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Abstract

Background: Predicting type-1 Human Immunodeficiency Virus (HIV-1) protease cleavage site in protein molecules and
determining its specificity is an important task which has attracted considerable attention in the research community.
Achievements in this area are expected to result in effective drug design (especially for HIV-1 protease inhibitors) against
this life-threatening virus. However, some drawbacks (like the shortage of the available training data and the high
dimensionality of the feature space) turn this task into a difficult classification problem. Thus, various machine learning
techniques, and specifically several classification methods have been proposed in order to increase the accuracy of the
classification model. In addition, for several classification problems, which are characterized by having few samples and
many features, selecting the most relevant features is a major factor for increasing classification accuracy.

Results: We propose for HIV-1 data a consistency-based feature selection approach in conjunction with recursive feature
elimination of support vector machines (SVMs). We used various classifiers for evaluating the results obtained from the
feature selection process. We further demonstrated the effectiveness of our proposed method by comparing it with a state-
of-the-art feature selection method applied on HIV-1 data, and we evaluated the reported results based on attributes which
have been selected from different combinations.

Conclusion: Applying feature selection on training data before realizing the classification task seems to be a reasonable
data-mining process when working with types of data similar to HIV-1. On HIV-1 data, some feature selection or extraction
operations in conjunction with different classifiers have been tested and noteworthy outcomes have been reported. These
facts motivate for the work presented in this paper.

Software availability: The software is available at http://ozyer.etu.edu.tr/c-fs-svm.rar. The software can be downloaded at
esnag.etu.edu.tr/software/hiv_cleavage_site_prediction.rar; you will find a readme file which explains how to set the
software in order to work.
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Background

Acquired immune deficiency syndrome (AIDS) is a pandemic

caused by HIV. AIDS is one of the major diseases seriously

threatening lives of people in many parts of the world. According

to 2009 data released by the World Health Organization (WHO),

33.4 million people around the world suffer from AIDS [1].

Despite the intense efforts of the health organizations, no cure has

been discovered and reported effective yet, except the treatments

that inhibit the growth of the disease. In order to prevent the

spread of the virus within the body and to reduce death cases from

AIDS, HIV-1 protease inhibitors are developed.

HIV-1 protease is an enzyme that requisites the life-cycle of

HIV which cleaves protein to its component peptides [2,32,40].

Since HIV-1 protease is essential for the replication of the virus,

the conducted research has concentrated mostly on preventing the

chemical action of protease by binding molecules formed through

HIV-1 protease inhibitor drugs to their active site. The mission of

inhibitors is to occupy the active site of HIV-1 protease with the

purpose of prohibiting its normal functionality [3,4]. Unfortu-

nately, this is a fairly difficult process as there is no certainty of a

discovered pattern on the cleavage sites of enzymes.

Protease-peptide interaction often resembles the ‘‘lock and key’’

model, where a sequence of amino acids fit as a key to the active

site in the protease [5]. For the HIV-1 protease case, it is known

that an octapeptide region of protein composes susceptible sites

whose amino acid residues are sequentially symbolized by

P4,P3,P2,P1,P’1,P’2,P’3,P’4, and their corresponding parts in

the protease are denoted S4,S3,S2,S1,S’1,S’2,S’3,S’4, respectively.

There are rare situations where some proteins include one subsite
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less or more (heptapeptide or nonapeptide) [6]. However, the

dataset used in our work does not contain any heptamer or

nonamer sequences, hereby no preprocessing is performed for any

instance to obtain octamer sequences. The crucial point here is

determining which octamers can or cannot be cleaved by the

HIV-1 protease while searching for potential inhibitors. Never-

theless, by considering the existence of 20 amino acids, 208

possible combinations of sequences can be mentioned. It would be

very challenging to test 2:56|1010 octapeptides in a laboratory

environment to discriminate cleaved from uncleaved instances.

For this purpose, as part of the effort to develop effective and

feasible techniques to tackle the problem, accurate and robust

computational methods have been implemented and tested to

speed up the prediction process [7,8].

From computational viewpoint, the problem described above

can be seen as a binary classification task where an input sequence

is required to be assigned a label, either cleavable or uncleavable.

Several machine learning based techniques, mainly based on the

classification task, have been proposed for handling the HIV-1

protease cleavage site prediction problem. These techniques utilize

Neural Networks [9], Support Vector Machines (SVMs) [10], and

Markov models [11].

In the work described in this paper, we developed a new

approach to deal with the HIV-1 protease cleavage site prediction

problem. We have primarily concentrated on the feature selection

process (rather than the classification issue). This can be seen as an

important step before or within the classification task; it has also

been investigated in [12–14] specifically for the HIV-1 problem.

Furthermore, interested readers can refer to the works described in

[15,16] for a review and for more information about the HIV-1

cleavage site prediction problem.

Feature selection techniques are mainly divided into three

categories: Filter, Wrapper, and Embedded methods. Filter based

methods assess how relevant the feature is by looking at its intrinsic

properties. In most cases features are ranked according to the

relevance score. Feature subset is selected in a pre-processing step.

