
w
w
w
.t
he

-in
no

va
tio

n.
or
g

ARTICLE
Revealing excited states of rotational Bose-Einstein condensates
Jianyuan Yin,1,2 Zhen Huang,3 Yongyong Cai,4 Qiang Du,5 and Lei Zhang6,*
*Correspondence: zhangl@math.pku.edu.cn

Received: June 20, 2023; Accepted: November 20, 2023; Published Online: November 23, 2023; https://doi.org/10.1016/j.xinn.2023.100546

ª 2023 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Solution landscapes of rotational Bose-Einstein condensates are constructed to reveal ground and excited states.

- Four excitation mechanisms are identified: vortex addition, rearrangement, merging, and splitting.

- Evolution of the stability of different ground states is deciphered.
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Rotational Bose-Einstein condensates can exhibit quantized vortices as to-
pological excitations. In this study, the ground and excited states of the rota-
tional Bose-Einstein condensates are systematically studied by calculating
the stationary points of the Gross-Pitaevskii energy functional. Various
excited states and their connections at different rotational frequencies are
revealed in solution landscapes constructed with the constrained high-in-
dex saddle dynamics method. Four excitation mechanisms are identified:
vortex addition, rearrangement, merging, and splitting. We demonstrate
changes in the ground state with increasing rotational frequencies and deci-
pher the evolution of the stability of ground states.
INTRODUCTION
Quantized vortices as topological defects play a crucial role in the study of su-

perfluidity and superconductivity.1,2 These vortices have been the subject of
extensive research in Bose-Einstein condensates (BECs) of degenerate quantum
gases, both theoretically and experimentally.3–6 A common scenario for gener-
ating these topological defects is when the system is stirred by rotating laser
beams.7–11 As the rotational frequency increases, the vortex structures experi-
ence successive complex topological changes.12–14

Theoretically, the problem of identifying stationary vortex states of rotational
BECs can be effectively solved by finding the stationary points of the Gross-
Pitaevskii (G-P) energy functional with an equality constraint corresponding to
the mass conservation.6 The local nature of a stationary point is often described
by its (Morse) index inMorse theory15 (i.e., the number of negative eigenvalues of
the Hessian). For example, a local minimizer has an index zero and can be
computed using the imaginary time integration of the dynamic G-P equation. A
stationary state with a nonzero index would be a saddle point due to its unstable
nature. The global minimizer is often referred to as the ground state. Stationary
points with higher values of energy, consisting of both local minimizers and
saddle points, are called excited states.

Contrary to many computational efforts for finding ground states,16–23

there are no controllable search algorithms to systematically explore energy
landscapes and compute excited states. From well-chosen initial guesses,
some excited states with certain symmetry can be obtained using Newton’s
methods,24,25 or deflated continuation algorithms.26 The observations of vortex
nucleation in BECs have been reported inmany publications,27–29 which charac-
terize transitions between ground states andmetastable vortex states. However,
a global landscape of excited states of BECs remains largely unexplored. Excita-
tion mechanisms between different vortex states, which provide the dynamical
pathway from a ground/excited state to another, are still a mystery.

In this article, we systematically examine excited states and excitation mech-
anisms of two-dimensional (2D) BECs trapped in an isotropic harmonic-oscillator
potentialwithin the frameworkofmean-field theory, assuming that no excitations
are caused along the z axis. Specifically, we apply an efficient numerical method
based on the constrained high-index saddle dynamics (CHiSD) to construct the
solution landscape of the G-P energy. The solution landscape is a pathway map
consisting of all of the stationary points and their connections,30,31 which
provides an efficient approach to finding multiple stationary points and their
connections without tuning random initial guesses. This methodology has
been successfully applied to liquid crystals,32–35 quasicrystals,36 and diblock co-
polymers.37 Using the solution landscape approach, we reveal four excitation
mechanisms of BECs: vortex addition, rearrangement, merging, and splitting.
ll
We further demonstrate how the ground state changeswith increasing rotational
frequencies and the evolution of the stability of the ground states.
MODELS AND METHODS
G-P energy
A stationary vortex state of 2D rotational BECs can be characterized as a sta-

