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Abbreviations used

ASC: Apoptosis-associated speck-like protein containing a

CARD

BAL: Bronchoalveolar lavage

BMI: Body mass index

DPP9: Dipeptidyl peptidase 9

GALA II: Genes-Environment & Admixture in Latino Americans II

NLRP: Nucleotide-binding oligomerization domain-like receptor

containing a pyrin domain

OVA: Ovalbumin

SAGE II: Study of African Americans, Asthma, Genes, and Envi-

ronments II

SNP: Single nucleotide polymorphism

WT: Wild-type
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Background: NLRP1 is an innate immune sensor that can form
cytoplasmic inflammasome complexes. Polymorphisms in
NLRP1 are linked to asthma; however, there is currently no
functional or mechanistic explanation for this.

Objective: We sought to clarify the role of NLRP1 in asthma
pathogenesis.

Methods: Results from the GALA II cohort study were used to
identify a link between NLRP1 and asthma in Mexican
Americans. In vitro and in vivo models for NLRP1 activation
were applied to investigate the role of this inflammasome in
asthma at the molecular level.

Results: We document the association of an NLRP1 haplotype
with asthma for which the single nucleotide polymorphism
rs11651270 (M1184V) individually is the most significant.
Surprisingly, M1184V increases NLRP1 activation in the
context of N-terminal destabilization, but decreases NLRP1
activation on dipeptidyl peptidase 9 inhibition. In vitro studies
demonstrate that M1184V increases binding to dipeptidyl
peptidase 9, which can account for its inhibitory role in this
context. In addition, in vivo data from a mouse model of airway
inflammation reveal a protective role for NLRP1 inflammasome
activation reducing eosinophilia in this setting.

Conclusions: Linking our in vitro and in vivo results, we found
that the NLRP1 variant M1184V reduces inflammasome
activation in the context of dipeptidyl peptidase 9 inhibition and
could thereby increase asthma severity. Our studies may have
implications for the treatment of asthma in patients carrying
this variant of NLRP1. (J Allergy Clin Immunol 2021;147:2134-
45.)
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Asthma is a common chronic respiratory disease that according
to World Health Organization estimates affects 235 million
people worldwide. It typically occurs in genetically predisposed
individuals after inappropriate immune activation caused by
antigen exposure, such as viral infections and allergens, and
subsequent epithelial damage.1,2 Patients suffer from airway
inflammation, obstruction, and remodeling, as well as airway
hyperresponsiveness.3 Because asthma is an incurable disease,
patients require continued treatment and management.4

Release of proinflammatory cytokines from the IL-1 family
(IL-1b, IL-18, IL-33) is a hallmark of asthmatic inflammation.
IL-1b and IL-33 activate TH2/TH17 cells and ILC2/3 cells, lead-
ing to the release of proinflammatory cytokines (IL-4, IL-5, IL-9,
IL-13, IL-17A).5-7 Subsequently, eosinophils, neutrophils, mast
cells, and TH2 cells infiltrate the lung to trigger inflammation
and tissue damage.8,9 The other IL-1 family member, IL-18, is
also linked to asthma, but with conflicting effects. On the one
hand, it is described to inhibit TH2-cell development together
with IL-12, resulting in reduced airway hyperresponsiveness in
a mouse model of asthma.10 Moreover, significantly increased
serum levels of IL-18 were found in patients during acute asthma
episodes.11 On the other hand, reduced levels of IL-18 were found
in the bronchoalveolar lavage (BAL) fluid of patients with asthma
compared with healthy controls.12 To date, the exact role of IL-18
in asthma pathogenesis is not entirely clear.13

