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Abstract

Background: High throughput methodologies such as microarrays, mass spectrometry and plate-based small
molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification.
These large-scale experiments are typically carried out over the course of months and years, often without the
controls needed to compare directly across the dataset. Few methods are available to facilitate comparisons of
high throughput metabolic data generated in batches where explicit in-group controls for normalization are
lacking.

Results: Here we describe MIPHENO (Mutant Identification by Probabilistic High throughput-Enabled Normalization),
an approach for post-hoc normalization of quantitative first-pass screening data in the absence of explicit in-group
controls. This approach includes a quality control step and facilitates cross-experiment comparisons that decrease the
false non-discovery rates, while maintaining the high accuracy needed to limit false positives in first-pass screening.
Results from simulation show an improvement in both accuracy and false non-discovery rate over a range of
population parameters (p < 2.2 × 10-16) and a modest but significant (p < 2.2 × 10-16) improvement in area under the
receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based statistic (z-score). Analysis of
the high throughput phenotypic data from the Arabidopsis Chloroplast 2010 Project (http://www.plastid.msu.edu/)
showed ~ 4-fold increase in the ability to detect previously described or expected phenotypes over the group based
statistic.

Conclusions: Results demonstrate MIPHENO offers substantial benefit in improving the ability to detect putative
mutant phenotypes from post-hoc analysis of large data sets. Additionally, it facilitates data interpretation and
permits cross-dataset comparison where group-based controls are missing. MIPHENO is applicable to a wide range
of high throughput screenings and the code is freely available as Additional file 1 as well as through an R package
in CRAN.

Background
High-throughput screening studies in biology and other
fields are increasingly popular due to ease of sample track-
ing and decreasing technology costs. These experimental
setups enable researchers to obtain numerous measure-
ments across multiple individuals in parallel (e.g. gene
expression and diverse plate-based assays) or in series (e.g.
metabolomics and proteomics platforms). The large num-
ber of measurements collected often comes at the cost of
measurement precision or the overall power of detection.
For many large-scale studies, the experimental design aims

to maximize the number of compounds or individuals
tested, resulting in limited replication and few to no con-
trols. In the case of microarray studies, several methods
for normalizing arrays have been developed [1-3] with no
universal method adopted as the standard. Quantitative
PCR faces the same issues as it is used more frequently in
high throughput platforms, with analysis methodologies
being developed paralleling those for expression arrays [4].
Metabolite profiling is a rapidly expanding area of high

throughput measurements, where samples having large
amounts of biological variability and diverse physical
properties makes quantification of large numbers of
structurally diverse metabolites challenging [5]. Few stra-
tegies exist for normalization in metabolite analysis to
control for run-to-run variance other than to include
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negative and positive controls. For large-scale screens
involving mutagenized populations (plant, bacteria) or
crosses (plant breeding), the goal is to identify putative
hits, or individuals that are likely to be different from the
bulk of the samples for subsequent follow-up (e.g. [6]). In
these conditions, properties of the sample cohort serve as
controls with the measure of differences between an indi-
vidual and its cohort used to identify samples differen-
tially accumulating a metabolite [6]. This strategy can
streamline sample processing and maximize throughput
when the expected effects are large and easily observable.
For studies where comparisons are sought across an

experiment conducted over the course of several months
or in different sample batches, normalizing factors are
necessary, especially given typically high levels of biological
and technical variability [7-9]. Ideal experiments include
technical and biological replication within each set as well
as controls facilitating comparisons between sample
batches, but these are often limited or omitted entirely
due to likely increases in experimental costs or the nega-
tive impacts on throughput. However, absence of these
experimental controls limits the ability to handle variabil-
ity between sample groups (e.g. remove batch effects)
making it a greater challenge to identify individuals within
the range between normal and aberrant phenotypes. With-
out the ability to normalize the data provided by experi-
mental controls, some of the benefits of high throughput
screens are lost, yet the desire to maximize throughput
places constraints on the experimental design.
The motivation for algorithm development came from

the Arabidopsis thaliana Chloroplast 2010 Project large-
scale reverse genetic phenotypic screen (Chloroplast 2010,
http://www.plastid.msu.edu/, [10-13]). This project
leverages the collection of T-DNA insertion lines and
genomic sequence for the plant model species A. thaliana
to screen large numbers of putative gene knockouts with
the aim of functionally characterizing chloroplast-targeted
genes. The presence of a large T-DNA insertion can block
or reduce expression of the gene it lands in, and altered
phenotypes can provide insights into the normal function
of the gene and its protein or RNA product(s).
In addition to qualitative and semi-quantitative mea-