Wrapper based methods embed the model hypothesis search

within the feature subset search. The performance of candidate

feature subsets are evaluated [46]. The study reported in [46] gives

a detailed explanation of the advantages and disadvantages of

these methods: Filter based methods are fast, simple, scalable to

high dimensional data. They handle the problem of finding a good

feature subset for the classification process independently of the

model selection step. On the other hand, wrapper methods

consider the dependency between the features; feature and model

search are performed interactively. These methods have higher

risk of over fitting when compared to filter methods. they are

computationally intensive, especially for high dimensional data;

there is a critical need for devising heuristic strategies to search

optimal feature subset. The embedded methods emerged as an

alternative to the other types of methods in order to mediate their

disadvantages. In these methods, the search for an optimal subset

of features is incorporated in the classifier construction process,

and hence can be seen as a search in the combined space of feature

subsets and hypotheses.

In recent years, feature selection has become a prerequisite for

most of the tasks that involve data analysis in bioinformatics [17].

Discarding the most irrelevant and redundant features and

selecting the ones that are most relevant to the problem to be

investigated helps in building robust learning models. Feature

selection is principally used for dimensionality reduction, but

besides it is also beneficial for enhancing the run-time of

algorithms, for improving learning accuracy, and for enabling

better model interpretability [18]. On the other hand, away from

the other dimensionality reduction techniques, feature selection

methods do not disrupt the specificity of variables by preserving

their original semantics [17]. For the HIV-1 protease cleavage site

prediction problem, the low sample count and high dimensionality

can lead to over fitting [12,19]. In this case, some attributes in spite

of being unrelated to the target function can partition the samples

very well [20]. Thus, applying feature selection to HIV-1 data

appears as a crucial process to eliminate redundant features and to

achieve the target of dimensionality reduction. In this context, we

have proposed a consistency and SVM-based feature selection

method for HIV-1 data in order to increase classification accuracy

results. Other feature selection methods proposed for the HIV-1

protease cleavage site prediction problem can be found in

[8,12,14]; and a comparison of the feature extraction methods is

available in [13]. Additionally, good reviews on this subject can be

found in [17–19]. Finally, one alternative to the consistency based

feature selection method is the entropy based relevant and non-

redundant feature selection method described in [39] where

features are obtained for each class. However, in our method, the

entire data set is taken into account for feature extraction.

Methods

Dataset
The input data is formed of octapeptide sequences and a class

attribute which indicates whether the corresponding peptide is

cleaved by HIV-1 protease or not. Each octapeptide sequence is

composed of eight amino acids, denoted P4, P3, P2, P1, P1
’, P2

’,

P3
’, P4

’, where each Pi stands for one of the twenty possible amino

acids. An example of an octapeptide which is found in the actual

dataset is ‘‘AEELAEIF 1’’, where the value ‘1’ denotes that this

amino acid sequence is cleaved by HIV-1 protease. Additionally,

cleaved sequences have a scissile bond located in the middle of an

octapeptide sequence, namely between P1 and P1
’ [2]. There are

20 different amino acids for each column and the data consists of 8

columns. Each method finds a different subset of features and at

the end of the tests, FS-MLP and CFS-SVM are the methods that

stand out. The dataset has the property that columns in the middle

are more discriminative. When we analyze the HIV-1 dataset, the

two columns at both ends are not very discriminative to predict

cleavage and non-cleavage sites. On the other hand, columns in

the middle can predict more decisively. This also has been

observed in FS-MLP. The reason is that the scissile bond is in the

middle. There are only few training and test datasets that can be

accessed publicly for the HIV-1 protease cleavage site detection.

This shortage of publicly available datasets constitutes an obstacle

for generating solutions that can effectively tackle the problem. In

1998, Cai and Chou [6] used an expanded dataset with 362

peptides with 114 cleaved and 248 uncleaved samples for their

neural network based technique to investigate cleave sites. Their

work is a reiteration of the work by Thompson et al. [9]. This

dataset has been used in several works, e.g., the works described in

[22,28]. Afterwards, another dataset with 392 new samples of

which 281 cleaved and 111 uncleaved sequences were collected by

Kim et al. [4]. Rule based approaches increase the interpretability

of prediction. Their drawback is the number of rules to pick up for

decision and overfitting. Finally, Oliviera et al. [29] published a

dataset with 131 instances which are entirely cleaved octamers that

do not exist in the datasets of Cai et al. or Kim et al. Neural

network and MLP based approaches suffer from determining the

number of hidden layers, determining the neurons to use in each

hidden layer, and getting stuck at local minima. Convergence to

an optimal solution is time consuming.

HIV-1 Protease Cleavage Site Prediction
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In the early publications on this topic, the first 362 instances

dataset was used. After the collection of the second dataset,

researchers used a combination of both, as 754 instances dataset

with a total of 396 cleaved and 358 uncleaved sequences, without

duplications. After the 131 instances dataset became publicly

available, it has been used in several experiments as a test set while

the 754 instances dataset is considered as the training set. We have

used the same splitting in our work described in this paper. In

recent works, the above mentioned three datasets are taken

together into a final dataset leading to a dataset with 885 samples.

