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Abstract: Fluorescent probes can be used to detect various types of asbestos (serpentine and amphi-
bole groups); however, the fiber counting using our previously developed software was not accurate
for samples with low fiber concentration. Machine learning-based techniques (e.g., deep learning)
for image analysis, particularly Convolutional Neural Networks (CNN), have been widely applied
to many areas. The objectives of this study were to (1) create a database of a wide-range asbestos
concentration (0–50 fibers/liter) fluorescence microscopy (FM) images in the laboratory; and (2) de-
termine the applicability of the state-of-the-art object detection CNN model, YOLOv4, to accurately
detect asbestos. We captured the fluorescence microscopy images containing asbestos and labeled
the individual asbestos in the images. We trained the YOLOv4 model with the labeled images using
one GTX 1660 Ti Graphics Processing Unit (GPU). Our results demonstrated the exceptional capacity
of the YOLOv4 model to learn the fluorescent asbestos morphologies. The mean average precision at
a threshold of 0.5 (mAP@0.5) was 96.1% ± 0.4%, using the National Institute for Occupational Safety
and Health (NIOSH) fiber counting Method 7400 as a reference method. Compared to our previous
counting software (Intec/HU), the YOLOv4 achieved higher accuracy (0.997 vs. 0.979), particularly
much higher precision (0.898 vs. 0.418), recall (0.898 vs. 0.780) and F-1 score (0.898 vs. 0.544). In
addition, the YOLOv4 performed much better for low fiber concentration samples (<15 fibers/liter)
compared to Intec/HU. Therefore, the FM method coupled with YOLOv4 is remarkable in detecting
asbestos fibers and differentiating them from other non-asbestos particles.

Keywords: asbestos; fluorescence microscopy; Convolutional Neural Networks (CNN); YOLOv4

1. Introduction

Asbestos is a fibrous silicate mineral that has been widely used in construction ma-
terials due to its useful properties, such as high ultimate tensile strength, low thermal
conduction, and relative resistance to chemical attacks [1,2]. Since asbestos is composed of
microscopic bundles of silicate fibers, asbestos fibers can become airborne when asbestos-
containing materials (ACMs) are damaged mechanically or deteriorated by long-term
exposure to sunlight. The inhalation of airborne asbestos fibers damages the lungs, re-
sulting in serious health problems, such as pleural mesothelioma and lung cancers [3–5].
Asbestos-related diseases cause an estimated 255,000 deaths annually throughout the
world [6], and the occurrence of asbestos-linked cancers contributes to rise [7,8]. Although
the use of asbestos is now prohibited in many developed countries (e.g., U.S.), ACMs still
remain in old buildings, thus producing airborne asbestos fibers. In the U.S., asbestos
has been responsible for over 200,000 deaths in the last few decades [9]; even today, there
are approximately 2000 to 3000 new cases of mesothelioma, an asbestos-related cancer,
diagnosed every year [10]. U.S. has asbestos-related productivity losses of approximately
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0.36% of annual GDP, or 86,100 million dollars losses caused by asbestos [6]. Therefore,
taking measures against asbestos to prevent exposure is critical.

The most commonly used method for air samples relies on phase-contrast microscopy
(PCM). After making the filters transparent, optical PCM is used to count the fibers that
are longer than 5 µm, thinner than 3 µm, and have aspect ratios larger than 3:1. However,
PCM cannot easily distinguish asbestos fibers from other natural or man-made fibers with
similar dimensions and has low sensitivity for thin chrysotile fibers [11–13]. PCM cannot
distinguish between asbestos and non-asbestos fibers, which causes great uncertainty
regarding the actual asbestos fiber concentration. Thus, PCM fiber counts may include
a large fraction of non-asbestos fibers (referred to as contamination), and estimating the
actual extent of contamination requires the differential counting of asbestos fibers. In Japan,
any PCM fiber counts above 1 fiber per liter (f/L) triggers re-testing using either scanning
electron microscopy (SEM) or transmission electron microscopy (TEM) [14]. In the U.S.,
TEM analysis is recommended if serious contamination from non-asbestos fibers occurs in
samples (NIOSH Method 7402) [11–13]. Compared to PCM, TEM has greater resolution
and thus can detect smaller fibers [1,15,16]; however, its application is high cost and time-
consuming for sample preparation and analysis [17]. Polarized light microscopy (PLM) is
another option that can differentiate asbestos from non-asbestos fiber, but its sensitivity is
even lower than PCM [18], and thus it is only used for bulk samples (NIOSH 9000) [11–13].