tionary point of the G-P energy (a dimensionless form),6

EðfÞ=
Z �

1
2
jVfj2 + Vjfj2 +

b

2
jfj4�UfLzf

�
dx; (Equation 1)

on the unit sphere f˛M = f4 ˛L2ðR2;CÞ : Eð4Þ <N;
R j4j2dx = 1g. Here, f is

the complex-valuedwave function of BECs defined onR2 and jfj2 represents the
particle density. VðxÞ is the trapping potential and b characterizes the interaction
rate. U is the rotational frequency and Lz = � iðxvy � yvxÞ is the z component
of the angular momentum operator. Equivalently, each stationary point solves a
nonlinear eigenvalue problem,

mf =

�
� 1

2
V2 + V + bjfj2�ULz

�
f; (Equation 2)

where m is the chemical potential calculated as

m=

Z �
1
2
jVfj2 + Vjfj2 + bjfj4�UfLzf

�
dx; (Equation 3)

or equivalently,

m = EðfÞ+
Z

b

2
jfj4dx: (Equation 4)

In our numerical experiments, V is taken as an isotropic harmonic
oscillator VðxÞ = 1

2jxj2. A strongly repulsive interaction regime is considered
to be b = 300. The physical units of parameters in this dimensionless model
are well documented in the references.6,12

The (Riemannian) gradient of the G-P energy (Equation 1) is written as

gradEðfÞ = PfVEðfÞ= 2Pf

�
dE
df

�
= Pf

�� V2f+ 2Vf+ 2bjfj2f� 2ULzf
�
:

(Equation 5)

Here, Pf is the projection operator on the tangent space TðfÞ = fj : hj;fi =
0g, defined as,

Pfj = j � hj;fif: (Equation 6)

The inner product is defined as

hj;fi = fuj = Re
�Z

fjdx
�
: (Equation 7)

bf ˛M is a stationary state of BECs if the gradient vanishes (i.e., gradEðbfÞ = 0),
which is equivalent to the nonlinear eigenvalue problem in (Equation 2).
The (Riemannian) Hessian is, for n ˛TðfÞ,
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 HessEðfÞ½n� = PfðvngradEðfÞÞ

= Pf

�
V2EðfÞn� � hf;VEðfÞin: (Equation 8)

The Hessian can be extended to the whole space as a self-adjoint operator
HessEðfÞ½Pfn�. In numerical computation, we use central difference schemes
to approximate spatial derivatives of f in Equations 5 and 8.

The index of a stationary state bf ˛M is calculated as the number of negative
eigenvalues of the Hessian HessEðbfÞ. Methods for partial eigenvalue problems,
such as the locally optimal block preconditioned conjugate gradient method,38

can be applied to calculate the index and corresponding eigenfunctions within
a small computational cost.

Some invariance properties exist in the G-P energy. From the radial symmetry
of the isotropic trapping potential VðxÞ, for a stationary state bf ˛M and any
w ˛R, a global phase translation eiwbf and a rotation around the originbfðxcosw � ysinw; xsinw + ycoswÞ are also stationary states with the same in-
dex and energy. This property indicates that, in general, the Hessian at a station-
ary state has two zero eigenvalues. As a special case, the states with one central
vortex of a winding number m or no vortex ðm= 0Þ can be expressed as
eimq4mðrÞ in polar coordinates ðr;qÞ, so the Hessians at these stationary points
have only one zero eigenvalue.6,13 Different multiplicities of zero eigenvalues
would pose some difficulties in numerical computations. For some stationary
states, Hessians have more zero eigenvalues, as explained in the supplemental
information, and consequently we obtain multiple numerical results of some
states as shown in Figure S1.