sures of physiological and morphological characteristics,
the pipeline assayed levels of leaf fatty acids and leaf and
seed free amino acids, important outputs of chloroplast
metabolism. The pipeline assays were preformed on
groups of individual plants planted in units of up to
thirty-two per tray and three trays of plants per assay
group. Two assay groups were grown concurrently under
controlled environment plant growth conditions. Indivi-
duals representing T-DNA insertion events in different
locations within the same gene (alleles) are present in the
dataset, and it is of interest to compare the assay
responses of these individuals as well as to identify other

individuals with similar responses. Because the experi-
mental design lacked cross-group controls (e.g. desig-
nated WT), the ability to make even semi-quantitative
cross-dataset comparisons was not possible using existing
methodology.
Developing phenotypic annotation for un- and under-

annotated genes is a primary goal for the Chloroplast
2010 project and identification of individuals with like
phenotypes (phenotypic clustering) is a way to achieve
that goal. Thus, a method that would allow cross-dataset
comparisons and identify putative mutants was needed to
achieve the goal. The resulting method, MIPHENO
(Mutant Identification by Probabilistic High throughput-
Enabled Normalization), is aimed at improving first-pass
screening capabilities for large datasets in the absence of
defined controls. Algorithm performance was tested
using a synthetic data set and the Chloroplast 2010 high
throughput phenotypic dataset. The executable code and
data for the Chloroplast 2010 analysis are available as
Additional file 1 and as a CRAN package (MIPHENO,
http://cran.r-project.org/web/packages/MIPHENO/index.
html).
The following describes a quality control process for

identifying aberrant groups followed by a data normaliza-
tion method, which aims to bring samples into the same
distribution allowing for dataset-wide comparisons. Addi-
tionally, we describe a hit detection function based on the
cumulative distribution function (CDF) to identify samples
with putative, ‘non-normal’ phenotypes. For clarity, the
terms normal and wild type (WT) are used to describe the
typical response of the population. Generally, this could be
the untreated (chemically or genetically) population or the
base level of the system (e.g. background response). Non-
wild type responses, a hit or mutant, refer to a response
that is distinct from the normal response distribution,
with a putative hit/putative mutant referring to a sample
that is predicted to have a response different from the nor-
mal response distribution but has yet been confirmed. In
high throughput screens, the objective is to identify puta-
tive hits balancing the false positive rate (FPR), or the
number of WT samples that are called hits, with the false
non-discovery rate (FNDR), the number of true hits that
are missed. Results are presented from analysis of the syn-
thetic dataset and biological data.

Results
Input Data Characteristics and Structure
MIPHENO is specifically designed for the analysis of first
pass screening data where the majority of measured
responses are from the WT or normal class and the
number of responses not in this group (putative hits) is
quite small. Examples of experiments yielding appropri-
ate data are non-targeted protein binding/activator
assays, reporter gene assays, or population screens, where
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there are either no defined classes or very unbalanced
classes such that a large majority of responses fall in the
WT class. Data coming from a treatment vs control
experiment would not meet the criteria if there were
large numbers of ‘non-WT’ responses expected. Addi-
tionally, the approach is tolerant to repetition of both
individual samples and sample groups across the course
of the experiment so long as the portion of individuals
showing a WT response in any sample group is over
50%. As the portion of WT individuals in a sample group
decreases, there will be a reduction in accuracy and a
corresponding increase in false non-discovery rate
(FNDR) due to the assumptions of the algorithm, as
demonstrated in the Testing section below. Additionally,
while some measured responses may not be independent
(ex, metabolite measures of branch chain amino acids),
the method treats these attributes (e.g., metabolites) as
independent to increase the flexibility of the analysis. For
instance, the results for attribute 1 (including normaliza-
tion and downstream analyses) do not impact the results
for attribute 2. This is beneficial in post hoc analysis
where the individual performing the analysis has limited
knowledge of the relationship between measures.
Input data for analysis by MIPHENO assumes that mul-

tiple attributes are measured for each individual. The data
structure treats each row as an individual sample, whose
relationship to other samples can be described by one or
multiple factor variables represented in columns (grouping
factor). For example, the assay group representing the
identification number for a 96-well plate containing up to
96 individuals. Subsequent columns describing the
response of the individual to some assay (attribute
response) are quantitative, continuous values. Information
must be present that enables association of a grouping fac-
tor to the attribute responses, but a single data object may
include the responses for different attributes as long as the
appropriate grouping factor is present. For example, a
‘LC_ID’ column might provide the grouping factor for ten
columns of LC-MS amino acid data, while ‘HPLC_ID’
might provide the grouping factor for five columns of
HPLC-derived responses on the same set of samples. This
structure is aimed at simplifying situations where multiple
measurements are taken on the same individual.

