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An unprecedented inactivation process of the indanol-derived NHC catalysts bearing
N-C6F5 groups is reported. An unexpected multi-cyclic complex product is obtained from
the 3-component reaction with the 1-methylcyclopropyl-carbaldehyde, the 2,2,2-
trifluoroacetophenone and the NHC catalyst. The absolute structure of the inactivation
product is unambiguously assigned via X-ray analysis on its single crystals. The formation
of the structurally complex product is rationalized through a multi-step cascade cyclization
process.
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INTRODUCTION

Ever since the first report from Ukai and co-workers on the thiazolium salt promoted benzoin
reaction in 1943 (Ukai et al., 1943), N-heterocyclic carbene (NHC) has been developed and used as
robust organic catalyst for more than 70 years (Breslow, 1958; Sheehan andHunneman, 1966; Enders
et al., 1995; Rovis et al., 2002). Especially, NHC organocatalysis has seen fantastic development
within the past two decades (Enders et al., 2007; Lupton et al., 2013; Glorius et al., 2014;
Mahatthananchai and Bode, 2014; Nair et al., 2015; Rovis et al., 2015; Scheidt et al., 2018; Chi
et al., 2020; Chi et al., 2021; Wang et al., 2017). Numerous catalytic activation modes have been
established within this highly active research field with a huge number of reactions realized for quick
and selective access to functional molecules with interesting synthetic or biological applications.
Functional molecules such as aldehydes, carboxylic acids and their derivatives, imines, ketenes, and
activated ketones can be efficiently activated by NHC organic catalysts via formation of (aza)-
Breslow intermediates and go through addition reactions with various electrophiles or nucleophiles
through electron-pair-transfer processes (Gu et al., 2017; Yao et al., 2019; Chen et al., 2020; Yao et al.,
2020; Fu et al., 2021; Xue and Zheng, 2021). Due to the rich electron densities of the Breslow
intermediates formed from the NHC catalysts and the aldehyde substrates, they can be selectively
oxidized by external oxidants through single-electron-transfer (SET) processes and furnished radical
reactions in both enantioselective and non-chiral fashion. Recently, a couple of carbon- and
heteroatom-centered nucleophiles were found to be activated by chiral NHC catalysts via non-
covalent interactions and smoothly participate in the enantioselective addition reactions with a
diversity of electrophiles (Van Halbeek and Poppe, 1991; Enders et al., 1995; Regitz, 1996; Enders,
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2003; Bastin et al., 2019). In all the NHC-catalyzed synthetic
transformations we mentioned above, mechanistic studies via
both experimental and computational methods have played
critical roles in the development and innovations of the
activation modes. Therefore, the observation and
characterization of the critical intermediates and/or side
reaction products to provide evidence for mechanistic studies
are of great significance.

Investigations into the cross-interactions between the NHC
organic catalysts and the reaction substrates are one of the
effective approaches for the mechanistic studies in NHC
organocatalytic reactions. Continuous endeavour has been
made by organic chemists towards the isolation and
characterization of the most basic Breslow intermediates since
it was hypothesized by Breslow in 1958 (Breslow, 1958)
(Figure 1A). For example, Berkessel and co-workers reported

in 2010 the full NMR spectra analysis of the ketone form of the
Breslow intermediate generated from the triazolium salt-derived
NHC catalyst and the propionic aldehyde (Berkessel et al., 2010).
They successfully isolated the crystals of the typical Breslow
intermediate from an imidazolium-typed NHC catalyst and
the benzaldehyde and obtained its X-ray analytical spectrum
in 2012 (Berkessel et al., 2012). An advanced reaction
intermediate between the α,β-unsaturated Breslow
intermediate and the chalcone substrate could also be isolated
as stable crystals and their structures were unambiguously
assigned via X-ray analysis in 2015 (Berkessel et al., 2015).
The single crystals of the aza-analogues of the Breslow
intermediate were obtained by Rovis and co-workers from a
chiral indanol-derived NHC catalyst and an iminium salt in 2012
(Rovis et al., 2012). They can also apply the aza-Breslow
intermediate analogues as the NHC catalyst precursors to

FIGURE 1 | Isolation and characterization of NHC-bounded intermediates and products. (A) Isolable breslow intermediates with full characterizations. (B) Stable
NHC-bounded products from NHCs and electrophiles.
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promote an intramolecular Stetter reaction in enantioselective
fashion.

The isolation and characterization of the NHC-bounded
reaction products from the inactivation of the NHC catalysts
in the reaction system can also provide significant information
on the cross interactions between the NHC catalysts and the
reaction substrates. Although the formation of the NHC-
bounded side reaction products might be sometimes observed
during the investigations of various NHC organocatalytic
transformations, to the best of our knowledge, there has been very
limited reports on the characterization of those NHC-bounded
reaction products (Berkessel et al., 2013; Berden et al., 2021). A
representative study was from Rovis and co-workers in 2013, when
they reported a cascade cyclization reaction between the triazolium
NHC catalyst bearing an N-pentafluorophenyl (N-C6F5) group and
the isatin-derived α,β-unsaturated ester substrate (Rovis et al., 2013)
(Figure 1B). The spirocyclic product was characterized via X-ray
analysis on the product crystals.