These datasets are publicly available at the website http://www.

cise.ufl.edu/,suchen/sbl [21]. On the other hand, we have

noticed some conflict related to the dataset posted at this website,

where it is stated that the 754 instances dataset contains 395

cleaved and 359 uncleaved samples, and a 133 instances dataset is

available. However, in fact the 754 instances dataset consists of

396 cleaved and 358 uncleaved samples and the other dataset

should be named 131-dataset as it comprises 131 samples.

The HIV-1 protease substrate sets consist of the genetically

coded amino acids. For our purpose, we have ordered the amino

acids as G, A, P, V, L, I, M, F, Y, W, S, T, C, N, Q, K, H, R, D, and

E. Each of these amino acids can be located in 8 different indices.

Thus, the feature space is composed of 160 attributes which can be

denoted as ,G1, A1, …, E1, …, G8, A8, …, E8.. In this notation,

each Xi stands for one of the amino acids with its index value. One

of 20 amino acids with the same index i value is set to one, and the

rest are set to zero. Our problem herein is to select the attributes

most relevant to the data with the aim to increase classification

accuracy results. To this end, we have proposed a hybrid feature

selection method based on consistency and SVM-RFE (Recursive

Feature Elimination). Within this system, the following steps are

involved in sequence: preprocessing data, feature selection, and

finally classification. The proposed system architecture is depicted

in Figure 1.

Before handling the data, as it is the case with many data

mining techniques, a preprocessing operation is needed to clean

the data. Next, in order to make a comparison within the system

we have followed two distinct paths. One is directly classifying the

preprocessed data and the other is classifying the data after the

feature selection process as shown in Figure 1. Our aim is to

emphasize the functionality and effectiveness of the feature

selection task. Additionally, we have included the detailed system

overview in Figure 2. In the following subsections, we present the

steps applied prior to the classification process.

Pre-processing data
In most data mining applications, it is required to filter the data

before it is used in the latter phases of the data mining technique to

be applied on the data. For our work, preliminary HIV-1 datasets

were in categorical form where instances are represented by labels

assigned to amino acids and the class label they belong to.

However, the involved feature selection process stipulates a

different representation of the data. Accordingly, we have applied

a filtering operation on the preliminary dataset. In order to realize

the feature selection process, the data should be represented by

means of attributes. Thus, instances are encoded as binary values.

For our example, each amino acid is represented by a 20-bit length

string where each bit corresponds to an amino acid. For example,

amino acid G is represented as 10000000000000000000, while

amino acid E is represented as 00000000000000000001(see

Figure 2), and the other amino acids in between G and E are

represented as one bit shifted to the right at a time. This technique

is also called orthonormal encoding. By representing an amino

acid as 20-bit length string and by considering that a sequence

comprises 8 indices, the total length of an instance increases to

160. Hereby, our objective is to select the best attributes from an

array of 160 elements. This is the standard way of representing

categorical data in terms of binary attributes [12].

Feature selection
In this paper, we utilize these notations: N stands for the total

number of attributes, which are 160 attributes for the case tackled

in this paper; F represents the total number of selected features,

and I is the total number of instances (754). The objective of the

feature selection task is to find the optimal number of features

within the given data. The most basic approach for this can lead to

evaluating (2N{1) candidate subsets separately and selecting the

best subset according to a measure criterion. However, finding the

best feature subset would be an exhaustive iterative search in a

feature space of size (2160{1). That makes it computationally

infeasible. Accordingly, more realistic approaches are defined to

evaluate subsets in a feature space. However, the evaluation of

subsets is relative to the used function. Different evaluation

functions can output different result subsets. According to the

works described in [33,34], evaluation functions are divided into

five categories: information, distance, dependence, consistency,

and classifier error rate.

Figure 1. Overall System Architecture. The input data is preprocessed then the preprocessed data may be directly classified or feature selection
is applied to utilize in the classification only relevant features.
doi:10.1371/journal.pone.0063145.g001
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Information measures try to determine the information gain

provided by attributes. Distance measures select the attributes that

ensure highest class severability. Dependence measures look for

the correlation between features and classes. Consistency measures

search for subsets that meet a certain inconsistency rate. Finally,

classifier error rate measures use classifiers as measure functions to

determine optimal feature subset within a feature space. Consis-

tency measures are defined by an inconsistency rate. To calculate

this rate, inconsistent and inconsistency count terms are defined

additionally. Consistency measures consider two instances incon-

sistent if all their attributes match while their class labels are

different. In other words, in a consistent set there are no two

instances that have the same attributes and belong to different

classes. For example, assume S1~
00SGVFVNG 100 and

S2~
00SGVFVNG 000 are two instances in a feature subset S.

They match all but class labels. Thus, this pattern p is considered

inconsistent due to having at least two instances pertaining to the

defined situation.

Another term defined for consistency measure is inconsistency

count. For instance, in the feature subset S, there are instances

with the same attributes in addition to S1 and S2 whose total

number is Np. Suppose that, from the latter instances C1 belongs to

class 1 and C2 belongs to class 0; Np~C1zC2, if C1§C2, then

the inconsistency count is computed as IC(p)~C1=Np, else it is

computed as IC(p)~C2=Np. For the two classes example, this

count ranges between
1

2
(C1~C2) and

(Np{1)

Np

(C1~1 or C2~1).