Recently, we developed asbestos-specific fluorescent probes based on asbestos-binding
proteins [19,20]. Fluorescent probes have sufficient affinity and specificity for detecting all
asbestos types (serpentine and amphibole groups), and they can be used to distinguish
asbestos from ten kinds of commonly used non-asbestos fibrous materials, except for silicon
carbide whiskers [20]. The fluorescent labeling of asbestos trapped on a membrane filter is
completed within ten minutes using such probes. Then, the fluorescent-labeled asbestos
fibers are immediately visualized using fluorescent microscopy (FM) [19,20]. Furthermore,
we evaluated the specificity of the FM method using practical samples collected from
demolition sites. Although the FM method is not a NIOSH-approved method, it correctly
identified approximately 95% of the fluorescent stained fibers, and it can differentiate
asbestos from non-asbestos fibers (340 fluorescent fibers from 34 different samples) [21].
Thus, the FM method can become a practical asbestos monitoring technique in many
occupational settings, as it does not require the electron microscopic identification of
asbestos. However, automated fiber counting would still be required.

Previously, we developed an asbestos counting software with algorithms for counting
crossed and splayed fibers according to counting rules [18]. The developed software
afforded automated counts, which showed a good correlation (r = 0.99) with the manual
counts of the practical samples with medium to high fiber concentrations. However, the
counts were much less accurate with a correction of r = 0.64 at low fiber concentrations
(<15 fibers/liter), possibly because of the interfering autofluorescent dust particles [18]. In
this study, to improve the fiber identification accuracy and enable quality control, we used
a deep-learning artificially intelligent model that both professional and non-professional
asbestos analysts can train using training data.

The Convolutional Neural Networks (CNN) was used successfully in many areas,
such as self-driving cars, disease diagnosis, and object detection and warning [22–24]. The
goal of CNN is to reduce complex data arrays into simpler forms that are easier to process
while retaining critical features. First, the image is scanned by a set of filters to reduce the
image into smaller array sets (or a “feature map”, which captures the main unique object
features in the image) within the convolutional layer. Then, a set of feature maps generated
by the filters make up a convolutional layer. After the convolutional layer is generated, a
pooling layer often follows in order to decrease the amount of computational power needed
to analyze the data. The number of convolutional and pooling layers can vary depending
on the structure of the network [25]. The final layer of the CNN is the fully connected
layer, which predicts class possibilities. Most of the state-of-the-art CNN-based algorithms,
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such as Darknet, AlexNet, Resnet, and GoogleNet are open source codes [26,27], which can
dramatically reduce the cost of applying them for development.

One popular state-of-the-art CNN-based model for detecting objects in an image is
“You Only Look Once version 4” or YOLOv4, which significantly improved from its previ-
ous versions in terms of both speed and accuracy [28]. YOLOv4 utilizes a new backbone,
Cross Stage Partial Darknet53 (also known as CSPDarknet53), to enhance the learning capa-
bility of CNN [29]. In addition, YOLOv4 can be trained and used on conventional Graphics
Processing Units (GPU) with 8–16 GB-VRAM, which can make its broad use possible.

In this study, we prepared the asbestos samples in the laboratory to create the flu-
orescent image datasets for training and testing the deep learning model. We applied
YOLOv4 to detect asbestos in a wide range of asbestos concentration (0–50 fibers/liter)
sample images and then evaluated the model performances. We trained the model using a
commercially available Graphics Processing Units (GPU): GeForce GTX 1660 Ti. Finally,
we analyzed the potential methods of improving the prediction results.

2. Materials and Methods
2.1. Sample Preparation

To prepare FM images of airborne asbestos fibers, airborne dust was filtered through
a nitrocellulose membrane filter at various demolition sites in Japan. For the collection
of relatively pure asbestos fibers, air was collected from an air-tight chamber in which
crushed asbestos minerals were dispersed. Most of the concentrations of airborne asbestos
at demolition sites were not high. Therefore, to fill up a gap, we added air dust samples
generated using relatively pure asbestos minerals. A total of 60 air filter samples (40 samples
were prepared from airborne dust at various demolition sites, and the others were from
relatively pure asbestos minerals) were used in this study. The filter samples were stained
using Asbester Air 2 kit by Siliconbio Inc. (Hiroshima, Japan). FM images were acquired
using a BX60 microscope equipped with a DP70 camera (Olympus Corporation., Tokyo,
Japan). The asbestos fibers (more than 5 µm in length and less than 3 µm in diameter) were
marked based on a gold standard—the NIOSH fiber counting Method 7400 [11–13]. The
counting of non-asbestos particles was assisted by imageJ software [30].

Finally, a total of 176 FM images (111 images containing asbestos fibers and non-
asbestos fluorescent particles and 65 images containing only fluorescent particles) were
obtained from 13 airborne dust samples and used for the training of YOLOv4. After
learning, a total of 47 images (30 images containing asbestos fibers and non-asbestos
fluorescent particles and the others containing only fluorescent particles) obtained from
seven other airborne dust samples were used for testing of the trained YOLOv4 and
Intec/HU asbestos counting software [18].