Algorithm
MIPHENO is based on invariant set normalization with
three key assumptions made of the input data. The first
is that samples from the same genetic background should
have a similar assay response over time. This implies
that, given a population P, the distribution of an observed
response r from sample set p in set P should have the
same distribution as the response R from population P as
p approaches P. Following this logic, the second assump-
tion of the data is that the observed differences between

the distributions r and R are due to technical error as
opposed to biological or genetic variance as p approaches
P. The last assumption is that there will be limited obser-
vable effects of simple genetic manipulations to an organ-
ism for any random gene. This is based on empirical
evidence from years of published studies [6,14-16]. Speci-
fically, due to genetic redundancy and metabolic flexibil-
ity, a given disruption in gene function will likely cause a
response outside the WT distribution in only a limited
number of measured responses.
These assumptions are similar to those for microarray

analysis, specifically that for a random or large grouping
of individuals (e.g. cDNAs), changes will be observed for
a relatively small proportion [17]. Other assumptions
used to normalize the data (e.g. a balance in the total
amount of transcript in quantile normalization [1]) have
the same effect of forcing the median value of a sample
set across several experiments or arrays to be equal. Simi-
lar assumptions also apply to data from other high
throughput screens, e.g. reporter gene-based assays and
enzymatic assays.
An overview of the algorithm is presented in Figure 1.

The algorithm requires that input data have a grouping
factor that presents a batch or process group on which
the normalization steps can be performed (see “Input
Data Structure and Characteristics” above). If multiple
grouping factors are present (e.g. different sample collec-
tion, processing, and analysis dates) it is recommended to
use the factor representing the highest level of technical
(i.e. non-biological) error for normalization. This can be
determined by familiarity with the methodology or by
checking the grouping factors to see which factor has the
largest interquartile range for group medians.

Quality Control Method
In performing post-hoc data analysis it is often unknown
if on-line quality control (QC) was conducted or where
process changes occurred that could negatively affect the
outcome of analysis. To address these issues, a quality
control (QC) step prior to analysis was included to iden-
tify samples with a high likelihood of assay or group-spe-
cific process error. Examples of sources of these types of
error include instrument malfunction (for assay-specific
error), abnormalities in growth or preparation of material
(group-specific error), or improper sample handling
affecting a group of samples exposed to the same condi-
tions rather than an individual response. If an on-line QC
step was already used to filter the dataset this step can be
omitted. Thresholds for QC are determined from the
overall distribution of the collected data with a user-
defined cut off; for example groups with group median >
3 median adjusted deviations (MAD) from the global
median. The amount of data removed will depend on the
cut off used and the data distribution. A visual inspection
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of the data using box and whisker plots is advised to
check the data for clear signs of drift or likely changes in
protocol that may require manual QC. Examples would
be group medians steadily increasing or decreasing across
dataset or a switch to a new average median response
corresponding with sample order, respectively. For post
hoc analysis on datasets where the order in which sam-
ples were assayed or collected is unknown, it may be
advisable to use a cut off of 3 MAD to permit more data
passing on to the next stage.

Data quality is assessed on an attribute-by-attribute
basis with the assumption that the measured traits are
independent; with an attribute being any measured or
observed response. Thus, if multiple attributes are mea-
sured for a group (for example, numerous metabolites or
promoter-reporter gene outputs), only attribute data for
the trait that shows high deviation would be removed
and the rest of the data for the group retained. For exam-
ple, ‘HPLC_ID’ is the grouping factor for the response of
metabolites, such as amino acids. The overall response