Additionally, it is worth noting that the sum of patterns in a feature

subset is equal to the total number of instances in the dataset

(
P

p

Np~I). Finally, the inconsistency rate of a feature subset S is

given by the sum of all patterns inconsistency counts in the feature

subset divided by the instance count IR(S)~

P
p

IC(p)

I

0
@

1
A. For

feature selection, this rate is used as follows: If a feature subset S

has an inconsistency rate IR(S) below a predefined threshold value

e, (IR(S)ƒe) then subset S is considered to be consistent. In order

to explore the space of consistent attribute subsets, a search

method must be used.

According to the work described in [33], five different search

techniques can be used to evaluate and select attributes from

subsets for the consistency; these are exhaustive, complete,

heuristic, probabilistic, and hybrid search methods. Exhaustive

search time complexity is computationally infeasible, especially

when the relevant feature count is high. Thus, generally more

efficient techniques are preferred instead of the exhaustive search.

Complete search starts with full set of features and continues its

process by removing one feature at a time. It can be actually

considered as a restricted version of exhaustive search; it reduces

the time complexity. In heuristic search, at each iteration the

remaining features are considered for selection or rejection. By

probabilistic search, probabilistic choices are made to reach an

optimal subset. And, hybrid search as the name implies uses a

mixture of the aforementioned search strategies.

For our work, we have used consistency with a probabilistic

search as implemented in the software that we have used.

Probabilistic Las Vegas Filter algorithm (LVF) [41] has been

adopted for the search procedure in which the inconsistency rate is

used as the evaluation function. Whenever a consistent set is

encountered (a set whose inconsistency rate is below a threshold

value e which is generally set to the inconsistency rate of the

original set) its size is added to the size of the subset where it

belongs. Since the inconsistency rate is monotonic, subsets with

higher sizes are not evaluated any more.

Monotonicity of consistency can be defined as follows. Suppose

that we have a number of subsets S1,S2,::,Sn, such that

S15S25 . . .5Sn. Thus, IR(S1)§IR(S2)§ . . . §IR(Sn). This

characteristic of the consistency is a distinguishing feature which

the other evaluation functions do not have. Owing to monotonic-

ity, LVF proceeds fast when reducing the number of features as it

ensures continuously lessening consistent subsets where supersets

of the consistent sets are also consistent. Although, consistency is

fast, noise-free, and good at removing irrelevant or redundant

features, it is not obvious whether it can optimize the accuracy of

the classifier that will be applied after the feature selection process,

as it is the case with the other filter methods [35]. Thus, we have

utilized an embedded method together with the consistency filter

approach.

The work described in [22] shows that the HIV-1 dataset is

linearly separable, and eventually using linear classifiers or

extracting rules from linear models is as good as nonlinear

approaches on the dataset. As linear models are so fast, we have

decided to use a linear model to realize the feature selection task.

Therefore, we have applied the SVM method of Recursive

Feature Elimination (RFE); it is a linear SVM method that was

proposed in [23]. This allows us to select the features most relevant

to data.

SVM is able to handle a small amount of training data with a

large number of features. SVM can be used when the data has two

classes, and it determines the class for a given input [24]. To

achieve this classification, SVM constructs a set of hyperplanes in a

Figure 2. Detailed System Overview. Closer look at the various components of the proposed system architecture; orthonormal encoding is used
to represent amino acids.
doi:10.1371/journal.pone.0063145.g002
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high-dimensional space and classifies data by finding the optimal

hyperplane separating data points with maximal margin. An

illustration of the described process is depicted in [23].

Suppose a set of points forming the training data is given, where

D~f(Xi,Ci)DXi[<p,Ci[f0,1ggfor i~1::n. Each Xi represents a

real valued p-dimensional vector and Ci is either 0 or 1, indicating

class label which implies cleaved or uncleaved samples for our

example. SVM finds the hyperplane with maximum margin

separating points that have Ci~0 on one side and Ci~1 on the

other side. A hyperplane can be represented by the formula

w.x{b~0, where w is the vector normal to the hyperplane, . is

the dot product, and b is the offset value. According to this

equation, the value
b

DwD
gives the distance between two groups (the

distance between H1 and H2, which is also called margin) and to

maximize this distance, the two hyperplanes H1 and H2 are

described by the equations w.x{b~1 and w.x{b~{1. Thus,

the distance between these hyperplanes becomes
2

DwD
; accordingly

SVM tries to minimize DwD. In some cases data may not enable a

hyperplane for a straight separation. The techniques of soft

margins and the kernel tricks are used to create a classifier to non-

linear data. A review of the SVM methods and their optimization

can be found in [25].

In this context, the SVM RFE algorithm ranks features

according to their relevance to data by eliminating one feature

at each iteration by default. In the algorithm, at the beginning

SVM is employed on the training data. Then, the features are

ordered by using the weights (weight vector w) of the classifier.

Afterwards, the feature which has the smallest weight is

eliminated. Thereafter, the process is repeated on the set restricted

to the remaining features, and finally an order of ranked features is

returned [26,27].