Inflammasomes form an important part of the innate immune
system and are potent activators of procaspase-1. As such, they
are able to induce the release of mature IL-1b and IL-18 as well as
a rapid form of cell death called pyroptosis.14 The current model
suggests that upon expression NOD-like receptors are localized in
the cytosol of the cell as monomers. Immediately after activation,
they assemble into disc-like oligomers, providing a platform for
the adaptor protein ASC (apoptosis-associated speck-like protein
containing a CARD). In turn, ASC assembles into large filaments
and recruits procaspase-1, ultimately leading to activation of
procaspase-1 by self-cleavage. Active caspase-1 can process the
pro forms of IL-1b and IL-18 into their active forms and thus
induce inflammation.14,15 Furthermore, active caspase-1 cleaves
gasdermin D, which in turn forms membrane pores inducing
pyroptosis.16

NLRP1 was the first inflammasome described and has been
shown to be expressed in various tissues including the respiratory
epithelium, as opposed toNLRP3, which is primarily expressed in
the hematopoietic compartment.17,18 The 166-kDa NLRP1 pro-
tein also differs from other nucleotide-binding oligomerization
domain-like receptors containing a pyrin domain (NLRPs) in its
domain composition. The NLRP1 N-terminus is formed by a
common tripartite domain architecture that is shared by all
NLRP proteins, composed of a PYD, a NACHT domain, and
leucine-rich repeats. However, an additional FIIND and CARD
domain on the C-terminus is unique to NLRP1.19 Autolytic pro-
teolysis within the FIIND domain is a strict requirement for
NLRP1 activity.20,21 A common single nucleotide polymorphism
(SNP; rs11651270) resulting in the amino acid substitution
methionine 1184 to valine (M1184V) was described to increase
cleavage in the FIIND domain and has been associated with
genetic predisposition to asthma.21,22 Furthermore, SNPs in
NLRP1 were found to be involved in other diseases, such as
vitiligo-associated autoimmune diseases.23 Several mutations in
the NLRP1 gene locus were identified to lead to constitutive
inflammasome activation, causing skin autoinflammatory
syndromes.24,25 These patient-derived mutations helped to
understand the mechanistic role of NLRP1 PYD and
leucine-rich repeat in keeping the protein in an autoinhibited
conformation.24 The fact that the NLRP1 PYD is autoinhibitory
differentiates this inflammasome from other members of the
NLRP family, which require their PYD to directly bind the
adaptor protein ASC and thus enable downstream activation of
procaspase-1.26 In contrast, it is the C-terminal CARD domain
of NLRP1 that triggers inflammasome activation.21,24
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To date, the exact mechanism by which NLRP1 is activated
through pathogens is not fully understood. However, Toxoplasma
gondii has been demonstrated to activate NLRP1 in mice and rats,
and genetic variants in human NLRP1 increase susceptibility to
congenital toxoplasmosis.27-30 Dense granule proteins of the
parasite have been identified to be essential for triggering
NLRP1-dependent pyroptosis in rats.31 Lethal toxin from
Bacillus anthracis cleaves and thereby activates certain alleles
of mouse and rat Nlrp1.32,33 Recently, different pathogen
enzymes were identified to induce N-terminal degradation of
mouse NLRP1b. Cleavage within the FIIND domain provided,
this degradation process led to activation of the NLRP1
inflammasome.34 In addition, it has been shown that inhibition
of the negative regulator dipeptidyl peptidase 9 (DPP9), which
binds to the FIIND domain, leads to activation of NLRP1 in
humans and mice.35,36 Inhibition of DPP9 leads to a dissociation
of the peptidase from NLRP1 and results in N-terminal degrada-
tion and finally activation of the inflammasome.37,38 Moreover, 1
of the humanmutations causing skin inflammatory symptoms and
associated arthritis was identified to be located within the FIIND
domain (P1214R).25 This mutation was shown to activate NLRP1
by preventing DPP9 association with NLRP1.36

Here, we confirm that the M1184V mutation within the FIIND
domain of NLRP1 is associated with increased asthma severity.
Surprisingly, we find that activation of NLRP1 M1184V in vitro
via N-terminal–destabilizing mutations has divergent effects
compared with activation via DPP9 inhibition. In addition, ge-
netic manipulation of Nlrp1 in mouse models of asthma shows
that Nlrp1 deficiency exacerbates asthma models. Combined
with the in vitro data, this aligns with a causative effect of
M1184V in asthma to decrease NLRP1 activation in the context
of DPP9 inhibition.
METHODS

