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Multicenter clinical trials that use positron emission tomography (PET) imaging frequently rely on stable bias
in imaging biomarkers to assess drug effectiveness. Many well-documented factors cause variability in PET
intensity values. Two of the largest scanner-dependent errors are scanner calibration and reconstructed im-
age resolution variations. For clinical trials, an increase in measurement error significantly increases the num-
ber of patient scans needed. We aim to provide a robust quality assurance system using portable PET/com-
puted tomography “pocket” phantoms and automated image analysis algorithms with the goal of reducing
PET measurement variability. A set of the “pocket” phantoms was scanned with patients, affixed to the under-
side of a patient bed. Our software analyzed the obtained images and estimated the image parameters. The
analysis consisted of 2 steps, automated phantom detection and estimation of PET image resolution and
global bias. Performance of the algorithm was tested under variations in image bias, resolution, noise, and
errors in the expected sphere size. A web-based application was implemented to deploy the image analysis
pipeline in a cloud-based infrastructure to support multicenter data acquisition, under Software-as-a-Service
(SaaS) model. The automated detection algorithm localized the phantom reliably. Simulation results showed
stable behavior when image properties and input parameters were varied. The PET “pocket” phantom has
the potential to reduce and/or check for standardized uptake value measurement errors.

INTRODUCTION
In total, 1,688,780 new cancer cases and 600,920 deaths from
cancer are estimated for the United States in 2017 (1). Positron
emission tomography (PET) combined with x-ray computed
tomography (CT) is a standard component of oncology diagnosis
and staging (2-5). Quantitative PET/CT is a valuable tool for
assessment of an individual’s response to therapy and for clin-
ical trials of novel cancer therapies, because it can measure
metabolic changes, which are a better indicator of response than
anatomical size changes (6). Success with this approach has
been shown using the glucose analogue 18F-fluorodeoxyglucose
(FDG) for evaluation of therapy-induced changes in metabolic
activity in several studies, including lung cancer (7) and gastro-
intestinal tumors (8). The thymidine analogue 18F-fluorothymi-
dine (FLT) provides accurate measurements of tumor prolifera-
tive activity and can be used to monitor tumor responses to
treatment (9). In these cases, PET imaging provides a reliable
predictor for treatment responses and patient outcome. This
suggests that quantitative PET imaging has an enormous poten-
tial to boost the efficiency of evaluating clinical trials of new
therapies (10).

However, the use of quantitative PET imaging in clinical
trials is hampered by the large degree of variability arising from

inconsistent and nonoptimized image acquisition, processing,
and analysis (11-14). There are also sources of biological vari-
ability, but these are well characterized by test–retest studies to
be �10% (15-17). In contrast, the additional variability intro-
duced by inconsistent and nonoptimized practice has ranged
from 18% (18) to �40% (19-21). Two of the largest PET scanner-
dependent errors are calibration (20-22) and variable resolution
losses (23). For clinical trials using quantitative PET imaging,
the effect of this additional variability is dramatic. For example,
as standardized uptake value measurement error increases from
10% to 40%, the number of needed patient scans increases by
�10-fold for an effect size of 20% and a study power of 0.8(21)
(Table 1).

Despite this known variability of imaging parameters, there
are currently no robust quality assurance techniques for clinical
PET images. In this project, we use a PET/CT pocket phantom
and associated analysis tools for quality assurance for 2 key
image characteristics: the reconstructed image resolution and
PET/CT scanner calibration. In our previous publication we
introduced the pocket phantom (24) and briefly described web
deployment (25).

The purpose of this work is to develop the technology
infrastructure for enabling wider deployment and adoption of
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our calibration phantoms. We introduce an automated phantom
detection module, an improved optimization module, and a web
deployment module. We have rigorously tested this algorithm.
The overarching goal of the project is to offer this automated
analysis service as a Software-as-a-Service cloud application.

METHODOLOGY
The patient scans were approved by the Institutional Review
Board at the University of Washington Medical Center. Informed
consent was obtained from all patients.

The overall imaging workflow is as follows:

(1) A patient or phantom scan is acquired with the pocket
phantom(s) in the field of view, but not in the patient’s
pocket.

(2) Images are uploaded to the analysis software.
(3) Pocket phantoms are automatically detected and their

location determined.
(4) Algorithm is run to generate estimates of bias and

resolution.

The pocket phantoms used in this workflow, shown in
Figure 1, contain spherical radioactive regions. The spheres are
15 mm in diameter and varied in their activity concentrations.
To conduct physical experiments, we acquired data with water-
filled phantoms containing Fluorine-18 (18F, 110-minute half-
life) as well as solid epoxy-filled phantoms that contained ger-
manium-68/gallium-68 (68Ge/68Ga, 271-day half-life).