Figure 1 Flowchart of MIPHENO. “Input Data” (1) contains data with identifiable parameters for grouping/processing the data. The data pass
through a quality control (QC) removal step (2), where groups not meeting the cut offs are identified and removed on an attribute-by-attribute
basis. Data are normalized (3) using a scaling factor based on the data distribution. Putative hits are identified (4) using a CDF built from the
data or user defined NULL distribution and an empirical p-value is assigned to each observation. Thresholds can be established based on follow-
up capacity and prior knowledge (e.g. ability to detect known ‘gold standard’ mutant samples).
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distribution of each metabolite is assumed to be indepen-
dent of the other metabolites; thus if the measured
response of alanine is 10x the response of proline it will
not impact the QC step (or subsequent steps). If the
median response for alanine in HPLC_ID = 1 is greater
than the QC cut off, all responses for alanine in
HPLC_ID = 1 are removed but the other measured
responses for HPLC_ID = 1 are retained, provided they
too pass QC. While this does not control for drift, it pro-
vides a facile QC step for post-hoc data analysis where
the order of data generation is unknown.

Normalization
The normalization process is done on an attribute-by-
attribute basis using a user-defined grouping. A grouping
factor should encompass the highest amount of non-bio-
logical variation and may be the same factor used in the
QC step, but should include as many individuals as possi-
ble (e.g. n > 10). A scaling factor is calculated to bring the
median of each group to the global median, similar to
invariant set normalization [4]. The key difference from
invariant set or quantile strategies is that just the median
value is used, not an explicit individual or multiple quan-
tiles to take into account lack of replication between
groups and limited sample size. It is important that
groupings represent a selection of individuals where the
frequency of non-WT behaviours approaches that of the
overall population to avoid bias in cases when a

particular group is enriched with non-WT behaviors for
a given attribute.

Testing
To gauge the performance of the approach, a synthetic
dataset was generated emulating characteristics of actual
data (see Methods). This dataset was used initially since
the true properties of the individuals could be known,
allowing for observation classification (e.g. WT and
mutant) and to evaluate the effect of population distri-
bution on the performance of the method. Figure 2
illustrates the population distributions used to test the
performance of MIPHENO.
Comparison of two different data analysis approaches

was used to test 1) if pre-processing steps remove high
amounts of real biological variation indicative of a putative
hit and 2) whether an increased false non-discovery rate
(FNDR) resulted from using MIPHENO verses a sample-
group based method (results in Figures 3, 4, and 5). The
first approach referred to as ‘Raw’, uses the raw, unpro-
cessed data, but followed the same process as in
MIPHENO to identify putative mutants. Differences
between Raw and MIPHENO aid in illuminating the effec-
tiveness of pre-processing in noise removal. The second
approach, referred to as ‘Z’, also utilized the raw data but
used a MAD score on a sample-group basis to identify
putative mutants as described for the Chloroplast 2010
data [10]. Comparison of MIPHENO to Z aids in

Figure 2 Synthetic Populations used in Testing. Synthetic data were generated to measure the performance of the three different methods
in a case where ‘ground truth’ is known. Samples were randomly drawn from a low abundance population (Low, blue line), high abundance
population (High, red line) or a WT population (WT, black line) as shown in the upper panels (A, C). Two population structures were sampled,
one with a low probability of WT, P(WT = 0.4), and the other with a high probability of WT, P(WT) = 0.93, shown in the lower panels (B, C). To
test the effect of population shape, equal relative standard deviation (RSD = 15%, A and B) or equal standard deviation (SD = 5, C and D) were
independently tested.
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determining potential loss of information due to normaliz-
ing across the data sets (e.g. whether true mutants were
more severely scaled in normalization), or if the group-
based error was controlled for without negatively impact-
ing hit detection. In a review of performance metrics by
Ferri et al. [18], accuracy (ACC) was found to be a better
metric than area under the receiver-operating curve
(AUC) in the case of unbalanced sample size as well as
misclassification noise, which are both properties of the

data under analysis. Conversely, they found AUC outper-
formed ACC in probability and, to a lesser degree, ranking
noise. False non-discovery rate is an important metric
when considering first-pass screens as one seeks to limit
the true positives missed, which is the situation described
here.
Results of the performance trials using a combination of

two population distributions that had a high frequency of
WT (P(wt) = 0.93) and low WT frequency (P(wt) = 0.40),

Figure 3 Performance of Methods on Synthetic Data: AUC. The AUC was used to evaluate classification performance of MIPHENO, the use of
raw data followed by a CDF classifier (RAW), and a group-based metric (Z) on synthetic data described in Figure 2. MIPHENO (pink, first in set)
outperforms both RAW (green, middle) and Z (blue, left in set) across the different population parameters.