Plasmids and mutagenesis
Viral constructs including pRP-hASC-RFP (retroviral construct) and

pTRIPz-NLRP1-HA-T2A-GFP-IRES-Puro (second-generation lentiviral

construct) were used to establish cell lines with stable expression of the

transgenes. For immunoprecipitation, NLRP1 constructs were expressed from

a pCIG2 vector backbone with a C-terminal 3xFLAG-tag and eGFP was

expressed from an IRES on the same vector. Mutagenesis was carried out

using the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent,

Santa Clara, Calif) following the manufacturer’s instructions. Successful

mutation was confirmed by sequencing.
Cell culture
HEK293T cells were cultured at 378C and 5% CO2 in Dulbecco modified

Eagle medium (Thermo Fisher Scientific,Waltham,Mass) supplemented with

10% FBS, 0.1% (wt/vol) streptomycin, and 100 U/mL penicillin. FBS was

heat-inactivated for 30 minutes at 558C before supplementation. Continuous

cultures were monitored for absence of mycoplasma by PCR.
Generation of stable cell lines
Production of viral particles for stable expression of transgenes was

achieved by transfecting HEK293T with packaging plasmids pGag-pol and

VSV-G along with the transgene hASC-RFP for retrovial system and psPAX2

and pMD2.G along with the transgene NLRP1-HA-T2A-GFP-IRES-Puro for

second-generation lentiviral system, respectively. Plasmids were transfected

into HEK293T cells, seeded at 33 106 cells in 10-cm2 dishes 1 day before the

transfection was performed. Medium of the transfected cells was replaced 16
hours posttransfection. The viral supernatant was collected and filtered

through a 0.45-mm filter at 24 hours and 48 hours after medium change.

The filtered viral supernatant was then added directly to HEK293T and

incubated for 24 hours before the viral supernatant was entirely removed.

Successful retroviral transduction of hASC-RFP cells was confirmed and

cells were isolated by fluorescence-activated cell sorting for RFP1

nonspecking cells. These cells were used as a parental cell line for the

subsequent lentiviral transduction of NLRP1-HA-T2A-GFP-IRES-Puro.

Following the lentiviral transduction of NLRP1-HA-T2A-GFP-IRES-Puro,

the cells were subjected to 5 mg/mL puromycin selection before sorting for

GFP2 nonspecking cells. Expression of the NLRP1-T2A-GFP transgene

was induced using 1 mg/mL doxycycline (Sigma Aldrich, St Louis, Mo),

and the expressionwas confirmed by flow cytometry andwestern blot analysis.

ASC speck assay
A total of 3.5 3 104 HEK293T cells stably expressing human ASC-RFP

and stably carrying the doxycycline-inducible wild-type (WT) or mutant hu-

man NLRP1 transgene were seeded in a flat-bottom 96-well tissue culture

plate. The cells were seeded in the presence of 1 mg/mL of doxycycline to

induce the expression of the transgene. Cells were harvested and analyzed

for speck formation 12 hours postinduction by flow cytometry.

For Talabostat treatment, the medium was replaced at 16 hours after

doxycycline induction with medium containing increasing concentration of

Talabostat (MedChemExpress HY-13233A) from 0.125 mM to 1 mM. The

highest equivalent amount of dimethyl sulfoxide was used as a control.

