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Background: Autophagy plays an important role in the development of cancer. However,

the prognostic value of autophagy-related genes (ARGs) in cervical cancer (CC) is unclear.

The purpose of this study is to construct a survival model for predicting the prognosis of

CC patients based on ARG signature.

Methods: ARGs were obtained from the Human Autophagy Database and Molecular

Signatures Database. The expression profiles of ARGs and clinical data were

downloaded from the TCGA database. Differential expression analysis of CC tissues and

normal tissues was performed using R software to screen out ARGs with an aberrant

expression. Univariate Cox, Lasso, and multivariate Cox regression analyses were used

to construct a prognostic model which was validated by using the test set and the entire

set. We also performed an independent prognostic analysis of risk score and some

clinicopathological factors of CC. Finally, a clinical practical nomogram was established

to predict individual survival probability.

Results: Compared with normal tissues, there were 63 ARGs with an aberrant

expression in CC tissues. A risk model based on 3 ARGs was finally obtained by Lasso

and Cox regression analysis. Patients with high risk had significantly shorter overall

survival (OS) than low-risk patients in both train set and validation set. The ROC curve

validated its good performance in survival prediction, suggesting that this model has a

certain extent sensitivity and specificity. Multivariate Cox analysis showed that the risk

score was an independent prognostic factor. Finally, we mapped a nomogram to predict

1-, 3-, and 5-year survival for CC patients. The calibration curves indicated that the model

was reliable.

Conclusion: A risk prediction model based on CHMP4C, FOXO1, and RRAGB was

successfully constructed, which could effectively predict the prognosis of CC patients.

This model can provide a reference for CC patients to make precise treatment strategy.
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INTRODUCTION

Autophagy is a self-degradative process that is important for
maintaining nutrient and energy homeostasis and eliminating
intracellular pathogens (Glick et al., 2010; Jiang and Mizushima,
2014; Yu et al., 2018a). Autophagy is generally considered to
be a survival mechanism and widely involved in a variety
of pathophysiological processes such as cancer, metabolism,
and cardiovascular disease (Choi et al., 2013). Cancer cells
have evolved to use autophagy as an adaptive mechanism to
survive under extreme stress in the tumor microenvironment
and to enhance the resistance of anticancer drugs. Regulation
of autophagy has become a promising cancer treatment strategy
(Pietrocola et al., 2016; Chude and Amaravadi, 2017; Marinkovic
et al., 2018). However, autophagy plays a dual role in many
cancers both promoting and suppressing cancers, depending on
the tumor microenvironment (Yun and Lee, 2018). It is of great
significance to further explore the potential role of autophagy in
tumor genesis and development.

Cervical cancer (CC) is a common gynecological malignant
tumor worldwide. Statistics showed that about 311,000 people
died of CC globally in 2018 (Bray et al., 2018). The incidence
of CC has declined in recent years as screening and increasing
health literacy. However, CC remains the leading cause of cancer-
related deaths among women in developing countries (Arbyn
et al., 2020). The main treatment methods for CC patients are
radical hysterectomy and radical radiotherapy plus concurrent
cisplatin chemotherapy. Nevertheless, some patients still relapse
after surgery or radiotherapy. Patients with relapse have limited
treatment and a poor prognosis (Dizon et al., 2014). To further
improve effectiveness of treatment and develop precise treatment
strategies, oncologists need to identify the prognosis of CC
patients. Therefore, it is important to explore new biomarkers
suitable for CC prognosis prediction.

In recent years, the prognosis risk model based on ARG
expression signature has been applied in lung cancer (Liu et al.,
2019), gastric cancer (Qiu et al., 2020), etc. To our knowledge,
the prognostic role of ARGs in CC is unclear. In this study, we
performed a biological information comprehensive analysis on
the transcriptome and clinical information of the CESC cohort
from the TCGA database. The differentially expressed ARGs
were screened out, then the prognostic model based on ARGs
was constructed by multivariate Cox regression. Meanwhile, we
mapped a nomogram which might provide a new reference index
for the stratification of prognosis risk and treatment strategy
selection of CC patients.

