initial node state vectors F = [v},.-- ,vi] €

RN*8 into higher-level node feature embedding H" = Selu (FW}), the feature
vectors of F are weighted by a learnable weight matrix W, € R® < shared among
all the nodes to highlight their relative importance in H(1). The node states are
propagated and aggregated across the multiple graph convolutional layers, which
lead to the high-level node state features. A global pooling layer follows the last
graph convolution layer to generate graph-level output for a single graph G by
averaging all node state features in G across the node dimension
N

0= S ©
where f0 = R*<" i computed as the comprehensive representation of the graph
structure, which extracts multi-scale localized patterns of substructure overall G.
The Global pooling layer is followed by the fully connected network module
consisting of multiple fully connected layers. Fully connected network module
weights the portions of feature h(!) with different importance levels via a learnable
weight matrix WS) and recombines them into more discriminative higher-level
feature h(+1) by the non-linearity mapping of

WD = Selu (KOW} + b{) )

(1) (t41)
where h® = R and ") = R are the input and output feature vectors
(] (t+1) (t+1)
of the t-th full connected layer, respectively, W\ e RM*D and b e R
are the learnable connected weight matrix and bias parameter, respectively. In

particular, in the original architecture of IGNN, hY = £ was used as the input of
the first full connected layer, while in the IGNN-E model, the feature vectors made
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up of 8 clinicopathological factors are cascaded with £ as the input of the first
fully connected layer
()
hO — f; ,IGNN ®)
£O U Selu (rW,), IGNN — E

where | concatenates two feature vectors along an assigned axis, W, € R®*" is the
learnable connected weight matrix, r represents additional clinicopathological

vectors, h® = R denotes the output high-level feature vector of the fully

connected layer. Finally, these features are fed into the prognostic risk prediction
layer along with survival data to produce the prediction score

p = Selu ("W ) ©)

Wy € RM*1 s learnable weight vector.

The IGNN model is currently a small-scale architecture consisting of only 2
graph convolution layers and 2 fully connected layers, where the learnable weight
matrixes Wg_?, Wi Wy, W, Wy Wi W, in graph convolutional layers have
fixed size (8,8) and each fully connected layer consists of 32 neural units. As to the
IGNN-E model, the weight matrix W, applied to the additional feature vector r has
a size of (8,16). The number of parameters for the IGNN (IGNN-E) model is ~2300
(~2500). The more learnable parameters of the model, the more training data are
required to avoid the over-fitting in machine learning. It is thus reasonable to
design a small-scale architecture for a relatively small patient number (995 in total).
However, with increasing number of patients for training, the original models can
be extended to more complex depth models by stacking more graph convolutional
layers and fully connected layers.

To evaluate prognostic risk, the learning object of IGNN (IGNN-E) was to
minimize the negative log partial likelihood of Cox proportional hazards regression
loss as follow

£O.D) == % ¢, log( & ex(p) 10)
where survival status label y; = 1 indicates the occurrence of disease-related events
(recurrence or death) for patient i, D; denotes the DFS of patient 7,0 and b are the
set of learnable weights and biases, respectively.

Training and validation. In the pre-validation process, 3-fold cross-validation was
adopted to train and evaluate the prognostic models within the training cohort (FMU
dataset). The training cohort was first divided into 3 folds (ngq, =243, ng,q, = 244,
Ngaz = 244). Within each cross-validation, two folds were used for training and the
remaining fold for validation. Since there were significantly more long-survival cases
(patients with DFS > 5 years, n, = 470) than short-survival cases (patients with DFS < 5
years, ny = 261), in each cross-validation, we randomly selected the same number of
long- and short-survival cases from the two-fold data to compose the training data, in
order to avoid the adverse effect of unbalanced training data on the training process. To
train the IGNN and IGNNE models, the Xavier initialization was used for all the layers.
An adaptive moment estimation (ADAM) optimizer was adopted to learn model
parameters with a batch size of 16 and initial learning rate of 0.01. The maximum
training iteration were set to 325 for the IGNN model and 59 for the IGNNE model.
Due to the difficulty to augment a graph dataset as a traditional image dataset, two
strategies were used to prevent overfitting: first, dropout layers (Pgrop = 0.1) were
applied before graph convolutional layers during the training phase, and normalized
layer were applied before the full connection layer. Second, an adaptive stopping
scheduler (Astopper) was developed to automatically select a suitable epoch for inter-
rupting training process. Specifically, three checkpoints were set up across the training
process, and the learning rate and weight decay rate of ADAM optimizer would be
updated according to the change of training loss at Checkpointl or Checkpoint2,
respectively. Starting from Checkpoint3 until the preset maximum iteration, the epoch
with the lowest training loss would be called back as the best time to interrupt training
and freeze model parameters. All results from single cross-validation steps were com-
bined as the model-specific validation results for the training cohort.