Following Talabostat treatment, cells were incubated for 6 hours at 378C. Cells
were then harvested and analyzed for speck formation by flow cytometry on a

BD Bioscience LSR Fortessa X-20 as described previously.39

Immunoprecipitation
A total of 2.53 105 HEK293T cells were transfected with 500 ng ofWTor

mutant NLRP1 (IRES-GFP). Eighteen hours posttransfection, cells were

washed once with 13DPBS and harvested in NP40 lysis buffer (1% NP40

(vol/vol), 10% glycerol (vol/vol), 20 nM Tris-HCl, 150 mM NaCl, 1 mM eth-

yleneglycol-bis-(b-aminoethylether)-N,N,N’,N’-tetraacetic acid, 10 mM

NaPPi, 5 mM NaF, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride)

freshly supplemented with 13 cOmplete protease inhibitor cocktail (Roche,

Basel, Switzerland). After lysing cells for 20 minutes on ice, cell debris was

spun down and the supernatant was collected. Immunoprecipitation was per-

formed using anti–FLAG-M2-agarose resin (Sigma) for 4 hours or overnight

at 48C. Beads were washed 3 times with lysis buffer before elution by boiling

in SDS sample buffer for 10 minutes. Immunoblots were prepared using 4% to

12% gradient gels (Novex, Invitrogen, Carlsbad, Calif) and subsequently

transferred to a PVDF membrane. Membranes were blocked in PBS/tween

20 with 5% skim milk for 60 minutes at room temperature and probed over-

night at 48C. The following antibodies were used: aNLRP1: AL176 (Adipo-

Gen, San Diego, Calif), aDPP9: ab42080 (Abcam, Cambridge, UK),

aFLAG: 9H1 (in-house), and aActin: sc47778 (SCBT).
Mice
WT, Nlrp12/2, Il1r2/2, Il1r2/2Neut1m/m, Il1r2/2Il182/2, and Il1r2/2Il182/2

Neut1m/m mice described previously40 were analyzed between age 1.5 and 3

months. Animal experiments complied with the regulations set by the Walter and

Eliza Hall Institute of Medical Research Animal Ethics Committee.
Asthma model
Micewere immunizedwith sensitization solution (50% (vol/vol) aluminum

hydroxide [Sigma], 250 mg/mL ovalbumin [lyophilized chicken egg white

albumin] [Sigma], 10% (vol/vol) type II water, and 40% (vol/vol) normal

saline [WEHI Media Department, Australia]; 200 mL/mouse) via intraperito-

neal injection on days 1 and 14. On days 27, 28, and 29, mice were challenged

via nebulization (inhalation) of challenge solution (MTPBS [WEHI Media

Department], 5% (wt/vol) ovalbumin [Sigma]) for 20 minutes. Mice were

sacrificed and prepared for assessment of asthma pathology on day 30.



J ALLERGY CLIN IMMUNOL

VOLUME 147, NUMBER 6

MOECKING ET AL 2137
Isolation and preparation of organs and fluids
The BAL fluid was collected by performing a tracheotomy on the mice

before flushing the lungs with 33 500mL flow buffer (MTPBS [WEHIMedia

Department], 1%FBS, 2.5mMEDTA). Next, lungs were collected and the left

lobe retained in 10% buffered formalin for histology. Lungs were diced with

scissors and digested at room temperature for approximately 30 minutes in

digestion buffer (RPMI [WEHI Media Department], 1 mg/mL collagenase III

[Worthington, Lakewood, NJ], 0.4 U dispase, 1 mg/mL dnase) with mixing.

Single-cell suspensions were obtained by passing the digested lungs through a

70-mm sieve. Cells were collected by centrifugation. BAL fluid supernatants

were collected and stored at2208C for later analysis, and red cells lysed in red

cell removal buffer (WEHI Media Department) for 1 minute at room

temperature. Cells were then washed and resuspended in flow buffer. Cells

were incubated with CD16/32 Fc block for 20 minutes before incubation with

cell surface staining combination. Cells were then incubated with fixation

buffer (eBioscience), permeabilization buffer (eBioscience, San Diego, Calif),

and intracellular antibodies, and washed between steps. Cells were resus-

pended in 200mL of flow buffer. Spleen single stain controls were included for

all experiments. All centrifugations were performed at 1300g for 5 minutes at

48C, and all incubations were on ice for 20 minutes.
Flow cytometry
Flow cytometry was performed on a BD Bioscience LSR Fortessa cell