CHiSD method
Here, we briefly introduce the CHiSD method and its numerical implementa-

tions to calculate the excited states, and the details can be found in reference 39.
The CHiSD method can be regarded as a generalization of the imaginary time
method to compute an index-k saddle point (k-saddle). For the sphere constraint,
the CHiSD for a k-saddle (k-CHiSD) is8>>>>>>>><>>>>>>>>:

_f= �
 
I �

Xk
i= 1

2ninui

!
gradEðfÞ;

_ni = �
 
I � nin

u
i �

Xi� 1

j= 1

2njnuj

!
HessEðfÞ½ni�

� hni; gradEðfÞif; i= 1;/;k;

(Equation 9)

coupled with an initial condition satisfying

f˛M; hf; nii= 0;
�
ni; nj

	
= dij: (Equation 10)

We refer to some references (39,40) for CHiSD methods for general constraints
and the numerical analysis, respectively.

With an initial condition satisfying Equation 10, the k-CHiSD of Equation 9 al-
ways satisfies the constraints in Equation 10. The dynamics of f in Equation 9
represents a transformed gradient flow on M, which consists of the gradient
ascent along the tangent directions of n1;/; nk , and the gradient descent along
other orthogonal tangent directions. Therefore, the dynamics attempts to maxi-
mize the energy only on a k-dimensional submanifold. Meanwhile, the dynamics
of ni in Equation 9 finds the normalized eigenvector corresponding to the i-th
smallest eigenvalue of HessEðfÞ.

To ensure these constraints in numerical implementations, we use the numer-
ical tools of retractions and vector transport in manifold optimization.41 A retrac-
tionRf movesf ˛Malonga tangent vectorhf ˛TðfÞon themanifold toRfðhfÞ.
When fmoves onM along a tangent vector hf ˛TðfÞ characterized as RfðhfÞ,
the vector transport T hf ðnfÞ gives how to numerically change a tangent vector
nf ˛TðfÞ to a tangent vector atRfðhfÞ accordingly, as a generalization of parallel
translation. There is a considerable amount of flexibility in how to choose the
retraction and vector transport, whereas different choices may lead to different
results. In our numerical computations, we apply a retraction operator of

Rf

�
hf

�
=

f+ hf

f+ hf



 ; (Equation 11)
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and a vector transport of

T hf
nf = nf �

�
nf;f+ hf

	

f+ hf



2 �f + hf

�
: (Equation 12)

With the retraction operator R and the vector transport T , the k-CHiSD in
Equation 9 can be numerically implemented with the initial condition satisfying
Equation 10. We aim to calculate fðn+ 1Þ and n

ðn+ 1Þ
i at the ðn + 1Þ-th iteration

step based on fðnÞ and n
ðnÞ
i in the previous step. For the dynamics of f, we

can implement an explicit scheme with a retraction as

fðn+ 1Þ = RfðnÞ
�
aðnÞhðnÞ�;

hðnÞ = �
 
I �

Xk
i= 1

2nðnÞi n
ðnÞ
i

u

!
gradE

�
fðnÞ
�
;

(Equation 13)

to calculate fðn+1Þ with a step size aðnÞ. Note that nðnÞ1 ;/; n
ðnÞ
k are orthonormal

vectors in TðfðnÞÞ, so hðnÞ lies in the tangent space TðfðnÞÞ; and then f remains
in the manifold M due to retraction. Then, the vector transport T aðnÞhðnÞ at f

ðnÞ

moves fnðnÞi g to f~nðnÞi g in the tangent space Tðfðn+ 1ÞÞ, which is characterized
by the second term in ni dynamics. The first term in ni dynamics aims to solve
an eigenvalue problem:

min
ni

D
HessE

�
fðn+ 1Þ

�h
Pfðn+1Þni

i
; ni

E
s:t:

D
fðn+ 1Þ; ni

E
= 0;

�
nj; ni

	
= dij; j= 1;/; i;

(Equation 14)

using gradient flow. Because the transported vector ~nðnÞi provides a good initial
guess for this problem, we can apply one-step gradient descent to solve this in
each iteration. Generally speaking, vector transport may not maintain the ortho-
normality, so a Gram-Schmidt procedure is finally implemented in the obtained
vectors. The iteration is terminated if




gradEðfðnÞÞ



 is smaller than tolerance.