In the external validation process, the prognostic models with the same
architecture as in the pre-validation were retrained with full-scale cases from the
training cohort and then evaluated on both the training and validation cohorts. For
IGNN (IGNNE), model parameters were again initialized by the Xavier
distribution, and optimized using ADAM optimizer with a batch size of 16(128)
and an initial learning rate of 0.005. The maximum training iteration were set to
656 for IGNN and 1000 for IGNNE. During training, the best number of epochs to
interrupt training was determined by Astopper under the same strategy as in the
pre-validation process.

Interpretability. To demonstrate how IGNN revealed the implicit prognostic
interactions among TACS features, we trained IGNN based on the training cohort
without hyperparameter tuning. Specifically, the model parameters were randomly
initialized and optimized using ADAM optimizer with a batch size of 16 and a
learning rate of 0.01. During training, instead of choosing the stopping moment by
Astopper, the training process was randomly interrupted at the 558th epoch, and

the output feature vectors of each graph convolutional layer were extracted as the
observed model responses.

To quantify the relative importance of different TACS features within patient-
specific TACS graph data fed into IGNN, we introduced integrated gradient (IG), a
post hoc gradient-based feature imputation method that attributes the model
prediction to their inputs with different contributing factors. For a straight-line
path from the input F to the associated baseline F/, IG is defined as the path
integral of the gradients along the straight-line path from F to F/, which can be
efficiently approximated numerically. In practice, IG for the ith element of F is
computed following numerical Riemman approximation

m JIGNN(F + £(F — F))
—1 oF,

i

IGi(F):::i(Fi -F) 11)
m k

where F is the initial node feature matrix of graph data, F’ is the starting point to
calculate IG;(F) which is set to an all-zero matrix, IGNN(:) is the IGNN prediction,
BIGBLFT\’(') is the gradient of IGNN prediction function relative to the ith element of F,
k is the scaled feature perturbation constant, and m is the number of steps in the
Riemann approximation of the integral. With the patient-specific TACS graph data
as input, IG reveals the relative prognostic importance of different TACS features at
the ROI level.

Training and validation of IGNN and IGNNE models were implemented using
PyTorch (version 1.6.0) framework and Torch-Geometric library (version 1.6.1)
with Windows 10 operating system on a computer equipped with one NVIDIA
GTX1080 Ti GPU and one INTEL Core i7-6700K CPU @ 4.0 GHz.

Statistical analysis. The Kaplan-Meier and two-sided log-rank tests were used to plot
and compare the survival curves with dichotomized predictive score from the prog-
nostic models, which provided risk stratification assignment. The HRs of different risk
groups in survival analysis and the association of clinical factors with patient DFS were
measured using Cox proportional hazards regression analysis. Time-dependent AUC
curves and corresponding iAUC (the measure of prognosis appropriate for censored
time-to-event data) were used to assess the performance for DFS prediction of different
prognostic models. The receiver operating characteristic (ROC) curves and associated
AUCs were adopted to reflect the discriminatory accuracy of the prognostic models to
predict 5-year DFS rate. The relative strengths of multiple prognostic factors to predict
DFS was assessed using the Chi-squared test. The subgroups were compared using two-
sided unpaired t-test with no adjustments made for multiple comparisons. All
hypothesis analyzed with a two-sided p value < 0.05 were treated as statistically sig-
nificant. The 95% CIs were calculated by percentile method while t-SNE technology was
used for dimensionality reduction and visual analysis of high-dimensional features. Data
and statistical analyses were performed using R software (version 3.6.0). The Cox Ridge
regression adopted by TACS model was performed using the “glmnet” package and the
Multivariate Cox proportional hazard regression adopted by Nomogram model was
performed using the “survival” package.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw data (whole-slide images and corresponding multiphoton images) supporting the
results of this study are not publicly available due to institutional permission through IRB
approval. Please email all requests for academic use of the raw data to the corresponding
authors [L.L,, J.C. or H.T.]. The requests will be evaluated for intellectual property or
patient privacy obligations according to institutional and departmental policies. Other
raw and processed data that include TACS, clinical, and follow-up information of
patients are publicly available within the article, supplementary information and at
[https://github.com/qldqq1984/IGNN/tree/main/experiments/Patients_Information/
DataSets_995] and the raw data for all figures and tables are provided at [https://github.
com/qldqq1984/IGNN/tree/main/Source%20Data]. Source data are provided with

this paper.

Code availability

The custom code related to the training and evaluation of all the prognostic models are
publicly available with a detailed guide at [https://github.com/qldqq1984/IGNN]. To
maximize the reproducibility, the analytical procedures with R code for Source Data are
also provided to reproduce the experimental results and displayable items. These
procedures have been deposited in specific folders for all figures/tables within the
Source_Data_analysis folder, which can be accessed from [https://github.com/
qldqq1984/IGNN/tree/main/Source_Data_analysis]. Source code has also been placed on
the Zenodo platform [https://doi.org/10.5281/zenodo.6808920]48.
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