METHODS

Acquisition of Human Autophagy-Related
Gene Sets
Human Autophagy Database (HADb, http://autophagy.
lu/clustering/index.html) is a public database containing
information of ARGs (Moussay et al., 2011). We obtained 232
ARGs from HADb. Meanwhile, we also obtained 394 ARGs from
the GO_AUTOPHAGY gene set in the Molecular Signatures
Database (Wang et al., 2020) (MSigDB v6.2, http://software.

broadinstitute.org/gsea/msigdb). The overlapping ARGs of the
two databases were deleted. Finally, we obtained 531 ARGs.

Gene Expression Information and Clinical
Data of Cervical Cancer
Information of gene expression and clinical data was
downloaded from the level-3 gene-expression information
(FPKM normalized) of the TCGA-CESC cohort (https://portal.
gdc.cancer.gov/). Perl 5.28.1 software was used to merge the
original data and extract the expression data of all ARGs. The
collected clinicopathological data included age, stage, grade,
survival status, and survival duration in days. Our research
excluded any samples that had missing or insufficient data on
age, grade, stage, survival status, and survival duration. We
retained both RNA-Seq and clinical data, which we used for
further investigation. Our study was in accordance with the
publication guidelines provided by TCGA.

Identification of Differential Expression
ARGs and Enrichment Analysis
The “edgeR” package of R 3.6.1 software was used to
analyze the differential expression of ARGs (DE-ARGs) in 306
cervical cancer tissues and 3 normal tissues. The screening
criteria are as follows: false discovery rate (FDR) <0.05,
fold change ≥2. Gene ontology (GO) functional enrichment
(including biological process, cell components, and molecular
functions) and Kyoto Encyclopedia of Genes and Genomics
(KEGG) signaling pathways were analyzed and visualized
by “clusterprofiler,” “org.HS.eg.db,” “enrichplot,” and “ggplot2”
package of R 3.6.1 software.

Identification of Prognostic Gene
Signatures
The entire set was randomly divided into train set and test set
according to the ratio of 6:4. Univariate Cox regression analysis
was performed on DE-ARGs of the train set to eliminate the
genes, whichmight not be related to the prognosis of CC patients.
Hazard ratio (HR) and P-value of eachDE-ARGs were calculated.
When the P < 0.05, the gene was selected for further analysis.
Lasso regression analysis was used to reduce the collinearity
between genes and prevent overfitting of prognostic risk model
variables. By constructing penalty function, the regression
coefficient of independent variables was compressed to achieve
the dimension reduction of gene data, and then DE-ARGs with
a high correlation of prognosis were obtained. Subsequently, we
performed further variable filtering through the step function
of R language, which was a stepwise regression analysis based
on AIC information statistics. The smallest AIC information
statistics was selected to delete or increase variables. The mode
of stepwise search includes “backward” and “forward.” Finally,
multivariate Cox regression analysis was performed on DE-
ARGs obtained by Lasso regression screening. The multivariate
regression coefficient of each DE-ARGs was calculated to obtain
the key DE-ARGs related to the prognosis of CC patients.
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Construction and Validation of the
Prognostic Risk Score Model Based on
DE-ARGs
According to the key DE-ARGs obtained by Cox and Lasso
regression screening, the risk score equation was constructed

(Tibshirani, 1997; Yu et al., 2018b): risk score =

n∑

i=1
Coefi

× Xi. Coef refers to the regression coefficient of DE-ARGs in
multivariate Cox regression analysis; X is the expression value of
the gene; and n is the number of prognostic DE-ARGs. Patients
were divided into low-risk and high-risk groups according to the
median of risk score as cutoff value. The “survival” package of R
software was used for Kaplan–Meier survival analysis. The ROC
curve of the model was drawn using the “timeROC” package
of R software to evaluate the sensitivity and specificity of the
prognostic model. Principal component analysis was performed
to explore the distribution pattern of high- and low-risk groups
according to ARG gene expression. To investigate whether risk
score could be an independent predictor of overall survival

(OS) in CC patients, univariate and multivariate Cox regression
analyses were performed. Age, grade, clinical stage, and risk score
were used as covariables. The test set and the entire set were
used to validate the prognostic risk score model based on DE-
ARGs. In addition, GSE44001 containing disease-free survival
(DFS) and mRNA expression data was downloaded from the
GEO database as a validation set. The risk score for each patient
was calculated with the same formula as a training set. The
Kaplan–Meier curve was used to assess the predictive ability of
the autophagy-related signature.