Phantom Detector Algorithm
We implemented an image analysis algorithm to automatically
detect the pocket phantoms in PET scans. The algorithm flow-
chart is shown in Figure 2. First, we threshold the input image
using a minimum activity level. We then reduce the number of
disjoint objects using connected component analysis. We then
calculate the volume and center of area of the connected com-
ponents. Based on the known size of the phantom spheres, we
filter the connected components based on minimum and maxi-
mum threshold radii. Using radius-filtered blobs (typically num-
bering in dozens, rarely in hundreds), all possible 3-blob com-
binations are constructed. Calculated centers enable pruning the
3-blob combinations by inappropriate sphere distances and us-
age of noncollinearity as a combination cost function. The
lowest cost combinations are declared “positive detections,” and
other combinations that incorporate the same blobs (ie, conflict-
ing combinations) are eliminated.

Imaging Parameter Estimation
We implemented an optimization algorithm to estimate the
imaging parameters. The optimization step involves estimating
parameters in a simple model of the PET scanner that is given in
equation 1. We assumed that the scanner-generated image I(x, y,
z) differs from actual activity distribution p(x, y, z) by a global
scale factor g, by convolution with the 3-dimensional Gaussian
kernel k(�x, �y, �z), and additive noise n(x, y, z). The constant g
represents the global scanner sensitivity and is influenced by
several physical factors, including the periodic scanner recali-
brations. The function k represents the resolution, or point
spread function (PSF), attributable to the acquisition and recon-
struction, as well as any applied smoothing. It is assumed to be
stationary and therefore fully characterized by its widths,
namely, �x, �y, �z, which may vary independently.

I�x, y, z� � g · p�x, y, z� * k��X, �Y, �Z� � n�x, y, z� (1)

The parameter estimation is performed on one pocket phantom
at a time. The algorithm uses the detected centers to isolate
regions of the input PET image that contain the phantoms. Using
the sphere centers from the detector module and known phan-
tom geometry, a synthetic, noise-free PET image is generated by
applying initial guesses of the scale factor and blurring function

Table 1. Impact of Measurement Error on
Needed Sample Size for a Significance of
P � .05 for a 2-tailed t-testa

Trial Scenario SUV Error (%) Sample Size

Single Site (Good Calibration) 10 12

Multicenter (Good Calibration) 20 42

Multicenter (Poor Calibration) 40 158

a Effect size is 20%; power is 0.9.

Figure 1. Pocket phantoms. Aqueous 18F phan-
tom (A). Long-lived 68Ge/68Ga in epoxy phantom
(B). Voids due to epoxy shrinkage are visible.
Fused PET/CT image of the water-filled 18F phan-
tom (C). Fused PET/CT image of the epoxy-filled
68Ge/68Ga phantom (D).
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(analogous to g and k) to a model image of the phantom. These
synthetic images are then iteratively compared with the mea-
sured image data (Figure 3). The mean-squared difference be-
tween the scanned phantom and the predicted phantom is com-
puted as a cost function. This cost function is dependent on
resolution estimates �X, �Y, �Z, global scaling coefficients, and
noise present in the scanner image �X, �Y, �Z.

Our software allows determining �X, �Y, �Z separately or a
single � for all axes. Similarly, global scaling can be estimated
for each sphere independently, or as a single scaling (Figure 4,
left). Internally, the software estimates the bias, which is ex-
pressed in kilobecquerels per milliliter instead of scaling factor
expressed in percentages, simply because it requires less com-
putation. All the parameters (�X, �Y, �Z, biases, sphere centers)
that characterize the imaging process are estimated jointly by
minimizing the cost function using Powell’s conjugate direction
optimization method (26) with Brent’s line search (27) and
golden section search (28). This method minimizes the cost
function by doing a line search for each scalar parameter in turn.
We made this modification because Powell’s method has shown
better convergence properties than the Nelder–Mead simplex
method (29), which we had used previously (24). The image
analysis algorithm was implemented using the 3D Slicer plat-
form (30, 31).

Software-as-a-Service
With the intention of supporting multicenter clinical trials, we
deployed our image analysis pipeline as a Software-as-a-Ser-
vice (SaaS) application. In the SaaS model, software is installed
centrally and accessed as needed by (geographically) distributed
users. This allows easy software improvements and bug fixes,
because no intervention by the users is generally needed. Addi-

tional benefits include centralized data management, decoupled
client-side software, and ease of access through a web browser.