We have previously reported an NHC-catalyzed asymmetric
(4 + 2) cycloaddition reaction between 1-methylcyclopropyl-
carbaldehyde 1 (Chi et al., 2011; Mu et al., 2020; Tong et al.,
2021; Wang et al., 2021) and the cyclic sulfonimides 2 (Xu et al.,
2013; Wang et al., 2020a; Wang et al., 2020b; Liu et al., 2021) to
give a variety of multi-functionalized fused cyclic products 3 in

FIGURE 2 | Our studies on 1-methylcyclopropylcarbaldehyde activations with NHC organic catalysts. (A) Our previous work of the NHC-catalyzed (4 + 2)
cycloaddition. (B) This work—inactivation of the NHC catalyst.

TABLE 1 | Optimization of reaction conditionsa.

Entry Base Equivn. Of
base

T (oC) Solvent Yield (%)b

1 Et3N 1.0 30 THF 12
2 DBU 1.0 30 THF 21
3 Cs2CO3 1.0 30 THF 34
4 Cs2CO3 1.0 30 DCM <5
5 Cs2CO3 1.0 30 CHCl3 <5
6 Cs2CO3 1.0 30 MeCN <5
7 Cs2CO3 0.8 30 THF 31
8 Cs2CO3 1.5 30 THF 27
9 Cs2CO3 1.0 50 THF 34

aUnless otherwise specified, the reactions were carried using 1 (0.05 mmol), 4
(0.05 mmol), B·HBF4 (0.05 mmol), base, 4 Å MS (50.0 mg), solvent (1.0 ml) at the given
temperature for 6 h.
bIsolated yield of 5.
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moderate to good yields with generally excellent enantio- and
diastereoselectivities (Lv et al., 2021) (Figure 2A). Indanol-derived
NHC catalysts bearing electron-deficient N-substituents were found
effective for this transformation. However, during the evaluations of
different chiral NHC catalysts, we noticed that switching the indanol-
derived NHC catalyst A (Rovis et al., 2012) to the NHC catalyst B
(Enders and Balensiefer, 2004) bearing an N-C6F5 group resulted in a
significant drop of the product yields (from 72% with A to 36% with
B), with multiple unidentifiable by-products formed in low yields.

After completion of our studies on the chiral NHC-catalyzed
[4 + 2] cycloaddition reactions. We continue to focus on the side
products formed with the NHC catalyst B bearing an N-C6F5 group
(Figure 2B). To our delight, a crystalline product could be isolated
from the reaction system consisted of the 1-methylcyclopropyl-
carbaldehyde 1, the 2,2,2-trifluoroaceto-phenone 4 (Su et al., 2017)
and the NHC catalyst B. An unexpected crystal structure of 5 was
assigned by X-ray analysis, with all the three components combined
within one molecule.

RESULTS AND DISCUSSION

Having obtained the crystal structure of the NHC-bounded
compound 5, we went on to optimize the reaction condition

in order to improve the yield of the structural complex product 5
(Table 1). The raw materials of the 1-methylcyclopropyl-
carbaldehyde 1, the 2,2,2-trifluoroacetophenone 4 and the
NHC catalyst B were initially stirred in THF at room
temperature in the presence of a stoichiometric amout of
Et3N, with the product of 5 obtained in 12% yield (Table 1,
entry 1). The yield of the target product 5 could be improved
when switching Et3N in to stronger bases such as DBU and
Cs2CO3 (entries 2-3). Solvents other than THF we tested were not
effective for this transformation (e.g., entries 4-6). The attempts
to improve the reaction yield by adding more or less amount of
basic additives were failed (entries 7-8). Further increasing the
reaction temperature resulted in the formation of the target
product with the same yield.

The formation of the structurally complex product 5 is rationalized
through a multi-step cascade cyclization process among the three
components of the 1-methylcyclopropyl-carbaldehyde 1, the 2,2,2-
trifluoroacetophenone 4 and the NHC catalyst B (Figure 3). After
deprotonation of theNHCpre-catalyst, the freeNHCB can attack the
aldehyde 1 to give the adduct I, which can isomerize to give the
Breslow intermediate II via an intramolecular proton shift process.
The Breslow intermediate II can go through a ring-opening process to
give the zwitter ionic intermediate III that is in equilibrium with the
intermediate IV through intramolecular proton transfer processes.

FIGURE 3 | Proposed reaction mechanism for the formation of the product 5.
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The oxide anion of the intermediate IV can attack the electron-
deficient pentafluorophenyl group to form a 6-membered ring via an
intramolecular O-addition/elimination (SNAr) process to give the
intermediate V. The intermediate V bears an α,β-unsaturated
iminium ion moiety that can easily be deprotonated by the F−

anion to form the dienamine intermediate VI. A dienamine aldol
reaction between the intermediate VI and the 2,2,2-
trifluoroacetophenone 4 gives the adduct VII, which can further
cyclize to afford the final product 5 via an intramolecular oxa-
Mannich reaction process.

It is worth noting that the formation of the structurally complex
compound 5 is a highly stereospecific process. Only one diastereomer
is observed in all the experiments we carried out. This is probably due
to the steric match/mismatch effects provided by the chiral NHC
scaffold we used in this transformation.

CONCLUSION

In summary, we have disclosed an unprecedented inactivation process
of NHC organic catalysts bearing N-C6F5 groups. A structurally
complex multi-cyclic compound was obtained from the 3-
component reaction of the 1-methylcyclopropyl-carbaldehyde, the
2,2,2-trifluoroacetophenone and the NHC catalyst bearing an N-C6F5
group. The absolute structure of the complex product was
unambiguously assigned via X-ray analysis on its single crystals.
The current study can provide novel inspections into the possible
pathways that are taking place in the reactions promoted by NHC
catalysts bearing N-C6F5 groups. Further investigations into the
interactions between the NHC organic catalysts and various
reaction substrates are in progress in our laboratories.
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