Figure 4 Performance of Methods on Synthetic Data: Accuracy. Accuracy of classification was used to compare the performance of
MIPHENO, the use of raw data followed by a CDF classifier (RAW), and a group-based metric (Z) on synthetic data from populations described
in Figure 2. The percent accuracy is plotted along the y-axis while the false discovery rate (FDR) cut off is along the x-axis. Each population
distribution tested is shown in a separate panel. Note that MIPHENO (pink) achieved higher classification than Z (blue) (p < 2.2e-15, Wilcoxon
sign rank) and both methods outperformed Raw (green) independent of the population parameters tested.
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drawn from populations of equal standard deviation (SD)
or relative standard deviation (RSD) (Figure 2), are shown
in Figures 3, 4, and 5. These results suggest that the propor-
tion of true WT in the sample had little effect on the per-
formance of the methods relative to each other, regardless
of the metric used; however, the accuracy is decreased and
the false non-discovery rate is increased for all methods
when the portion of data from the mutant class is increased
(Figures 4 and 5). MIPHENO showed a higher accuracy
and lower FNDR (p < 2.2 × 10-16, Wilcoxon signed rank
test) across a range of FDR cut offs compared to the other
methods (Figure 5). Furthermore, the AUC of both
MIPHENO and Z outperformed an analysis of Raw (Figure
3), which performed just above what is expected at random,
highlighting the importance of controlling for group-based
variability. In summary, MIPHENO outperformed both the
Raw and Z-methods across all three metrics tested.

Implementation
Results from the Chloroplast 2010 Project [10,11] were
used to test the performance of MIPHENO on experimen-
tally generated high throughput screening data. This data-
set includes results for leaf protein amino acids and fatty
acid methyl esters as well as seed protein amino acids for
plants run through the Chloroplast 2010 pipeline. Multiple
individuals representing the same seed stock or the same
gene are present in the dataset although they were not
assayed in the same group. Thus, it is of interest to look at
the consistency between individuals representing the same
gene to identify Leaf and seed metabolite data from

mutants in the Col-0 (CS60000, [19]) ecotype genetic
background were processed using MIPHENO and z score
methods independently. Figure 6 outlines the methods for
comparison. Briefly, both MIPHENO empirical p-values
and z scores were calculated for the two data measure-
ments available in the Chloroplast 2010 dataset (mol% and
nmol/gFW). The average score per T-DNA insertion line
was calculated for each data type to avoid overemphasiz-
ing lines that were analyzed multiple times. Aracyc [20]
and Gene Ontology (GO) [21] information obtained from
The Arabidopsis Information Resource (TAIR) [22] were
used to generate a list of loci previously demonstrated to
have a biological function in Arabidopsis. Loci with phe-
notypes predicted by the methods were compared to the
list of literature-documented loci. The biological role and/
or phenotypes of the genes were compared to the pub-
lished information to determine the accuracy of the pre-
diction. Results are given in Table 1. While both methods
had a similar frequency of correctly identifying mutant
phenotypes at the initial level of Z cut off of 2.5, the Z
method returned fewer lines than MIPHENO. It was
necessary to adjust the Z threshold to 1.3 to recover these
lines, which resulted in no additional mutants but an
increase in false positives. Overall, there was ~four-fold
improvement in the ability to detect previously described
or expected phenotypes compared with the z-score.

Discussion
MIPHENO offers a way to control for assay variability
in high throughout mutant screening studies. It

Figure 5 Performance of Methods on Synthetic Data: False Non-Discovery Rate. The false non-discovery rate (or percent positive hits missed)
was used to compare the performance of MIPHENO, the use of raw data followed by a CDF classifier (RAW), and a group-based metric (Z) on
synthetic data from populations described in Figure 2. The FNDR is plotted along the y-axis with the different false discovery rate (FDR) cut offs along
the x-axis. Each population distribution is shown in a different panel. Note that across all populations tested, MIPHENO has a lower FNDR than the
other two method, suggesting that fewer putative hits will missed with MIPHENO compared to using the Z-score (blue) or raw data (green).
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outperformed using raw data or the group-based Z
method in mutant identification on the synthetic data
set (Figures 3, 4, and 5). Comparison of population

parameters including proportion of WT and the distri-
bution shape suggest that the method is tolerant to
uneven distributions (tailing) and to higher mutant