In numerical computations, the wave function f is truncated into a bounded
domain D = ½�8;8�2 with homogeneous Dirichlet boundary conditions on vD
because stationary states decay to zero exponentially in the far field due to the
effect of the trapping potential VðxÞ.6 The wave function f is discretized using
finite difference methods with N= 128 nodes along each dimension.

Downward and upward search algorithms
To identify excited states and excitation mechanisms, we combine the CHiSD

method with the following downward search algorithm to construct the solution
landscape.30,31

From an index-k saddle point f� with orthonormal eigenvectors
n�1;/; n�k ˛Tðf�Þ corresponding to the negative eigenvalues of HessEðf�Þ, we
choose an unstable direction n�i from them as the perturbation direction. Then,
an m-CHiSD (m<k) is simulated from Rf� ðεn�i Þ with the initial directions
fT εn�i n1;/; T εn�i nmg, where n1;/; nm are chosen from the other unstable eigen-
vectors fn�1;/; n�i�1; n

�
i+1;/; n�kg. Here, a small constant ε, positive or negative,

pushes the systemaway from the saddle point. An orthogonal normalization pro-
cedure could be applied to the initial directions before simulation. Different
choices of m, n�i , and the sign of ε may lead to different states. By repeating
this algorithm to newly found states, we can finally reach different excited states
and obtain connection relationships between states. For the illustration example
in Figure 1, from the index-2 stationary point A, two unstable directions lead to
different 1-saddles B1 and B2 using 1-CHiSD. Then, the minimizer C is obtained
from either B1 or B2 by 0-CHiSD (i.e., gradient dynamics).
The downward search algorithm enables us to find multiple excited states

from a high-index excited state. However, we can also apply an upward search
algorithm to find high-index excited states starting from a low-index excited state
or a ground state, when the high-index excited state is unknown or multiple
high-index excited states exist.30 Given an index-k saddle point f+ with l zero
eigenvalues, we calculate the orthonormal eigenvectors n+1 ;/; n+m ˛Tðf+Þ
corresponding to the smallestm eigenvalues l+1 #/#l+m of HessEðf+Þ, where
m>k + l so that l+m>0. Then, anm-CHiSD (m>k) is numerically simulated from
Rf+ ðεn+mÞ, and the initial directions are reorthonormalization of T

εn+m
n+1 ;

/; T
εn+m

n+m . Here, ε is also a small constant that could be positive or negative.
This algorithm can also be repeated to newly found states. In the illustration
www.cell.com/the-innovation
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Figure 1. Illustration of the solution landscape on a unit sphere Two 1-saddles, B1 and
B2 , are connected to the index-2 stationary point A (red dashed lines). The minimizerC is
connected to B1 and B2 (yellow dashed lines). The surface color from blue to yellow
represents energy from low to high.
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example in Figure 1, we may implement the upward search algorithm by using
1-CHiSD from a minimizer C to obtain one of the index-1 saddle points B1 and
B2. Then, the index-2 stationary point A is achieved from this index-1 saddle point
by applying 2-CHiSD. A combination of the downward and upward search
algorithms enables the entire search to navigate up and down on the solution
landscape so that all of the excited states can be identified as long as they are
connected somewhere.
RESULTS AND DISCUSSION
Winding numbers