To implement the SaaS application, we used Girder, an open
source data management platform that is used in functional
medical imaging, histology, and digital pathology research proj-
ects (32, 33).

Girder is a Python-based framework for building web ap-
plications that store, aggregate, and process scientific data. It is
built on CherryPy and MongoDB and exposes data stored on a
variety of backend storage engines (eg, Native file system, Am-
azon S3, GridFS, HDFS) through a unified RESTful API. Girder
provides all essential data management functionality such as
user/group authentication; fine-grained access control to data;
custom metadata association; data provenance; intuitive UI to
upload/browse/organize/download data and an extensible pl-
ugin framework for building web-based analytics applications.
Girder consists of 2 key components, namely, the API layer and
the single-page web application that serves as an example of
that API’s usage. Applications can use and extend the single-
page app, while others may simply use the API and write cus-
tomized user-facing frontends. The Girder framework is tightly
integrated with Kitware’s open-source tools for configuration
and building [CTest, CDash, CMake (34-36)], visualization [VTK
(37)] and image analysis [ITK (38, 39)]. Girder provides a unified
interface to many distributed storage systems along with access
control and extensible plugins.

In the Girder instantiation for this project, we implemented
the following 3 core modules (Figure 5):

(1) Data upload module: Quantitative imaging and clinical re-
searchers and other users of the platform will upload their data

Figure 2. Phantom detection algorithm flowchart.
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Figure 3. Positron emission tomography (PET) parameter estimation algorithm. Gray: inputs and outputs. Red: optimiza-
tion loop. Green: other. Rectangular boxes: operations. Rhomboid boxes: images/data.

Figure 4. Parameter Optimizer Module: Left: The estimation algorithm can be run using sphere centers detected by the
previous step. Right: the resulting parameters can be seen as a table. One row in the table corresponds to one phan-
tom. The data analyzed in this case came from a realistically simulated image with 8 pocket phantoms.
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sets using a DICOM transfer, and a review process will ensure
that the data sets have been correctly uploaded (Figure 6).

(2) Server-side image analysis module: The automated phantom
detection and localization algorithms are encapsulated in this
module.

(3) Result reporting module: This module presents key PET image
characteristic findings.

Girder Infrastructure
We separated our end-to-end architecture into several modules,
each of which can scale independently of the others across any
number of required physical machines. There are 2 major de-
coupled services in the deployment:

(1) The web service for data management, user authenti-
cation and management, analysis setup, and displaying
of results. This is provided by Girder, which itself can
defer to scalable third-party data storage systems such
as Amazon S3 or HDFS to securely persist the files it
maintains.

(2) The processing service that executes the analysis pipe-
line on the PET/CT data. Because this is often a com-
putationally intensive task, it is critical that it can be
run in parallel on other machines besides the ones
serving the web front-end and communicating with the
database.

Girder contains plugins that provide support for visualiza-
tion, metadata extraction, and fast querying of the DICOM file
format. The DICOM visualizer plugin allows users to navigate
to a DICOM data set and view it section by section, including
window and level controls, as well as showing the table of
tags for each section. The DICOM metadata extractor plugin
automatically inspects DICOM files as they are uploaded into
the system and reads the DICOM tags from each file, record-
ing them as structured metadata on the data set. Storing and

indexing these metadata fields in Girder’s database manage-
ment system enables users to quickly search among a large
collection of DICOM datasets based on the values of specific
tags.

The processing service maintains a job queue which can be
run in parallel across multiple machines to support load-balanc-
ing and minimize the response time of the jobs. The system is
designed to be general enough to execute almost any task in a
distributed environment by exposing several execution modes,
including python scripting, R scripting, and even running arbi-
trary Docker containers. In our case, each job involves the
execution of a Docker container with the analysis modules that
can be maintained independently of the other parts of the
system, so long as it conforms to a well-defined command-line
interface. When finished, the resulting data is uploaded back
into Girder for users to view.

Dockerized Slicer Modules
Docker is an open-source project that automates the deployment
of applications inside software containers similar to virtual
machines. That enables such a container to run on any Linux
server, thus eliminating the issues of software libraries and their
versioning. To build a dockerized container, one starts with one
of the known Linux distributions and installs within it the
required libraries. Then the custom software is added and com-
piled using the compiler suite contained within the container.
For ease of use of the container, an entry point (a default
program within the container to be invoked) can be specified.
Our phantom detection and parameter estimation pipeline in
Slicer were implemented in Docker containers.