Figure 6 Flowchart of Performance Measures for Chloroplast 2010 Data. Metabolite data from wild-type Col-0 ecotype samples were taken
from the Chloroplast 2010 dataset. MIPHENO empirical p-values and z-scores were calculated separately for metabolite values reported as mol %
and nmol/g fresh weight (nmol/gFW) and results filtered according to criteria. Publicly available annotation (Aracyc and GO, Additional file 1) for
annotated genes provided a basis of comparison between the two metrics.
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frequencies within the population. When applied to a
biological data set, MIPHENO led to identification of
more true mutants than the Z method for the Chloro-
plast 2010 set (Table 1) based on literature reported
phenotypes or pathways. This suggests that MIPHENO
reduces the false positive rate by decreasing the varia-
tion due to batch effects but does not directly influence
the false non-discovery rate. The method additionally
offers the user the ability to utilize any a priori informa-
tion on the WT population/NULL distribution available
as well as customize a quality control step that is sensi-
tive to the needs of their process.

One drawback of using the normalization strategy
described here is that it fails to control for the within-
group variance to the degree that a quantile normalization
strategy might. Quantile normalization makes the assump-
tion that both the median or mean and the standard devia-
tion of the data are all equal and would require sample
sizes to be more or less equal as well as large enough to
start approximating the normal distribution. This assump-
tion does not always apply to post-hoc analysis; for exam-
ple, the size of the sample groups in the Chloroplast 2010
data set varied from 12 to 96. MIPHENO aims at addres-
sing this type of use case.

Table 1 Lines identified by MIPHENO and Z methods

Locus Description Tissue MIPHENO
Cutoff = 0.1

Zscore
Cutoff = 2.5

Zscore
Cutoff = 1.3

At1g08250 ADT6: Plastid-localized Seed High: GLN, TYR High: GLN, TYR

arogenate dehydratase Leaf

At1g09795 ATATP-PRT2: ATP Seed

phosphoribosyl
transferase

Leaf High: HIS High: HIS, LEU

At1g11790 ADT1: Plastid-localized Seed

arogenate dehydratase Leaf Low: PHE Low: PHE

At1g65960 GAD2: glutamate Seed Low: GABA

decarboxylase Leaf Low: GABA Low: GABA Low: GABA

At2g39800 P5CS1: delta1-pyrroline- Seed Low: HPRO

5-carboxylate synthase Leaf Low: PRO Low: PRO

At3g11170 FAD7: Responsible for
the synthesis of 16:3

and

Seed

18:3 fatty acids Leaf High: 16:1D7, 16:2, 18:1D9,
18:2; Low: 16:3, 18:3

High: 16:2, 18:1D9, 18:2;
Low: 16:3, 18:3

High: 16:1D7, 16:2, 18:1D9, 18:1D11,
18:2; Low: 16:3, 18:3

At3g45300 IVD: Isovaleryl-CoA Seed High: ARG, GABA, HIS, ILE,
LEU, MET, TRP, VAL; Low:

GLU

High: ARG, GABA, HIS, ILE,
LEU, TRP, VAL, MET; Low:

GLU

High: N, ARG, GABA, HIS, ILE, LEU, LYS,
MET, PRO, SER, TRP, TYR, VAL; Low: GLU

Dehydrogenase Leaf High: 16:3; Low: 18:2 High: 16:3, GABA; Low 18:2

At4g19710 AK-HSDK II: Bifunctional
aspartate

Seed

kinase, homoserine
dehydrogenase.

Leaf High: 18:1D11, CYS, HSER,
ILE, THR

High: CYS, HSER, ILE, THR High: 18:1D11, CYS, HSER, ILE, THR

At4g27030* FAD4: Palmitate Seed

desaturase Leaf High: 16:0, ALA, GLN, L.ALA;
Low: 16:1D3

High: ALA; Low: 16:1D3 High: 16:0, ALA, GLN, SER, TRP; Low:
16:1D3

At4g33150 LKR/SDH: Splice variant
of a bifunctional

Seed High: HIS, LYS; Low: GLU High: HIS, LYS High: HIS, LYS, PRO

enzyme for lysine
catabolism

Leaf

At5g05730 ASA1: Alpha subunit of Seed

anthranilate synthase Leaf Low: TRP Low: TRP Low: TRP

At5g53460 GLT1: NADH-
dependent glutamate

Seed High: ASN; Low: ASP High: ASN, CYS; Low: ASP

synthase Leaf

*Aracyc information not updated, manually added

Results of the analysis presented in Figure 6.
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Conclusions
The strong performance of MIPHENO on two different
data sets and its ability to permit cross-dataset compari-
sons of individuals without explicit controls makes it an
ideal method for processing large datasets prior to Meta
analyses combining different data sets from high-through-
put experiments. Because more researchers are making
their primary data available and the number of large-scale,
high-throughput experiments keeps increasing,
MIPHENO will provide a valuable processing platform
that can theoretically be applied to very diverse measure-
ment types (e.g. gene expression, enzyme kinetics, metabo-
lite amounts).