The Construction of Nomogram and
Calibration Curves
A clinical practical nomogram was established to predict
individual survival probability by the “rms” package of
R software. To assess the consistency between actual
and predicted survival in the nomogram, calibration
curves for predicting 1-, 3-, and 5-year survival rate were
also drawn.

FIGURE 1 | Flowchart for identifying the autophagy-related prognostic signature.
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RESULTS

Identification and Enrichment Analysis of
DE-ARGs
The overall process of this study is described in Figure 1. In this
work, we collected mRNA expression profiles with 306 cervical
cancer samples and 3 normal samples from the TCGA database.
The heat map of differential expression of ARGs was drawn,
as shown in Supplementary Figure 1A. Compared with normal
cervical tissue, there were 63 ARGs with differential expression
in cervical cancer tissue (Supplementary Figure 1B). The green
dots represent 32 downregulated ARGs, and the red dots
represent 31 upregulated ARGs in CC tissue. Figure 2A shows
the GO functional enrichment analysis. In the aspect of biological
processes, DE-ARGs were mostly enriched in autophagy, process
utilizing autophagic mechanism and macro-autophagy, etc. In
the aspect of cell component involving mitochondrial outer
membrane, organelle outer and outer membrane, etc., and in the
aspect of molecular function, DE-ARGs were mostly enriched
in ubiquitin protein ligase binding, ubiquitin-like protein ligase
binding, and p53 binding. Besides, KEGG signaling pathway
analysis showed that DE-ARGS were involved in some cancer-
related signaling pathway such as apoptosis, cellular senescence,
p53 signaling pathway, andHIF-1 signaling pathway (Figure 2B).

Construction of Prognostic Markers of CC
in the Train Set
The DE-ARG expression profiles and clinical follow-up
information of CC were merged to screen out 306 cervical cancer

samples. The entire set was randomly divided into train set and
test set with a ratio of 6 to 4. The train set and test set are 184 and
122 samples, respectively. Univariate Cox regression analysis
was performed on 63 DE-ARG, and then Lasso regression
analysis was conducted (Supplementary Figures 2A,B). Finally,
a prognostic model using the expression of CHMP4C, FOXO1,
and RRAGB was conducted by multivariate Cox regression. The
coefficients of each gene are shown in Table 1.

Correlation Between the Risk Score and
OS in the Train Set
Each patient’s risk score was calculated based on the prognostic
model consisting of these three DE-ARGs. These include two
potential risky genes and one potential protective gene. The
risk score was quantified by the following formula: risk score =
(0.113493 × FOXO1) + (0.044977 × CHMP4C) + (−0.163103
× RRAGB). Patients were divided into low-risk (n = 91)
and high-risk groups (n = 91) according to the median of

TABLE 1 | Three prognostic DE-ARGs was associated with OS.

Hazard ratio

Gene name Coefficient (95% confidence interval) P-value

FOXO1 0.113493 1.120 (1.02–1.22) 0.012

CHMP4C 0.044977 1.046 (1.00–1.10) 0.067

RRAGB −0.163103 0.850 (0.73–0.99) 0.039

ARGs, autophagy-related genes; OS, overall survival; DE, differential expression.

FIGURE 2 | Gene ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. (A) Enrichment analysis reveals

the top 10 GO terms. (B) KEGG pathway analysis. According to the adjusting P-value, the node color increases from red to blue. The size of the node indicates the

number of counts.
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risk score. The distribution of risk score, survival status, the
heat map of these 3 prognostic DE-ARGs in the train set are
shown in Figures 3A–C. The Kaplan–Meier curve demonstrated
that patients in the high-risk group have a poorer prognosis
(P < 0.001, Figure 3D). Time-dependent ROC analysis is
shown in Figure 3E. The values of the area under the receiver
operating characteristic curve (AUC) were 0.678, 0.648, and
0.674, respectively, for predicting 1-, 3-, and 5-year survival
rates. Principal component analysis showed that the distribution
patterns of high-risk and low-risk populations were different
based on the train set (Figure 3F).