Classification techniques used for protease cleavage site
prediction

Several classification techniques have been proposed for

handling the HIV-1 cleavage problem. These techniques are

based on machine learning methods like artificial neural networks

(ANNs) [6,7,9,28], support vector machines (SVMs)

[10,12,22,30,36], and Decision Trees (DTs) [20,21,28]. They

build classifiers capable of showing more complex relationships

and interactions in a dataset than what traditional frequency-based

and statistical methods can do [6,10,16].

For our work, we have applied in the experiments the three

classification techniques that have been reported to have successful

results over traditional methods [6,10,16]. Our C-FS-SVM is a

combined method which contains column-consistency and

column-SVM methods. We have also applied Consistency-SVM

to show the results of combining consistency and column-SVM.

In addition to all these techniques, the work described in [12]

uses MLP for prediction based on feature subset selection. In link

to our subset selection method, we preferred to compare our

method with the method described in [12] which uses MLP for

classification (the feature subset selection methods described in

[12] were reported to have outperformed existing feature selection

methods). At the same time, we did not ignore the other two

classification methods (SVM and Decision Trees). So, we have

conducted experiments and comparative analysis by considering

the three methods.

Algorithm
In this section, we describe the details of the proposed algorithm

which we have applied to select the most relevant features for the

training data.

Algorithm C-FS-SVM (training data, attribute number)

1. Rank the features by invoking the SVM-RFE algorithm on the

whole feature set (on binary data) and point features in the

range between 1 and feature count according to their

relevance; then calculate column-based mean and standard

deviation measures and store in set A features which have

larger values than the sum of these measures for each column.

2. For each index (column) in the dataset, convert nominal data to

orthogonal form and perform consistency-based attribute

selection; then store the selected features in set B.

3. Compute the intersection of A and B, (A\B) and get the

mutual attributes located in each index, i.e., if any column

returns null, then do not select any attribute related to the

index, else select attributes that exist at the same indices in both

sets.

Figure 3, Figure 4, Figure 5 and Figure 6 show attribute values

with respect to indices, and the distribution of attribute weights for

each column is depicted. Especially the P1 column shows that

attributes within this column are much more conspicuous

compared to the other ones as it has more cases passing the

defined threshold value. According to this, we have concluded that

columns show different tendencies and they should be evaluated

separately. In this context, consistency-based evaluation of

attributes has been made index-based rather than applied on the

whole feature set.

The most recent results of the FS-MLP method presented by

Kim et al. [12] render better performance compared to

information gain, Relief, FS-SVM, and FS-P. Yet we have

proposed C-FS-SVM involving column-consistency and column-

SVM methods with three different classification techniques that

are effective in HIV-1 protease cleavage site prediction [6,10,16]

in order to measure their performance. We also proposed another

method called consistency-SVM which is the combination of

consistency and column-SVM. This method takes the intersection

of features obtained after consistency and column-SVM separate-

ly.

Given in Table 1 are the features selected as a result of the

index-based consistency (column-consistency), SVM-RFE with the

defined threshold value (column-SVM), consistency evaluated on

the full feature set (consistency), and our proposed algorithm

(consistency-based feature selection with SVM, C-FS-SVM). We

have also listed features selected by the intersection of consistency

and column-SVM methods (consistency-SVM) which can be

obtained by using consistency evaluation instead of column-based

consistency method. All the selected features indicate that amino

acids in the middle of the sequences are more distinctive than the

ones closer to the endpoints. Additionally, notice that we have not

selected any attributes in the columns where the intersection

returns a null set. This is because a null set indicates that no

attribute in this column shows a significant difference and no

attribute within this column can be labeled as redundant or

informative feature, i.e., its specificity cannot be determined. For

FS-MLP we have used the stated attributes in the corresponding

work and we have applied the selected features on the original

feature set as we did for the other methods.

The proposed C-FS-SVM algorithm consists of three main steps

which are based on the consistency measure and the standard

HIV-1 Protease Cleavage Site Prediction
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SVM-RFE algorithm. First, SVM-based feature selection is

applied on the whole feature set and the most valuable/

informative ones are selected according to a generic statistical

method which is given by the sum of the mean (
1

N

XN

i~1

Xi) and the

standard deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N{1

XN

i~1

(Xi{X )2

vuut of the values. Later, it

determines features by separately evaluating the consistency-based

measure on columns of the data. Finally, attributes located in both

sets are returned. We evaluated the results of the SVM RFE

algorithm for the Nursery [37] and the T-cell [38] datasets. Shown

in Figure 7 are the total weight percentages of the attributes

(positional weight matrix) per index obtained as a result of the

SVM ranking. The distributions indicate that attributes in the

nursery data are more correlated among themselves (the ones that

are in the same column) while attributes in the T-cell data show

more generic relationships. Evaluation of the proposed algorithm

on the HIV-1 dataset is given in the following subsection.

Experiments & Results

We have implemented our framework by using Weka [31],

which is a data mining tool that has been extensively used for

machine learning tasks. In Weka, preprocessing (filtering),

clustering, classification, attribute selection, and association rules

Figure 3. a) Nursery Data b) T-cell Data. Column weights obtained from SVM rank values (a), and (b). These are the total weight percentages of
attributes (positional weight matrix) per index obtained as a result of SVM ranking.
doi:10.1371/journal.pone.0063145.g003
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techniques can be realized with various options. In addition to the

association rules mining and clustering, we have employed the

other features that Weka provides. Filtering has been adapted to

produce binary values as it was necessary to fulfill the attribute

selection task. For attribute selection, consistency (Consistency

Subset Evaluation) and SVM RFE (SVM Attribute Evaluation)

have been used while for classification J48 Decision Tree, SMO

(Support Vector Machines using Sequential Minimal Optimiza-

tion), and MLP (Multilayer Perceptron) implementations of Weka

have been used. Comprehensive testing has been done and the

obtained results are given in the following subsections.