2.2. Flowchart and YOLOV4 Network Architecture to Detect Asbestos

The YOLOV4 outperforms the existing YOLOV3 for object detection in terms of
having better accuracy and speed, which is achieved by using “Bag of Freebies” and “Bag
of Specials” techniques [28]. The flowchart and network architecture of YOLOv4 to detect
asbestos are shown in Figure 1.

We first annotated the FM images. The annotation process was completed by utiliz-
ing Yolo_mark, which is an open-source Graphical User Interface (GUI) that allows for
objects to be marked within the images. The program was compiled in Microsoft Visual
Studio (MSVS) 2015 (Microsoft Corporation, Albuquerque, NM, USA) to run on Windows
Operating System (OS) with OpenCV. A text file was created with a list of the names and
locations of each section image (see the Input section in Figure 1). In the text file, the first
number identifies the object class, which is zero (0 = asbestos). The next two columns
represent the X- and Y-coordinates of the object, and the last two columns determine the
height and width of the bounding box. Then, the annotated images were used for training
the YOLOv4 model to detect the asbestos fibers. The model was trained three times.
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Figure 1. Flowchart and network architecture of YOLOv4 to detect asbestos.

YOLOv4 architecture can be broken down into three blocks assuming the “image” is
passed as an input (see Figure 1). The first block (Backbone Network) is referred to “Feature
Extraction” architecture. YOLOV4 implements the CSP backbone method, which has
53 convolutional layers for accurate image classification, also known as CSPDarknet53 [28].
CSP makes the separation of the bottom layer feature map into two different portions
allowable with only one going through the dense block, and then the two recombine at the
end and move to the next stage. Therefore, the CSP decreases the architecture complexity
that allows a more efficient computation [29]. The second block (Neck) is referred to as
“Feature Aggregation” architecture, which acts as an extra layer between the CSPDarknet53
backbone and head, so that it helps to blend and merge the features formed in the backbone
block instead of following the traditional approach of CNN where everything is of linear
form. YOLOv4 uses the Path Aggregation Network (PANet) for feature aggregation [31,32]
and Spatial Pyramid Pooling (SPP) method to set apart the important features obtained
from the backbone block. YOLOv4 Head is the third block, which uses dense prediction for
anchor-based detection that helps in dividing the image into multiple cells and inspect each
cell to find the probability of having an object using the post-processing techniques [33].
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3. Results
3.1. Detection of Asbestos Fibers Using Deep Learning

The mean average precision (mAP) was 96.1% ± 0.4% at a threshold (or probability
of detection) of 0.5 (@0.5). Table 1 summarizes the confusion matrix of the testing results.
Precision represents the model’s ability to identify relevant data points that were classified as
true and that were actually true. Recall is described as the model’s ability to find all relevant
data points. It is the proportion of total correctly identified data points overall relevant data
points. Maximizing precision often comes at the expense of recall and vice versa. Therefore,
F1-score is considered the balance between precision and recall. Determining the F1-score
is useful in this assessment to ensure optimal precision and recall scores can be achieved.
Their calculations are as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 =
2 ∗ Recall ∗ Precision

Recall + Precision
(3)

The precision, recall and F1-score were 0.943 ± 0.006, 0.910 ± 0.010, 0.927 ± 0.006 at
a threshold of 0.5, respectively. Figure 2 shows how the evaluation metric changes with
various threshold values. Increasing the threshold from 0.1 to 0.9 caused the precision
to increase from 0.857 ± 0.012 to 0.987 ± 0.006, while the recall score decreased from
0.967 ± 0.006 to 0.657 ± 0.015. F1-score reached the highest values of 0.927 ± 0.006 at a
threshold value of 0.5.

Table 1. Confusion matrix of the testing results.

Threshold = 0.5
Actual Value

True False

YOLOv4 Predicted
True TP = 428 ± 5 FP = 27 ± 3

False FN = 43 ± 8 TN = 0 ± 0
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Figure 3 shows an FM image, which includes both false positive and false negative
cases. The model falsely recognized an aggregated particle as an asbestos fiber (FP case)
and missed a fiber that has a blurring boundary together with other particles (FN case).
Figure 4a double counts a single fiber due to the overlap with a non-fiber particle, and
Figure 4b counted two vertically-crossed fibers (1 and 2) as one fiber. More images for
training are needed to improve the model’s capability of recognizing asbestos in uncommon
situations, as shown in Figures 3 and 4.
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3.2. Comparison of YOLOv4 to Intec/HU Using NIOSH 7400 as the Reference Method