Validation of the Risk Score in the Test Set
The risk score of each patient in the test set was calculated
according to the same risk score formula of the train set. The
patients of the test set were divided into the high-risk group (n=

70) and low-risk group (n = 52) based on the cutoff value of the
train set. The distribution of risk score, the survival status, and
the heat map of these 3 prognostic DE-ARGs in the test set are
shown in Figures 4A–C. Consistent with the results of the train

set, patients in the high-risk group had a poorer prognosis in test
set (p < 0.001, Figure 4D). Moreover, the values of AUC were
0.756, 0.628, and 0.603, respectively, for predicting 1-, 3-, and
5-year survival rates (Figure 4E). Principal component analysis
showed that the distribution patterns of high-risk and low-risk
populations were different based on the train set (Figure 4F).

Validation of the Risk Score in the Entire
Set
Risk score of the entire set were used to further validate the
prognostic model. The risk score of each patient in the entire set
was calculated according to the same risk score formula of the
train set. The patients of the entire set were divided into high-
risk (n= 162) and low-risk groups (n= 144) based on the cutoff
value of the train set. The distribution of risk score, the survival
status, the heat map of these 3 prognostic DE-ARGs in the
entire set are shown in Figures 5A–C. Consistent with the above
findings, patients in the high-risk group have a poorer prognosis
(p < 0.001, Figure 5D). In addition, the values of AUC were
0.708, 0.641, and 0.643, respectively, for predicting 1-, 3-, and

FIGURE 3 | Correlation between the risk score and overall survival in the train set. (A,B) Distribution of risk score and patient survival status of cervical cancer. (C)

Expression heat map of 3 DE-ARGs. (D) The Kaplan–Meier curve demonstrates that patients in the high-risk group have a poorer prognosis. (E) Time-dependent

ROC curve analysis for survival prediction by the risk score. (F) Principal component analysis.
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FIGURE 4 | Correlation between the risk score and overall survival in the test set. (A,B) Distribution of risk score and patient survival status of cervical cancer. (C)

Expression heat map of 3 DE-ARGs. (D) The Kaplan–Meier curve demonstrates that patients in the high-risk group have a poorer prognosis. (E) Time-dependent

ROC curve analysis for survival prediction by the risk score. (F) Principal component analysis.

5-year survival rates (Figure 5E). Principal component analysis
showed that the distribution patterns of high-risk and low-risk
populations were different based on the train set (Figure 5F).
To verify the inclusiveness of the model, cervical cancer patients
were divided into different subsets based on FIGO stage and
pathological grade. Consistent with the above findings, patients
in the high-risk group have a poorer prognosis in different subsets
of CC patients (stages I & II, stages III & IV, grades 1 & 2 and 3 &
4, p < 0.001, Supplementary Figures 3A–D). It is suggested that
the model has a good inclusiveness.

Validation of the Risk Score in an External
Dataset
To validate the predictive ability of autophagy-related signature,
risk scores were calculated with the same formula for patients
in GSE44001. We extracted the disease-free survival (DFS)
and expression data of the three ARGs from this dataset
and calculated the risk score of each sample. Consistent with
the results of the TCGA dataset, patients in the high-risk

group had a lower DFS rate in this dataset (p < 0.001,
Supplementary Figure 4A). In addition, the values of AUC were
0.539, 0.563, and 0.609, respectively, for predicting 1-, 3-, and
5-year disease-free survival rates (Supplementary Figure 4B).