To illustrate a vortex state f, the particle density jfj2 of each state is
plotted in D within a common color bar. Quantized vortices locate at points
where jfj2 = 0 and can be further classified according to their winding
Figure 2. Excitation examples of four excitation mechanisms (A) U = 0:3. (B) U = 0:45.
(blue dashed arrows), merging (green dotted arrow), and splitting (red dot-dash arrow). For e
and its name (top), energy (bottom), and index (top right parentheses) are labeled.

ll
numbers. The winding number (topological charge) is an important feature
of a quantized vortex, defined as how many times of 2p that the argument
of f changes around this vortex. The ground state at U = 0, denoted as O,
has no vortices. To distinguish various vortex states, we denote “P” as a
vortex of a winding number +1 and “N” as a �1 vortex. The number of
multiple vortices is attached as subscripts. For example, P2 represents
two +1 vortices near the center. For multiply vortices (high winding
numbers), we denote “Pm” as a +m vortex.
Becauseof the trapping potentialV , themajority of particle density lies inside a

circlefx ˛R2 : kxk = 4g,whereasvorticesof somestates locateoutsidenearby
this circle. Therefore, we use “s” to separate vortices near the center and at the
side. For example, P2 has two +1 vortices near the center, and sP2 has two +1
sidevorticesnear thecircle. NP4hasa�1central vortexwith four+1 vortices sur-
rounded nearby, whereas four +1 vortices of NsP4 locate outside.
In the absence of rotation (U = 0), both P andNexist as 2-saddles.With a pos-

itive frequency U, vortices with positive winding numbers will be energetically
favorable compared to those with negative winding numbers.
Excitation mechanisms
Without loss of generality, we demonstrate that excited states of BECs

possess a variety of vortex structures at two frequencies, U = 0:3 and 0:45,
as illustrations. Four excitationmechanisms are summarized by constructing so-
lution landscapes.
Vortex addition. The first and very common excitationmechanism is the vor-

tex addition (i.e., adding new vortices from the far field). As shown in the black
solid arrows of Figure 2A, this mechanism can be commonly observed in the
U= 0:3 case, where P is the ground state and O is the first excited state. Adding
a side vortex of winding number +1 to O leads to an excited state sP, and further,
another excited state sP2. From the perspective of rare events, sP is the transition
state (1-saddle) connecting O and P, and the unstable direction of sP
The four excitation mechanisms are vortex addition (black solid arrows), rearrangement
ach state here and after, its particle density jfj2 is plotted inDwithin a common color bar,

The Innovation 5(1): 100546, January 8, 2023 3



Figure 3. Excitation examples at U = 0:45 The legends are the same as Figure 2.
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corresponds to moving the vortex toward the center or outward. This vortex
addition mechanism can also be found in the excitation sequence N /

NsP / NsP2 / NsP3 / NsP4 / NsP5 (see Video S1). Along each excitation
step, one +1 vortex is added from the far field to nearby the circle.

As shown in Figure 2B, more examples can be found at U = 0:45, each of
which involves an additional +1 vortex from the far field. In this case, P2 and
P3 are the ground state and the first excited state, with similar energies. From
P2, we can add side vortices as P2/P2sP/P2sP2. Once a side vortex is added,
the index accordingly increases by one.We can also add vortices around the cen-
tral vortex to obtain P2/ PP2/PP3/PP4. FromP3, we can successively add
one middle vortex at a time to obtain excitations P3 / P4 / P5 / P6 / P7,
where vortices are arranged as regular polygons. Compared to a side vortex, add-
ing a middle one often increases the energy more significantly. There are four
local minimizers in this system, namely O, P, P2, and P3, connected by three tran-
sition states, sP, PsP, and P2sP, each of which has exactly one side vortex. Along
each minimum energy pathway, one +1 vortex is introduced from the far field to
the middle. Note that P2sP has also been obtained as the transition state
between P2 and P3 in reference 42.