We compared the YOLOv4 performance at the threshold value of 0.5 to our previously
developed asbestos counting software—Intec/HU [18]—in Table 2. Most of the manually
identified asbestos fibers were counted as “asbestos” in both Intec/HU asbestos counting
software and the trained YOLOv4, while 13 asbestos fibers were miss-counted in the
Intec/HU asbestos counting software, and 6 asbestos fibers were miss-counted in the
trained YOLOv4 (Table 2), indicating that the false-negative rate was improved in the
trained YOLOv4 model. The false positive rate was markedly decreased (6 from 64) in the
trained YOLOv4 performance. The YOLOv4 performances were also tested at threshold
values of 0.1 and 0.7 (Table 2). As expected, the precision scores slightly increased, and
recall scores decreased as threshold values increased. Both accuracy and F1-score were
almost the same at threshold values of 0.5 and 0.7. Overall, the YOLOv4 was found to be
improved regarding precision, recall, and F1-score in comparison with Intec/HU asbestos
counting software.

Table 2. Confusion matrix of the testing results.

Intec/HU
YOLOv4

Threshold = 0.1 Threshold = 0.5 Threshold = 0.7

Asbestos Non-Asbestos Asbestos Non-Asbestos Asbestos Non-Asbestos Asbestos Non-Asbestos

Manually counted
(NIOSH 7400)

Asbestos 46 13 54 5 53 6 52 7

Non-asbestos 64 3586 12 3638 6 3644 5 3645

Accuracy 0.979 0.995 0.997 0.997

Precision 0.418 0.818 0.898 0.912

Recall 0.780 0.915 0.898 0.881

F1-score 0.544 0.864 0.898 0.897

Next, we used 40 air filter samples (20 samples were prepared from airborne dust
at various demolition sites and the others were from relatively pure asbestos minerals)
in order to count asbestos fiber concentrations using the trained YOLOv4 and Intec/HU
asbestos software. For the calculation of asbestos fiber concentrations, the total numbers
of asbestos fibers counted using 100 FM images of each air filter sample were divided
by collected air volumes. As we already reported [18], the counts of Intec/HU asbestos
software showed less correlation (r = 0.768, Figure 5b) with the manual counts at low fiber
concentration, although they performed a good correlation (r = 0.964) at the wide range of
fiber concentrations (Figure 5a). In contrast, YOLOv4 showed much better performance
at low fiber concentration (Figure 5b). Initially, we compared the counts of YOLOv4
with the manual counts at a threshold of 0.5 and obtained correlation (r = 0.925) at the
wide range of fiber concentrations using dust samples at demolition sites. When we
changed the threshold value of 0.7, the correlation factor increased to 0.968. Then, we
included samples of relatively pure asbestos minerals and measured correlation at low
fiber concentration (r = 0.921) as well as at the wide range of fiber concentrations (r = 0.979;
Figure 5a,b, respectively).
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4. Discussion

In this work, we present a deep learning-based machine learning model that is able to
provide end-to-end automation of the sample analysis process, starting with transforming
the input FM images to recognizing and counting the number of asbestos fibers in the
image. The main shortcoming of our previously developed asbestos counting software
(Intec/HU) was the relatively high percentage of non-fibrous particles misidentified as
fibers (low precision) that makes it not sufficient for its use in fully automated counting
mode. Compared to the Intec/HU, the trained YOLOv4 at a threshold of 0.5 achieved
higher accuracy (0.997 vs. 0.979), particularly much higher precision (0.898 vs. 0.418), recall
(0.898 vs. 0.780), and F-1 score (0.898 vs. 0.544). In addition, the YOLOv4 performed much
better for low fiber concentration samples compared to Intec/HU.

Although our study demonstrates that the state-of-the-art deep learning model,
YOLOv4 is a powerful tool to assist humans in recognizing asbestos fibers in FM im-
ages, additional work is still needed. For instance, the functions of calculating the fiber
dimensions (such as length, width, aspect ratio, etc.) should be added in the future due
to their significance in evaluating the health impacts. The semantic segmentation model
will be able to solve these issues. For example, Frei and Kruis successfully used the mask
region-based CNNs (or R-CNNs), which is the most widely used R-CNN for segmentation
tasks, to automatically analyze the fiber shape [34]. In addition, PCM is the most commonly
used method recommended by NIOSH method 7400 (or 7402); however, PCM does not
provide an easy way to differentiate asbestos and non-asbestos fibers. If the air contains
significant amounts of non-asbestos fibers, FM-based testing will provide more reliable
estimates of asbestos contamination, which results in implications for risk assessment and
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epidemiological studies based on this method. Therefore, the NIOSH method 7400 (or
7402) could be improved in the future.
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