Methods
Data analysis
All calculations were performed in R [23] v 2.11.0 on
64-bit Windows 7 platform with the code available in
Additional file 1, ‘Code’ subfolder with data used in the
‘Data’ subfolder. Chloroplast 2010 Project data used in
the reported analysis was obtained on 8/18/2010. GO
and Aracyc pathway information were obtained from
the TAIR FTP site, files dated 8/2/2010 and 6/21/2010
respectively (Additional file 1, Data subfolder).

Generation of synthetic test data
Synthetic data were generated by sampling from three
random Gaussian distributions representing low abun-
dance, high abundance, and wild type levels of ‘metabo-
lite’ (Figure 2) using a set of sampling probabilities
(Additional file 1). Distributions were created to assess
the effects of uniform variance (e.g. same standard devia-
tion) and proportional variance given by a relative stan-
dard deviation of 15% based on prior observations of real
data from the Chloroplast 2010 study. Means for the dis-
tributions were set such that the means of the ‘mutant’
populations were two standard deviations away from that
of the wild type, because this is a common cut off for
identifying hits in screening assays. The proportion of
individuals sampled from each population (low, wt, high)
was set prior to generating sample groups to test how dif-
ferent population composition influenced algorithm per-
formance. To mirror the biological population structure,
data were assigned to a flat, assay, and planting group
representing individuals grown in the same physical unit,
processed and assayed together, or grown over the same
time course, respectively. Classification of each observed
value was done at this step, prior to adding random noise
(described below), defining a ‘low’ mutant as one that
was 2 standard deviations below the WT mean and a
‘high’ mutant as one that was 2 standard deviations
above. For calculating performance metrics, only the WT
and mutant class were considered.

To simulate the non-biological variance, random uni-
form noise was added first at the level of planting group
then at the level of assay group as empirical evidence
suggested a greater assay effect than planting group
effect. The resulting synthetic dataset was defined as
raw data for use in the Z and raw data methods.

Method Performance using the Chloroplast 2010 data
An overview of the data analysis approach is depicted in
Figure 6. Data from the Chloroplast 2010 for mol% and
nmol/g FW fatty acid methyl esters and amino acids
were used to calculate both MIPHENO empirical p-
values and z-scores. Data used is available as additional
files under the ‘Data’ folder and the script used in the
analysis is in the ‘Code’ folder. Samples genotyped as
wild type or heterozygous for the T-DNA insertion were
removed. The average phenotypic score (z-score or
empirical p-value) per T-DNA insertion line was calcu-
lated and this was used to define the phenotype for that
insertion line. Next, loci where there were ≥ insertion
lines showing the same (putative) phenotype for any
attribute were identified based on either the empirical
p-value or z-score and data from these line was com-
bined across the ‘mol %’ and ‘nmol/g FW’ datasets. Loci
from this list were analyzed and loci where > 50% of the
sampled lines showed a phenotype at a given cut off are
considered putative mutants. To identify lines out of the
putative mutants where phenotypic information is
known, loci were cross-referenced to information from
Aracyc and Gene Ontology annotation on biological
processes (for experimentally-derived evidence codes
only). Phenotypes predicted for these loci was then com-
pared to phenotypes or experimental evidence reported
in the literature to see if the predicted phenotype had
been reported or if there was evidence for the gene pro-
duct to act in a pathway leading directly to or from the
measured metabolites.

Additional material

Additional file 1: This file contains two folders (Code and Data)
along with a README file with a brief description of the contents
in each folder as well as instructions for execution of code. The
‘Data’ folder contains six files representing all the data used in the
biological analyses presented, including the Aracyc and Gene Ontology
files. The ‘Code’ folder contains three files representing all the code used
to carry out the analyses as well as a Sweave file (MIPHENO.pdf) which
illustrates how to carry out the analysis on the Chloroplast 2010 dataset
presented in the manuscript.
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