Experimental Setup
Using image domain processing, we created test data with 5
combinations of �X, �Y, �Z, 5 levels of bias (�30% to �30%) for
each of the 3 spheres, 5 levels of noise-to-signal ratio (0% to

Figure 5. High-level diagram of
the Software-As-A-Service (SaaS)
system.
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40%), and 3 repetitions totaling 9375 experiments. Separately,
to characterize the dependence of parameter estimates on mis-
matches between the algorithm’s model and the physical sphere
sizes, systematic variations were introduced to the software’s
expected sphere radii. These tests were conducted with the
measured images of water-filled pocket phantoms and with a
20-cm flood phantom in the center of the field of view (Figure 7,
left). The scan duration was 15 minutes, and the activity con-
centration was �6 kBq/mL in the pocket phantoms and 4.3

kBq/mL in the flood phantom. The data were acquired on a
General Electric Discovery STE PET/CT scanner (Waukesha, WI)
and reconstructed in MATLAB (The MathWorks, Natick, MA)
using reconstruction code equivalent to the manufacturer’s.

Two patients underwent scanning with long-lived proto-
type pocket phantoms in the GE PET/CT scanner. Four iterations
with 28 subsets per iteration were performed during the recon-
struction. An 8-mm postreconstruction filter was applied. Time-
of-flight information was not used. The scans were acquired

Figure 6. Web user interface for invoking PET analysis pipeline. In this review step, the user can view the rendering of
the image to ensure that the right image is submitted for processing.

Figure 7. (Left) Fused PET/CT
images of water-filed pocket
phantoms and flood phantom.
(Right) Patient image with epoxy-
filled pocket phantoms.
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separately from the clinically indicated PET scans that the pa-
tients were undergoing. The pocket phantoms were placed on
the underside of the patient bed and a clinical-duration scan was
performed (Figure 7, right). The activity concentrations were
�13.0 kBq/mL and 3.1 kBq/mL in the 2 phantoms. Images were
reconstructed with varying filter widths (3 mm to 9 mm in 1-mm
increments). These images were then rescaled to have varying
global scale factor between 0.85 and 1.15 in increments of 0.05.
The equivalent bias is �15% in 5% increments. This resulted in
a 2-dimensional test-space of image parameters for the opti-
mizer to estimate. The analysis of measured images was done
with command-line invocations of detector and parameter op-
timizer modules generated automatically in MATLAB.

RESULTS
We conducted experiments using synthetic phantom data, phys-
ical phantom data and patient data with pocket phantoms. The
results are described below.

Detection Algorithm Performance
In 9375 synthetic experiments, the phantom detector had no
failures. The parameter estimator had an average relative error
below 1% for each parameter. In reality, the spheres would all
have the same level of bias and the noise would not approach
40%.

The detector module was tested on real images. All spheres
were correctly detected in the test images, including patient
images. The phantom detector takes �1 second to run on a
typical PET image (matrix size, 256 	 256 	 47).

The phantom detector module can be invoked via Girder’s
web interface (Figure 6) or from within iMIQ (a customized 3D
Slicer application), as shown in Figure 8. Figure 4 shows the
parameter optimizer module that implements the algorithm
shown in Figure 3. The estimation algorithm can be run individ-
ually for each detected sphere, and the corresponding imaging
parameters exported and presented to the user in iMIQ.

Imaging Parameter Estimation Algorithm Performance
The parameter estimator takes some 10–30 seconds per 3-sphere
phantom. These tests were conducted on an Intel Xeon E3-1220
processor (4 cores @ 3.1 GHz).

Figure 9 plots the cost function on y-axes with varying
individual parameters in synthetic and real images. For a given
subplot, 1 parameter is varied, while all the others are kept fixed
at their minimum value. The y-axes express average voxel
difference, in kilobecquerels per milliliter. This average is per-
voxel root-mean square error between a realistic predicted im-
age and a scanned PET phantom (Figure 3).

Figure 10 (top) shows that the iterative updates of bias,
resolution, and sphere locations cause fluctuations in the

Figure 8. Results of phantom detector on a scan of an anthropomorphic phantom along with 2 pocket phantoms.
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value of the cost function. However, the software retains the
lowest value achieved in the entire optimization (Figure 10
bottom), which shows good stability well before the algo-
rithm stops.

Figure 11 shows that the mismatches spanning �5% of the
input sphere diameter led to modest changes in the bias and
resolution estimates. Resolution estimates varied by �0.5 mm
for any single postreconstruction smoothing filter size. Scale
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Figure 9. 1D plots of the cost function on a real image of the phantom (blue) and closely matching synthetic noiseless
image (red). The minimum is at [2.28, 1.14, 2.33, 0, 0, 0].