Autophagy as an Independent Prognostic
Factor
To investigate whether risk score could be an independent
predictor of OS in CC patients, univariate and multivariate Cox
regression analyses were performed. In the train set, risk score
was significantly associated with OS in univariate Cox regression
analysis (HR = 1.642, 95% CI = 1.311–2.056, P < 0.001,
Figure 6A). Multivariate analysis showed that the risk score was
an independent prognostic indicator (HR = 1.514, 95% CI =
1.210–1.895, P < 0.001, Figure 6B). Likewise, univariate Cox
regression analysis showed that the risk score was associated
with OS in the test set (HR = 1.887, 95% CI = 1.176–3.029,
P = 0.008, Figure 6C). Multivariate analysis showed that the
risk score was an independent prognostic indicator in the
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FIGURE 5 | Correlation between the risk score and overall survival in the entire set. (A,B) Distribution of risk score and patient survival status of cervical cancer. (C)

Expression heat map of 3 DE-ARGs. (D) The Kaplan–Meier curve demonstrates that patients in the high-risk group have a poorer prognosis. (E) Time-dependent

ROC curve analysis for survival prediction by the risk score. (F) Principal component analysis.

test set (HR = 1.861, 95% CI = 1.151–3.008, P = 0.011,
Figure 6D). Consistent with the above findings, the risk score
was significantly associated with OS in univariate Cox regression
analysis in the entire set (HR = 1.707, 95% CI = 1.396–2.086,
P < 0.001, Figure 6E). Multivariate analysis showed that the risk
score was an independent prognostic indicator (HR= 1.632, 95%
CI= 1.328–2.006, P < 0.001, Figure 6F).

The Construction of Nomogram and
Calibration Curves
To provide a better quantitative method for clinicians to predict
cancer prognosis, a nomogram was constructed by combining
the risk score with other clinicopathological risk factors. The
nomogram showed that our risk score was the most important
factor among the various clinical parameters (Figure 7B). The
predictive abilities of the nomogram were analyzed by the AUC
values (AUC of 1-year OS= 0.712, Figure 7A). The model’s AUC
value (risk score, AUC value = 0.712) was higher than that of
International Federation of Gynecology and Obstetrics (FIGO)

staging (AUC value = 0.653). It is suggested that the model
constructed on 3 ARGs has better accuracy and specificity than
FIGO staging. In addition, calibration curves revealed that the
predicted and actual survival rates were well matched at 1-, 3-,
and 5 years (Figures 7C–E). These findings suggested that the
nomogram has a high accuracy in predicting overall survival.

DISCUSSION

The current widely accepted method of CC staging is
the International Federation of Gynecology and Obstetrics
(FIGO) staging system (Oncology FCo, 2014). The 2018 FIGO
staging system is mainly based on imaging or pathological
examination. However, staging is based on imaging and
subjective judgment of doctors’ physical examination for some
non-surgical patients (Oncology FCo, 2014). Therefore, if the
patient is accompanied by pelvic inflammation, endometriosis,
or obesity, this is inherently inaccurate. Due to the significant
differences between clinically determined stages and surgical
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FIGURE 6 | Univariate (A,C,E) and multivariate (B,D,F) regression analyses of the prognostic value for the train set (A,B), the test set (C,D), and the entire set (E,F)

with clinicopathologic factors.

pathological results, the prognosis of patients with FIGO stages
was significantly different (Li et al., 2016). With the rapid
development of knowledge of cancer biology and the discovery
and validation of biological factors that predict cancer outcome
and treatment response, some oncologists are increasingly
using a variety of related, non-anatomical (including molecular)
factors to predict individual patient outcome (Salib et al.,
2020).

Some studies have found that autophagy is involved in
the development of CC. Zhang et al. showed that MAP7
promoted migration and invasion and progression of human
cervical cancer through modulating the autophagy (Zhang
et al., 2020). Wu et al. found that kindlin 2 suppressed
cervical cancer cell migration through AKT/mTOR-mediated

autophagy induction (Wu et al., 2020). Wang et al. showed
that angelicin inhibited the malignant behavior of human
cervical cancer potentially via inhibiting autophagy (Wang et al.,
2019). In recent years, gene signatures have been used to
predict the prognosis of various cancers. To some extent, it is
even better than TNM staging and histopathological diagnosis
(Karamichalis et al., 2016; Chlis et al., 2018). Prognostic models
based on autophagy-related gene expression have been reported
for various cancers, such as lung cancer (Liu et al., 2019)
and gastric cancer (Qiu et al., 2020). To our knowledge,
prognostic models based on ARGs and clinicopathological
characteristics in CC have not been reported. In this study,
ARGs with a differential expression were screened out from
CC tissues and normal tissues. Subsequently, the prognostic
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FIGURE 7 | Nomogram to predict the probability of patients with cervical cancer. (A) ROC curve analysis. (B) The nomogram to predict 1-, 3-, or 5-year OS in the

entire set. (C–E) The calibration plots for predicting patient 1-, 3-, or 5-year OS.