Vortex rearrangement. Because of the confining trap, vortex positions signif-
icantly affect the energy. At U = 0:3, the ground state P can be excited to the
4 The Innovation 5(1): 100546, January 8, 2023
transition state sP by moving the central +1 vortex outward. Similarly, NP4 and
NP5 can also be excited to NsP4 and NsP5, respectively, by rearranging the +1
vortices outward simultaneously, as shown in the blue dashed arrows of
Figure 2A.
At U = 0:45, various vortex structures with the same number of vortices can

be identified. For P2 with two vortices, moving one outward and the other to the
center leads to a 1-saddle PsP, while moving both leads to sP2. For P3 with three
vortices, once a vortex is rearranged outside, the system is excited and the index
increases by one. Three vortices can also be aligned compactly as a 2-saddle PP2

with a lower value of the energy than PsP2. Consequently, we obtain an excitation
sequence P3/ P2sP/ PP2/ PsP2/ sP3 (see Video S2). Similar excitations
also occur for states with more vortices such as P4.
Vortex merging. The stationary states presented above only involve vortices

with winding numbers ±1, whereas the BEC system also admits excited states
withmultiply vortices.12 In fact, multiply vortices already exist in stationary states
atU = 0, such as a central vortex state P2. Although one +2 vortex has the same
winding number as two +1 vortices, this topological excitation often has a
higher value of the energy and more unstable directions.43 At U = 0:3, merging
two vortices of P2 leads to P2 with a significant energy increase, as shown in
the green dottedarrowof Figure 2A. P2 is a 4-saddlewith four unstable directions,
two of which move the vortex outward, and the other two split it into two +1
vortices.
At U = 0:45, multiple states with +2 vortices can be obtained by merging.

Merging two vortices of P2 also leads to P2, which is a 2-saddle (see Video
S3). Along the unstable directions of P2, the +2 vortex is split into two vortices,
whereas moving the vortex outward leads to a 3-saddle sP2, which can also
be obtained by vortex merging from sP2. We can also add side vortices succes-
sively to P2, with the index increasing by one for each side vortex, as shown in the
excitation sequence P2 / P2sP / P2sP2 / P2sP3 / P2sP4 / P2sP5, with
the +2 vortex going farther from the center. These states can also be obtained
by vortex merging from P2sP, P2sP2, P5, P6, and P7, respectively. Similarly,
sP2Pn (n = 1;.;5) can be obtained by the successive vortex addition of sP2,
merging of sPn+2, or rearranging P2sPn. We enumerate these states in Figure 3,
with multiple excitation relations started from P2 and sP2.
Vortex splitting. One vortex can also be split into multiple ±1 vortices as an

excitation mechanism. At U = 0:3, the +2 vortex of P2 can be split into three +1
vortices and one �1 vortex. With an addition of a fourth +1 vortex from the far
field, the system is excited to NP4, as shown in the red dot-dash arrow of
Figure 2A.
In the U= 0:45 case, similar excitation pathways can be identified. From the

2-saddle P2, the +2 vortex can also be split into three +1 vortices and one �1
vortex, leading to sNP4 with an additional +1 vortex from the far field. In a
similar manner of vortex splitting, sNP3P, NP5, and NP6 can also be obtained
from sP2, sP2P, and sP2P2, respectively. Although vortex splitting does not
change the total winding number, the additional vortices in these examples
above do. A +1 vortex can also be split into two +1 vortices and a �1 vortex,
with the total winding number unchanged. From PP2, the central vortex can
split in this way and the system is excited to NP4 (see Video S4), with no other
vortices added.
Spectrum of stationary states
Four excitation mechanisms are summarized above to generate excited

states with different vortex structures. Among these mechanisms, vortex
addition will also change the total winding number. Various excited states can
be obtained using thesemechanisms, and the CHiSDmethod can uncover these
excitation pathways.
Besides the excited states presented in Figures 2 and 3, we present the full