Evaluation
In our experiments, we have used the entire dataset consisting of

the 131-dataset [29] and the 46 uncleaved instances that have

been selected from the 754-dataset in two level external cross

validation fashion [42,43]. As an alternative approach, we have

used the 131-dataset for validation [29] in appendix 1 in File S1.

Shown in Figure 8 are the total weight percentages of the

attributes (positional weight matrix) per index obtained as a result

of SVM ranking. The results shown in Figure 8 indicate that

attributes located in P2,P1,P’1,P’2 are much more distinctive than

the ones located in P4,P3,P’3,P4
’. This is due to the fact that

Figure 4. Feature weights of (a) P4 and (b) and P3.
doi:10.1371/journal.pone.0063145.g004
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cleavage occurs between indices P1 and P1
’; attributes appearing

close to the scissile bond play more important role on the cleavage

as already stated in [12].

While the ranker methods are good at ordering the relevance of

attributes, it is important to know how to determine which of the

ranked features should be selected, i.e., a suitable threshold value

should be set in order to choose the top features. By following this

type of methodology, while globally selecting top ranked features,

we have also investigated the properties locally by examining the

attributes within their corresponding indices by considering intra-

relatedness. It can be inferred that the top 28 ranked features

obtained via SVM RFE are not the same as the 28 features of our

selection. Additionally, notice that our algorithm has not specified

any attribute from the two columns P4 (@1) and P3 (@2); these

columns showed the smallest total attribute weights in Figure 8.

On the other hand, while column P2 (@3) has the second most

total attribute weight, only one attribute is specified for that

column. This is because the specified attribute had a distinctive

weight among attributes within the same column. Most attributes

were selected for the two columns P1 (@4) and P1
’ (@5), where

the scissile bond takes place.

Figure 5. Feature weights of (a) P2 and (b) P1 attribute values with respect to indices and the distribution of attribute weights.
doi:10.1371/journal.pone.0063145.g005
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Evaluation with 5-fold external cross validation. The

entire dataset with 885 instances has been used for two level

external cross validation. The results point out that average

classification results of SMO, MLP, and J48 have been used for

comparing the No Feature Selection, the C-FS-SVM, the CFS,

and the Relief methods. These experiments have been conducted

10 times for five-fold external cross-validation. Table 2, Table 3,

Table 4 contain the standard deviations of the results in them

including average performance results for accuracy, TP, FP,

precision, recall, f-measure and ROC. All detailed accuracy, TP,

FP, precision, recall, f-measure and ROC results have been given

in Tables S11, S12, S13 in File S1.

Statistical significance of results
Wilcoxon signed rank test have been applied on the results of

SMO, MLP and J48 presented in Appendix 4 in File S1. Table

S14, Table S20, and Table S26 in File S1 for f-measure; and

Table S15, Table S21, and Table S27 in File S1 for accuracy. As

reported in Tables S14–S31 in File S1, our C-FS-SVM method

outperforms the other methods. Results have been taken for

different a levels (.90 and .95). In Wilcoxon tests, Rz gives positive

Figure 6. Feature weights of (a) P1’ and (b) P2’: attribute values with respect to indices and the distribution of attribute weights.
doi:10.1371/journal.pone.0063145.g006
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differences; R{ gives negative differences of C-FS-SVM against

the no feature selection, the Relief, and the CFS methods.

The work described in [44,45] suggests using Friedman Aligned

test when the number of algorithms is low (4 or 5). Our C-FS-

SVM method is held as the control algorithm and compared with

multiple sign test based on a family of hypotheses (other

algorithms), namely Holm-Hochberg-Hommel, Holland Finner,

Li post hoc procedures. Again, all the results have been obtained

for SMO, MLP, and J48 separately.

SMO. Average ranks obtained by each method in the

Friedman Aligned test [44,45] are reported in Table S32 in File

S1. According to Table S32 in File S1, aligned Friedman statistic

for f-measure (distributed according to chi-square with 3 degrees of

freedom)is 7.689114. The p-value computed by Aligned Friedman

Test for f-measure is 0.052893320524. Aligned Friedman statistic

for accuracy (distributed according to chi-square with 3 degrees of

freedom) is 7.755534. P-value computed by Aligned Friedman

Test for accuracy is 0.051343724664. The p-values obtained by

applying post hoc methods over the f-measure and accuracy results

of Friedman Aligned procedure are reported in Tables S34 and

S35 in File S1.

Different post-hoc procedures have been applied on fried

aligned (Table S34 in File S1). According to P-values obtained in

by applying post hoc methods over the accuracy results of

Friedman Aligned procedure, Bonferroni-Dunn’s procedure

rejects hypotheses that have a p-value ƒ0:016667. Holm’s

procedure rejects hypotheses that have a p-value ƒ0:05.