analyzer, and analysis was performed using FlowJo software (BD, San Jose,

Calif). Granulocytes were defined as CD45.21, B2202, or CD192, CD11b1

cells and further defined as eosinophils or neutrophils on the basis of Si-

glec-F1 Ly6G2 or Siglec-F2 Ly6Ghi, respectively. Macrophages/monocytes

were defined as Siglec-F2 and Ly6G2 CD11b1. T lymphocytes were defined

as CD451 CD31 CD41 B220 cells and further classified as regulatory T lym-

phocytes, TH2, or TH17 by expression of FoxP3, GATA3, or RORgt, respec-

tively. Innate lymphoid cells were defined as CD451 lineage negative

(CD32/CD42) cells and further stratified into type 2 Innate lymphoid cells

or type 3 Innate lymphoid cells by expression of GATA3 or RORgt, respec-

tively. Single stain controls were included for all flow cytometry experiments

to facilitate appropriate compensation. Representative dot plots for the gating

strategies are shown in Figs E1 and E2 in this article’s Online Repository at

www.jacionline.org.
Histopathology
Lungs were collected in 10% buffered formalin. Sections were stained with

hematoxylin and eosin, periodic acid-Schiff, and toluidine blue for detection

of inflammatory cells, mucus production, and mast cells.
Multiplex ELISA
Multiplex ELISAs were performed using the BioPlex Pro Mouse Cytokine

Kit (BioRad, Hercules, Calif) following the manufacturer’s instructions.

Absorbance was recorded at 450 nm using a microplate reader.
Statistics
Datawere analyzed using the Prism software (GraphPad, SanDiego, Calif).

Comparison of data was performed using a Student t test or an ANOVA fol-

lowed by a paired t test. Values are displayed as mean 6 SEM.
Genes-environment and Admixture in Latino

Americans II and Study of African Americans,

Asthma, Genes, and Environments II cohort studies
The Genes-environments and Admixture in Latino Americans II (GALA

II) study and the Study of African Americans, Asthma, Genes, and

Environments II (SAGE II) study are 2 clinic-based multicenter asthma

case-control studies, conducted using identical protocols and questionnaires,
to examine the complex network of genetic and environmental factors

contributing to asthma prevalence and severity among Latino and African

American children.41,42 Full descriptions of the GALA II study and SAGE II

study protocols and recruitment, including inclusion and exclusion criteria,

have been previously given in detail.41,42 Briefly, asthma cases and controls

were recruited from community centers and clinics in the mainland United

States and Puerto Rico (2006-present). Individuals were eligible to participate

if they were aged 8 to 21 years and identified all 4 grandparents as Latino

(GALA II) or African American (SAGE II). Participants were excluded if

they had (1) 10 or more pack-years of smoking; (2) any smoking within 1

year of recruitment date; (3) pregnancy in the third trimester; or (4) history

of 1 of the following conditions: sickle cell disease, cystic fibrosis, sarcoidosis,

cerebral palsy, or heart or chest surgery. Demographic data, including medical

history and environmental exposure information, were collected from

participants at study enrollment. All local institutional review boards of

participating recruitment sites approved the study, and all participants (or

parents of participants younger than 18 years) provided written informed

consent.

Asthma case/control status was determined by physician assessment at

study enrollment. Age- and sex-specific body mass index (BMI) percentiles

were calculated as previously described and used to assign BMI categories.43

For subjects 20 years and older, BMI categories were defined as follows: non-

obese (BMI < 30) and obese (BMI >_ 30). For subjects younger than 20 years,

BMI categories were defined as follows: nonobese (BMI percentile < 95) and

obese (BMI percentile >_ 95).
Study population
Mexican American subjects from the GALA II study cohort with complete

demographic data (age, sex, asthma status, obesity status) and available

NLRP1 SNP were used as a discovery data set in the current study (n5 905).