spectrum of excited states found by the proposed method in Figures S2 (U =

0:3) and S3 (U = 0:45). A rich variety of vortex structures can be systematically
obtained. As the rotational frequency increases, the system can accommodate
more positive vortices. Note that theoretically an infinite number of excited states
is expected in this system, so the upward search can be implemented continu-
ously to obtain new excited states. The presented results are not the entire family
of stationary states.
Because the ground state and excited states are discussed in terms of energy,

the stationary states are sorted in the ascending order of energy. The chemical
potential m does not follow the same order, which is illustrated in Figure S4. The
www.cell.com/the-innovation
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Figure 4. Diagrams of the stability of different states (A) An energy diagram for differentU. AsU increases, the ground state is, respectively, O, P, P2, P3, P4, P5, PP5, and PP6. Solid and
dashed lines represent local minimizers and saddle points, respectively, and black dots indicate critical frequencies where the ground state changes. (B) The stability of each state.
Solid rectangles indicate that the corresponding state is the ground state, and narrower light rectangles indicate that the corresponding state is a local minimizer and excited state.
The solid line indicates where the state exists as a saddle point. (C) Bifurcation diagram of some stationary states. The color of each node represents its index. O and P exist atU = 0,
and P2, P3, P4, and P2PP emerge via saddle-node bifurcations. Solid lines denote solution branches, and T-junctions with dots denote pitchfork bifurcations. Blue lines represent
solution branches maintaining vortices inside, and red lines represent that some vortices move to the far field as U increases. (D) Some states at U = 0:47 involved in the
stabilization of P4.

ARTICLE
stability based on theMorse index here is different from that of the Bogoliubov-de
Gennes equation. The latter addresses the real-time stability about the stationary
states of the time-dependent G-P equation.3,11,44 Under the framework of the G-P
energy and the CHiSD method, we can establish connections between different
stationary states and calculate their transitions.

Phase diagram
As the rotational frequency U exceeds a critical frequency, quantum phase

transition takes place and the ground state undergoes a topological change.
As a result, the vortex structure of the ground state experiences successive
topological changes with the increase in the frequency, as shown in the phase
diagram in Figure 4A and the stability illustration for each state in Figure 4B.
For each ground state, the average position of vortices is located at the origin.
Similar vortex configurations and phase diagrams have also been reported in
reference 12.

We start our discussion of the ground state evolution fromO, the ground state
atU = 0. AsU increases, O becomes a localminimizer (eg, the first excited state
at U= 0:3 and the 22nd excited state at 0.45) and then a saddle point, and its
energy remains almost unchanged. The ground state at U= 0:3 is P, which
exists as a 2-saddle at U = 0. After a pitchfork bifurcation, P becomes a local
minimizer, with sP emerging as a 1-saddle. Because P is a central vortex state,
its Hessian has only one zero eigenvalue, whereas the Hessian at sP has two
zero eigenvalues. The different multiplicities of zero eigenvalues lead to index
jumping of P. As U increases, the energy of P continues decreasing as plotted
in Figure 4A, so that P replaces O as the ground state at the critical frequency.12

Meanwhile, the 1-saddle sP moves its vortex far away and finally merges with O
via a pitchfork bifurcation at Uz0:47, which makes O an unstable saddle point.

At U = 0:45, P2 exists as the ground state. In fact, P2 and sP2 do not exist in
the U= 0 case, and emerge as saddle points via a saddle-node bifurcation at
ll
U<0:3. Then, P2 becomesa localminimizer via a pitchfork bifurcation, generating
a 1-saddle PsP. The two vortices of P2 become closer, which accords with the
results in the Thomas-Fermi regime.12 Because P2 has more positive vortices
than P, the energy of P2 decreases faster as U increases, and P2 replaces P as
the ground state, andPexists as an excited state and localminimizer.Meanwhile,
the 1-saddle PsP moves its side vortex away and finally merges with P at
Uz0:53, which then makes P an unstable saddle point. As U increases,
P goes through a sequence of “saddle point / local minimizer / global mini-
mizer / local minimizer / saddle point,” which exhibits as “excited state /

ground state / excited state.” As shown in Figure 4A, for a ground state at a
higher frequency, which often accommodates more vortices, the energy de-
creases faster than the previous ground state with the increasing frequency.
Consequently, the ground states changes successively and the number of the
vortices in the ground state also increases. These results are qualitatively consis-
tent with the theoretical predictions in the Thomas-Fermi regime.11,12