Hochberg’s procedure rejects hypotheses that have a p-value

ƒ0:025. Hommel’s procedure rejects hypotheses that have a p-

value ƒ0:05. Holland’s procedure rejects hypotheses that have a

p-value ƒ0:05. Rom’s procedure rejects hypotheses that have a p-

value ƒ0:025. Finner’s procedure rejects hypotheses that have a

p-value ƒ0:05. Li’s procedure rejects hypotheses that have a p-

value ƒ0:04562.

Different post-hoc procedures have been applied on fried

aligned (Table S35 in File S1). According to P-values obtained in

by applying post hoc methods over the accuracy results of

Friedman Aligned procedure, Bonferroni-Dunn’s procedure

rejects those hypotheses that have a p-value ƒ0:016667. Holm’s

procedure rejects those hypotheses that have a p-value ƒ0:05.

Hochberg’s procedure rejects those hypotheses that have a p-value

ƒ0:025. Hommel’s procedure rejects those hypotheses that have a

p-value ƒ0:05. Holland’s procedure rejects those hypotheses that

have a p-value ƒ0:05. Rom’s procedure rejects those hypotheses

that have a p-value ƒ0:025. Finner’s procedure rejects those

hypotheses that have a p-value ƒ0:05. Li’s procedure rejects those

hypotheses that have a p-value ƒ0:046602.

MLP. Average ranks obtained by each method in the

Friedman Aligned test [44,45] are reported in Table S36 in File

S1. According to Table S36 in File S1, aligned Friedman statistic

for f-measure (distributed according to chi-square with 3 degrees of

freedom) is 7.989851. The p-value computed by Aligned Fried-

man Test for f-measure is 0.046221926022. Aligned Friedman

statistic for accuracy (distributed according to chi-square with 3

degrees of freedom) is 7.990249 and p-value computed by Aligned

Friedman Test for accuracy: 0.046213661791. The p-values

obtained by applying post hoc methods over the f-measure and

accuracy results of Friedman Aligned procedure are reported in

Tables S37 and S38 in File S1.

Different post-hoc procedures have been applied on fried

aligned (Table S37 in File S1). According to P-values obtained in

by applying post hoc methods over the accuracy results of

Friedman Aligned procedure, Bonferroni-Dunn’s procedure

rejects hypotheses that have a p-value ƒ0:016667. Holm’s

procedure rejects hypotheses that have a p-value ƒ0:016667.

Hommel’s procedure rejects hypotheses that have a p-value

ƒ0:016667. Holland’s procedure rejects hypotheses that have a p-

value ƒ0:016952. Finner’s procedure rejects hypotheses that have

a p-value ƒ0:016952. Li’s procedure rejects hypotheses that have

a p-value ƒ0:040621. The p-values obtained by applying post hoc

methods over the results of Friedman Aligned procedure are

reported in Table S37 in File S1.

Different post-hoc procedures have been applied on fried

aligned (Table S38 in File S1). According to P-values obtained in

by applying post hoc methods over the accuracy results of

Friedman Aligned procedure, Bonferroni-Dunn’s procedure

rejects those hypotheses that have a p-value ƒ0:016667. Holm’s

procedure rejects those hypotheses that have a p-value

ƒ0:016667. Hommel’s procedure rejects those hypotheses that

have a p-value ƒ0:016667. Holland’s procedure rejects those

hypotheses that have a p-value ƒ0:016952. Finner’s procedure

rejects those hypotheses that have a p-value ƒ0:016952. Li’s

procedure rejects those hypotheses that have a p-value

ƒ0:044945. The p-values obtained by applying post hoc methods

over the results of Friedman Aligned procedure are reported in

Table S38 in File S1.

J48. Average ranks obtained by each method in the Friedman

Aligned test [44,45] are reported in Table S39 in File S1.

According to Table S39 in File S1, Aligned Friedman statistic for

f-measure(distributed according to chi-square with 3 degrees of

freedom) is 8.078216. The p-value computed by Aligned Fried-

man Test for f-measure is 0.044422566866. Aligned Friedman

statistic for accuracy(distributed according to chi-square with 3

degrees of freedom) is 8.071096. P-value computed by Aligned

Friedman Test for accuracy is 0.044564988862. The p-values

Table 1. Selected attributes according to the FS methods (- indicates no feature is specifically determined for the column).

FS Method Num P4 (@1) P3 (@2) P2 (@3) P1 (@4) P1’ (@5) P2’ (@6) P3’ (@7) P4’ (@8)

C-FS-SVM 12 - - V F/L/M/Y D/K/N G/K M T

Column-
Consistency

37 P/S C/S/T/V N/V F/L/M/Y C/D/G/K/N/R/S/Q/T C/D/F/G/H/K/M/N/S/W/Y D/M/Q P/T

Column-SVM 28 C/H/I/Y E/F/K K/R/V F/K/L/M/T/Y D/K/N E/G/K F/M/P K/T/Y

Consistency 40 P/S/V/Q F/G/S/T F/G/K/P/Q/R/V/W F/K/L/M/N/Y/V D/F/G/K/L/N/R/S/Q E/F/K/N/V/W M/Q -

Consistency-SVM 15 - F K/R/V F/K/L/M/Y D/K/N E/K M -

FS-MLP 14 - - I/K/N/Q F/K/L/M/Y F/K/S E/K - -

Values common to all methods have been italicized.
doi:10.1371/journal.pone.0063145.t001
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obtained by applying post hoc methods over the f-measure and

accuracy results of Friedman Aligned procedure are reported in

Tables S40 and S41 in File S1.