Figure 10. Plot of cost function values over
iterations of the optimizer. Plotted are the val-
ues of the cost function which the optimizer
explored and retained minimums, for a real
image as well as a noiseless synthetic image,
both from Figure 9. The synthetic image’s cost
function does not reach 0 due to approximate
calculation of smoothing, which makes the
computation much faster and has negligible
effect on the result.
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factor estimates varied by �0.015 (1.5%) for a single filter and
by �0.031 (3.1%) across all filters.

Feasibility Study on Patients
Figure 12 (left) shows that the algorithm successfully ran and
accurately estimated the bias in our patient data. Estimates of
global scale factor were divided by the known scale factor to
show stability (i.e., flatness) of the algorithm’s performance as
the applied bias and image resolution varied. Data were similar
for the second set of patient images (data not shown). Figure 12
(right) shows the estimated resolution over the same test space of
images. In contrast to the bias estimates, there is not a simple
normalization that can make the plot more easily interpreted
visually, but we note that the data show the expected indepen-
dence of bias factor (with some wobble) and a smooth depen-
dence on filter width as expected.

DISCUSSION
We have created a working software platform for the pocket
phantom system and further tested its use in real-world condi-
tions. By implementing our algorithm with the Girder infra-
structure and dockerized containers, we have extended our pre-
vious work to create a server-ready automated analysis pipeline
that makes the pocket phantom system available to geographi-
cally distributed users. The optimizer showed good tolerance of
the real-world conditions under which it was tested.

We note that the resolution measurements discussed here
may differ from those obtained by other measurement methods
that use different phantom geometries. In particular, we expect
that our resolution estimates depend on the source positioning
in the field of view, the energy of positrons emitted by 68Ge, and
the lack of background activity around our spherical sources.
These constraints have been previously noted for methods in-

Figure 12. (Left) Normalized global scaling estimates from a patient scan with the pocket phantoms that was rescaled
and filtered with systematic variations. Here, global scale factor was simulated by multiplying the image by a series of
constant factors, and the accuracy of the algorithm results in relatively flat surfaces after dividing the scale estimate by
the same factor. (Right) Estimates of image resolution for the same patient scan.
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volving solid uniform sources (40). However, we feel that for
quality assurance, our measurements may still have value in
their ability to detect changes in image resolution, which may
indicate unstable biases in the image-based metrics.

The current phantom detection module differs from the
previous version in that it operates on the PET image instead of
the CT image. During early research, the detection sometimes
required user intervention to successfully locate the phantoms.
This should not be an undue burden on users, as the effort required
was minimal in our experience. We note that because the optimi-
zation step in the algorithm refines the estimates of sphere centers,
the detection step will not affect the overall effectiveness of the
pocket phantom system except in cases of complete failure, which
the user can detect visually in the interface.

Figure 9 shows that the cost function has global minima
as a function of each variable returned by the algorithm.
While this does not guarantee that the algorithm is conver-
gent in the full multidimensional space, Figure 10 suggests
that updates to the parameters estimates are small well before
the algorithm terminates. The final value of the cost function
is dependent upon several factors. Noise in the image means
that even for a perfect physical model, the cost function will
have some finite value for optimal parameters. In addition,
the assumption that the PSF is isotropic in the transaxial
plane may not hold due to detector parallax (41), meaning
that even a noise-free image would not perfectly match the
algorithm’s optimal model image.

The algorithm performed with reasonable stability as sphere
size mismatch varied as far as �5% of the known radius. We note
that while this test was intended to gauge the algorithm’s tolerance

to manufacturing variability with fixed “known” sphere size in the
algorithm, we have instead used a fixed physical sphere size and
varied the value in the software to avoid the need to manufacture
11 phantoms in a precisely wrong fashion. The modest dependence
of the estimates on sphere mismatch suggests that the algorithm
performs with acceptable accuracy if the spheres are manufactured
to within 5% of their nominal radius.

The primary purpose of the patient measurements was to
show that the detection and optimization could still run success-
fully with the additional constraints and challenges that clinical
imaging presents. The system performed well on the clinical
data, showing stability of global scaling (bias) estimates and
smooth dependence on filter width as expected (Figure 12).

The pocket phantom software can also be run locally with-
out the cloud-based architecture described above. This is advan-
tageous where it is not desirable to send patient data off-site, for
example, due to legal regulations.

Concluding Remarks and Future Work
The PET pocket phantom system has the potential to reduce PET
measurement errors. The phantom and estimation software per-
formed adequately in the tested scenarios and can be made
available to sites by our software.

We are currently concluding an investigation into the
numerous mathematical and physical effects of the imaging
process that may affect the pocket phantom system, and
further investigating how the physical phantoms may be
reliably manufactured, which is a requisite to the deployment
of our system.
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