Puerto Rican participants from the GALA II study (n 5 1418) and African

American participants from the SAGE study (n5 1256) were later examined

to determine whether associations between NLRP1 variants and asthma (both

single-variant and haplotype effects) present in the discovery data set were

also present in these non-Mexican populations. Study demographics for all

individuals in the discovery data set (n5 905 Mexican Americans) and the 2

replication data sets (n5 1418 Puerto Ricans; n 5 1256 African Americans)

are presented in Tables E1 to E3 in this article’s Online Repository at

www.jacionline.org. All descriptive statistics presented in Tables E1 to E3

were generated using the R statistical software program base package.
NLRP1 genotyping
Blood samples were collected from GALA II and SAGE II participants at

study enrollment for DNA analysis. Axiom Genome-Wide LAT 1 array

(Affymetrix, Santa Clara, Calif, dbGaP phs000921.v1.p1) was used for

genotyping. SNPs were excluded if they failed the manufacturer’s quality

control, had genotyping call rates below 95%, and had a deviation fromHardy-

Weinberg equilibrium (P < 1026) within controls. Additional SNP genotypes

were imputed using the Michigan Imputation Server. The National Heart,

Lung, and Blood Institute Trans-Omics for Precision Medicine program

data (freeze 5) were used as the imputation reference panel.44 Imputed

SNPs were excluded from the data set if R2 was below 0.3. Genotypes of

several NLRP1 SNPs, identified by previous studies as functionally relevant

in relation to immunologic diseases,45 were then extracted from the total

genotype data (see Table E4 in this article’s Online Repository at

www.jacionline.org) for downstream single-variant and haplotype analyses.

Principal-component analysis using genotyped data for all participants was

performed using the PLINK 2.0 software platform.46 The first 3 principal

components were included in downstream association analyses to account

for hidden substructure in the data set. Genotype data for GALA II study

participants are available on dbGaP under accession number phs001274,

and genotype data for SAGE II study participants are available on Dryad

(https://datadryad.org/stash/share/20Ma3IthxRaK5sxbTNHGpOMGeDn

JVFTPxDIxECTh2is).

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
https://datadryad.org/stash/share/20Ma3IthxRaK5sxbTNHGpOMGeDnJVFTPxDIxECTh2is
https://datadryad.org/stash/share/20Ma3IthxRaK5sxbTNHGpOMGeDnJVFTPxDIxECTh2is


TABLE I. NLRP1 haplotypes associated with asthma status in Mexican American children from the GALA II study

R1366C rs6502867 V1241L M1184T M1184V M1119V V1059M T995I T878M T782S T246S L155H rs2670660 rs8182352

Odds

ratio

95%

CI

P

value

Haplotype 1 G T C A T T C G G G G A A T Reference haplotype

Haplotype

1C

G C C A T T C G G G G A A T 1.46 1.05-2.02 .02

Haplotype 2A G T C A C T T G G G G T G C 1.69 1.18-2.43 .004

Haplotype

2B

G T C G C T T G G G G T G C 1.35 1.01-1.79 .04

Haplotype 3 A C G A C C C A A C C T G C 1.02 0.42-2.45 .97

Haplotypes significantly associated with asthma status, after correction for multiple testing, are highlighted in boldface.
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Single-variant analyses
We used logistic regression to assess the relationship between each variant

and asthma susceptibility, separately. All regression models were adjusted for

age, sex, obesity status, and the first 3 principal components (generated as

described in the previous subsection).We also calculated allele frequencies for

each variant in participants with and without asthma, separately and combined

(see Tables E5-E7 in this article’s Online Repository at www.jacionline.org).

All single-variant genetic analyses were performed using the PLINK 2.0 soft-

ware platform.46
Multivariant (haplotype) analyses
NLRP1 variant haplotype analyses were performed using the Haplo.stats R

software package.47 Haplo.stats is a statistical program optimized to assess the

relationship between a specified haplotype and case/control status in unrelated

individuals, when haplotype phase is unknown, using regression-based

analyses. We identified 5 NLRP1 haplotypes, containing a total of 14 SNPs,

previously defined by Levandowski et al,45 and shown by the authors to be

significantly associated with vitiligo and other autoimmune disorders.