Different post-hoc procedures have been applied on fried

aligned (Table S40 in File S1). According to P-values obtained in

by applying post hoc methods over the accuracy results of

Friedman Aligned procedure, Bonferroni-Dunn’s procedure

rejects hypotheses that have a p-value ƒ0:016667. Holm’s

procedure rejects hypotheses that have a p-value ƒ0:025.

Hochberg’s procedure rejects hypotheses that have a p-value

ƒ0:016667. Hommel’s procedure rejects hypotheses that have a

p-value ƒ0:025. Holland’s procedure rejects hypotheses that have

a p-value ƒ0:025321. Rom’s procedure rejects hypotheses that

have a p-value ƒ0:016667. Finner’s procedure rejects hypotheses

that have a p-value ƒ0:033617. Li’s procedure rejects hypotheses

that have a p-value ƒ0:013798.

Different post-hoc procedures have been applied on fried

aligned (Table S41 in File S1). According to P-values obtained in

by applying post hoc methods over the accuracy results of

Friedman Aligned procedure, Bonferroni-Dunn’s procedure

rejects those hypotheses that have a p-value ƒ0:016667. Holm’s

procedure rejects those hypotheses that have a p-value

Figure 7. Feature weights of (a) P3’ and (b) and P4’: attribute values with respect to indices and the distribution of attribute weights.
doi:10.1371/journal.pone.0063145.g007

HIV-1 Protease Cleavage Site Prediction

PLOS ONE | www.plosone.org 11 August 2013 | Volume 8 | Issue 8 | e63145



ƒ0:016667. Hommel’s procedure rejects those hypotheses that

have a p-value ƒ0:016667. Holland’s procedure rejects those

hypotheses that have a p-value ƒ0:016952. Finner’s procedure

rejects those hypotheses that have a p-value ƒ0:016952. Li’s

procedure rejects those hypotheses that have a p-value

ƒ0:010335.

Conclusions

Curse of dimensionality is a crucial challenge for real life data.

In order to handle this high dimensionality problem, feature

selection or reduction techniques are extensively used as prepro-

cessing step for data mining and knowledge discovery techniques.

Data characterized by large number of features and low number of

samples is difficult to be modeled by classifiers. Before or within

the classification process, a feature selection operation is needed to

be employed on this kind of data in order to help in developing

effective classifiers. HIV-1 protease cleavage site prediction is an

interesting classification problem and the data related to this

problem also requires preprocessing by considering the feature

selection phase. To realize this phase, we have proposed a hybrid

approach which is capable of selecting the best features describing

the data. We have compared our results with state-of-art and

generic methods which have been applied on HIV-1 data. The

reported results indicate that our method is capable of selecting

features that improve classification results significantly. It has been

shown that the selected features have different impacts on different

classifiers. The proposed C-FS-SVM method is based on

consistency measure and the SVM RFE algorithm which

examines the supplied data in two distinct forms, and then

combines the results obtained from each form. The performance

of C-FS-SVM has showed that evaluating the features in the data

separately and combining the outcome with a global selection is

prone to give more accurate results. Additionally, determining a

threshold value is essential for the feature selection problem

because it is mostly not possible to know the optimal number of

Figure 8. Column weights obtained from SVM rank values. These are the total weight percentages of attributes (positional weight matrix) per
index obtained as a result of SVM ranking.
doi:10.1371/journal.pone.0063145.g008

Table 2. Standard Deviations of classification results for external cross validation with SMO and their average performance results
for each metric.

Case Method Accuracy TP FP Precision Recall FMeasure ROC

Avg. No Feature 87.89 0.82 0.10 0.76 0.82 0.79 0.86

C-FS-SVM 91.90 0.88 0.07 0.83 0.88 0.85 0.91

Relief 88.99 0.88 0.10 0.77 0.88 0.81 0.89

CFS 88.38 0.85 0.10 0.76 0.85 0.80 0.87

Std. Dev. No Feature 3.25 0.03 0.05 0.07 0.03 0.04 0.02

C-FS-SVM 2.66 0.04 0.03 0.08 0.04 0.05 0.03

Relief 4.47 0.03 0.06 0.08 0.03 0.05 0.03

CFS 2.99 0.02 0.04 0.06 0.02 0.04 0.02

doi:10.1371/journal.pone.0063145.t002
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features that could represent the data or at least a precise number

of features is not given in advance. For this, we have developed a

reliable selection criterion where we are selecting the most

distinctive attributes from both global and local perspectives. In

conclusion, we have proposed a hybrid method for selecting

features related to HIV-1 data. By utilizing the selected features,

we acquired considerable enhancements over the classification

results. As a future work, we are planning to add physiochemical

properties that amino acids have and we will investigate encoding

schemes based on our method.
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(PDF)
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