Bifurcation diagram
To clearly illustrate how the excited states become stabilized, a bifurca-

tion diagram is presented in Figure 4C. The change in the stability property
of P is very generic for ground states at other U, including P2, P3, and P4.
After emergence, these states become more stable via some pitchfork bi-
furcations, and at the same time, some saddle points with central and side
vortices are generated. For each state after bifurcation, each side vortex
near the circle brings an unstable direction, because moving it either out-
ward or toward the center will decrease the energy, so its side vortex num-
ber coincides with its index. Finally, as U increases, the side vortices move
to the far field (illustrated with red lines in Figure 4C), and the state merges
with the corresponding local minimizer, leading to a high-index saddle
point with central vortices.
The Innovation 5(1): 100546, January 8, 2023 5
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 The stabilization of P4 is a little complicated because another state P2PP is

involved. P2PP emerges as a 1-saddle first, and then is stabilized as a local mini-
mizer via a pitchfork bifurcation, with a 1-saddle P3sP emerging. For a largerU, P4
is stabilized from a 1-saddle to a local minimizer via a pitchfork bifurcation
involving this local minimizer P2PP. We present these states at U= 0:47 in
Figure 4D to illustrate this stabilization.

For a larger U, the ground state would possess more vortices, and
these vortices arrange themselves as multiple layers, as a result of the
repulsive interactions between vortices and the attractive interactions
between the vortices and the condensates. For example, at U= 0:62
and 0.64, respectively, PP5 and PP6 have a lower energy than P6 and P7.
For a fast-rotating condensate, the ground state can possess a compli-
cated vortex lattice.17,45 A regular vortex structure can appear in the
ground state.
Conclusion
This study provides a comprehensive and systematic examination of the

vortex states and the excitation mechanisms in rotational BECs trapped in
an isotropic harmonic-oscillator potential. Using a solution landscape
approach by the CHiSD method combined with downward/upward search
algorithms, the excited states of 2D rotational BECs are revealed system-
atically. Four distinct excitation mechanisms are identified from the re-
sults: vortex addition, rearrangement, merging, and splitting. For each
mechanism, we include a video to illustrate the vortex behavior. An excited
state can be obtained along one or a few excitation pathways. The
changes in the ground state with increasing rotational frequencies are
depicted using an energy diagram and explained through a bifurcation
diagram. As the rotational frequency increases, the ground state has
more quantized vortices with a +1 winding number. We also show that
the ground state at a high rotational frequency actually emerges as an
excited state at a low frequency first and is then stabilized with the in-
crease in the frequency. For an overlarge frequency, this state becomes
an excited state again. The change in the stability property is generic for
ground states at different frequencies.

The work can be naturally generalized to BECs trapped in an anisotropic har-
monic-oscillator potential13 to discover the corresponding excitation mecha-
nisms. For example, in the isotropic scenario, vortex addition along any direction
from one minimizer O to another P corresponds to an identical energy barrier.
However, in an anisotropic scenario, vortex addition along different directions
may result in different energy barriers, which could depend on the curvature of
the anisotropic potential.

The methodology presented in this study offers an efficient numerical algo-
rithm that constructs a complete solution landscape. It serves as a powerful
tool for solving a wide range of quantum systems, including self-attractive
BECs,46 two-component BECs,47 spinor BECs,2,48 superconductors,42,49 and fer-
mionic wave functions.50–52
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