Haplotype definition and haplotype frequencies in our study population are

presented in Tables E8 to E11 in this article’s Online Repository at

www.jacionline.org. The most commonly occurring haplotype, referred to

as haplotype 1, in both asthma cases and controls was selected as the reference

haplotype for regression-based analyses performed in Haplo.stats. Presented

odds ratios for haplotype effects describe the effect of the specified haplotype

on asthma status as compared with haplotype 1 (Table I).
Multiple testing correction for single-variant and

multivariant (haplotype) analyses
We used the Bonferroni method to control the familywise error rate and

correct for multiple testing.48 Significance thresholds derived using the

Bonferroni equation can also produce false negatives. To minimize type II

error in our study, in addition to significant association thresholds, we

generated a more liberal suggestive association threshold.43,49 For

multivariant analyses, the effective number of tests was defined as the number

of haplotypes assessed. Bonferroni familywise error rate thresholds of 0.05

and 0.1 were used to generate significant and suggestive association

thresholds, respectively.50 The suggestive and significant P-value thresholds

for single-variant analyses (3 variants) were .033 and .017, respectively. The

suggestive and significant P-value thresholds for the multivariant analyses

(4 haplotypes) were .025 and .0125, respectively.
RESULTS

NLRP1 variant M1184V is associated with genetic

predisposition to asthma
In a discovery cohort of 905 Mexican American children with

and without asthma from the GALA II study, we assessed the
effect of selectNLRP1 SNPs on asthma susceptibility. Descriptive
characteristics for all discovery study subjects are summarized in
Table E1. Demographic variables were assessed for significant
differences between asthma cases and controls. Significant differ-
ences were found for age (P5 2.20 x 10216), sex (P5 .007), and
obesity status (P5 .01).

A previous study by Levandowski et al45 identified significant
NLRP1 haplotype effects associated with vitiligo and other
immunologic conditions. We assessed the impact of these
same haplotypes on asthma status in our study population.
Regression-based haplotype analysis revealed 1 NLRP1 haplo-
type significantly associated with asthma status, compared with
the most common/reference haplotype (Table I). This haplotype,
haplotype 2A, remained significantly associatedwith asthma after
correction for multiple testing (odds ratio, 1.69; P 5 .004).
Genotypes for all NLRP1 SNPs included in haplotype 2A are
listed in Table E8.

We then performed single-variant association testing, using
logistic regression, to assess the impact of the 3 nonsynonymous
NLRP1 polymorphisms in haplotype 2A—L155H (rs12150220),
V1059M (rs2301582), and M1184V (rs11651270)—on asthma
status in our study population. Each regression analysis was
adjusted for age, sex, obesity status, and the first 3 principal
components. Two NLRP1 variants, V1059M and M1184V, were
associated with asthma status in our study; however, only 1
variant, M1184V, remained suggestively associated with asthma
after correction for multiple testing (P 5 .02; Table II).
Specifically, increased copies of the C allele of M1184V were
associated with increased asthma susceptibility (odds ratio,
1.28; P 5 .02).

After completing haplotype and single-variant analysis in our
Mexican American data set, we attempted to further validate our
findings in 2 independent data sets of Puerto Rican and African
American children (see Tables E2 and E3). Neither the significant
2B haplotype effect nor the suggestive single locus effect at
M1184V was present in either of our validation data sets
(see Tables E12-E15 in this article’s Online Repository at
www.jacionline.org). Further assessment revealed differing allele
and haplotype frequencies among the 3 populations, which may
account, in part, for the lack of replication of significant and
suggestive associations found in Mexican Americans.
Activation of NLRP1 is reduced by M1184V in the

context of DPP9 inhibition
The NLRP1 M1184V variant has been reported to increase