model based on FOXO1, CHMP4C, and RRAGBwas successfully
constructed by Lasso and Cox regression. Patients in the high-
risk group had a poor prognosis. The ROC curve showed
that the predictive abilities of the nomogram were higher
than those of the TNM staging system, which is consistent
with previous studies (Li et al., 2018; Yu and Zhang, 2019).
The calibration curves indicated that the predicted value of
the nomogram had a high degree of coincidence with the
true value. The nomogram is a valuable tool to predict
the prognosis of individual patients. In recent years, the
nomogram has become increasingly popular for its ability to
construct statistical prognostic models using different variables
(Balachandran et al., 2015; Jeong et al., 2020). Our model
can provide a new reference for prognostic risk stratification
assessment and treatment strategy selection in patients with
cervical cancer.

In the present study, GO functional enrichment and KEGG
signaling pathway analysis showed that DE-ARGS were involved
in some cancer-related signaling pathway such as autophagy,
apoptosis, p53 signaling pathway, and HIF-1 signaling pathway.
In addition, we successfully constructed a prognostic model
based on three DE-ARGs with a prognostic value. These three
DE-ARGs have been reported to be associated with cancer,
of which CHMP4C and FOXO1 have been shown to play an
important role in the occurrence and development of cervical

cancer (Xie and Xie, 2019; Lin et al., 2020; Yang et al.,
2020). Lin et al. found that CHMP4C expression was higher
in cervical cancer tissues, and high CHMP4C expression was
associated with lower survival (Lin et al., 2020). Upregulation of
CHMP4C in C-33A cells accelerates cell proliferation, migration,
and invasion, whereas downregulation of CHMP4C in Ca Ski
cells had the opposite effect. Chay et al. reveal that increased
FOXO1 and PAX3 expression in cervical cancers indicates
an oncogenic role of FOXO1 in cervical cancer cells that
correlates with poor patient survival. The findings above are
consistent with our results. Interestingly, FOXO1 has also been
found to act as a tumor suppressor in cervical cancer cells
(Prasad et al., 2014; Aishanjiang et al., 2018). This suggests
that FOXO1 has a dual role in cervical cancer and needs to be
further researched. To sum up, these DE-ARGs are involved in
many important cervical cancer-associated biological functions
and pathways.

This study still has some limitations. First, the total samples
were randomly divided into train set and test set. Therefore,
the sample size of each group was relatively small. Secondly,
due to a large number of missing data, some clinical variables
were not included for analysis. Thirdly, themolecularmechanism
of autophagy affecting the prognosis of CC patients and
its significance for clinical translational therapy need to be
further studied.

Frontiers in Genetics | www.frontiersin.org 9 February 2021 | Volume 11 | Article 616998

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Shi et al. Prognostic Model in Cervical Cancer

CONCLUSION

A risk prediction model based on CHMP4C, FOXO1, and
RRAGB was successfully constructed, which could effectively
predict the prognosis of CC patients. This model can provide a
reference for CC patients to make precise treatment strategy.
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Selecting the best parameters in the LASSO model (λ).

Supplementary Figure 3 | (A) The Kaplan-Meier curve demonstrates that

patients in high-risk group has a poorer prognosis in stage I&II subset. (B) Patients

in high-risk group has a poorer prognosis in stage III&IV subset. (C) Patients in

high-risk group has a poorer prognosis in grade 1&2 subset. (D) Patients in

high-risk group has a poorer prognosis in grade 3&4 subset.

Supplementary Figure 4 | (A) The Kaplan–Meier curve demonstrates that

patients in high-risk group has a lower disease free survival rate in the external

validation set (GSE44001). (B) Time-dependent ROC curve analysis for disease

free survival prediction by the risk score in the external validation set.
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