FIIND domain cleavage in a previous study.21 Analysis of a ho-
mology model showing the ZU5 and part of the UPA subdomains
of NLRP1 FIIND suggests that the respective methionine residue
is located in proximity to the proposed catalytic triad consisting of
amino acid residues S1213, H1186, and E1195 (see Fig E3 in this
article’s Online Repository at www.jacionline.org). These

http://www.jacionline.org
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TABLE II. NLRP1 variants associated with asthma status in Mexican American children from the GALA II study

Variant rs ID Effect allele Effect allele frequency Odds ratio 95% CI P value

L155H rs12150220 T 0.42 1.20 0.97-1.49 .09

V1059M rs2301582 T 0.40 1.28 1.03-1.59 .03

M1184V rs11651270 C 0.45 1.28 1.03-1.59 .02

Variants significantly associated with asthma status after correction for multiple testing are highlighted in boldface.
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residues were previously described to be directly involved in
facilitating autolytic proteolysis between F1212 and S1213.20,21

Exchanging methionine 1184 to valine could alter the positioning
of the catalytic residues relative to each other, thereby allowing
increased proteolysis. However, the exact molecular mechanism
of how substitution of methionine 1184 affects proteolytic pro-
cessing remains unclear. In addition, the effect of M1184V has
not yet been examined in the context of NLRP1 stimulation,
either by activating mutations or by DPP9 inhibition. To
investigate the functional effect of M1184V on inflammasome
activation, we reconstituted NLRP1 in HEK293T cells stably ex-
pressing ASC-RFP. ASC speck formation was used as a measure
for NLRP1 inflammasome activation and was quantified by flow
cytometric analysis as previously described.39 NLRP1 WT and
M1184V showed similar baseline levels of ASC speck formation
(Fig 1, A). Western blot analysis for NLRP1 full-length and
N-terminal cleavage fragments (anti-NLRP1), as well as the
NLRP1 C-terminal cleavage fragment (anti-Flag), confirmed
increased FIIND domain cleavage by M1184V (Fig 1, B).

NLRP1 inflammasome activation was triggered by introducing
recently reported patient mutations into the WT and M1184V
NLRP1 constructs. The A66V mutation was described to activate
NLRP1 by destabilizing its PYD.24 As expected, introduction of
this mutation into NLRP1 WT resulted in increased ASC speck
formation. In the context of increased FIIND domain cleavage,
induced by the M1184V polymorphism, this effect was enhanced
as a further accumulation of ASC specks was detected (Fig 1, A).
Increased FIIND domain cleavage for NLRP1 A66V/M1184V
was confirmed by western blot analysis (Fig 1, B). Introduction
of a different monogenic autoinflammatory disease mutation
(P1214R), described to activate NLRP1 through a loss of DPP9
binding,25,36 also resulted in a strong increase in ASC speck for-
mation. Interestingly, combining this mutation with M1184V
reduced NLRP1 activity significantly, as quantified by ASC speck
formation (Fig 1, A). Western blot analysis of the P1214R variant
did not show a large increase in the C-terminal fragment, and
combining P1214R with M1184V did not result in a further in-
crease in C-terminal cleavage.

Thus, we concluded that increased cleavage of NLRP1 for the
M1184V variant liberates more of the active C-terminal fragment,
when in combination with mutations that destabilize the
N-terminus, accounting for increased inflammasome activation.
However, this cannot explain the decreased inflammasome
activation observed when M1184V is present in conjunction
with the P1214R mutation. Given that P1214R activates NLRP1
by destabilizing the interaction with DPP9, we performed
immunoprecipitations to see whether DPP9 binding was altered
because of M1184V. Indeed, DPP9 binding was abolished by
P1214R (Fig 1, B). Compellingly, the M1184V variant increased
binding to DPP9, even in the presence of P1214R, explaining how
it inhibits NLRP1 activity in this context. As reported previously,
A66V had no effect on DPP9 binding,36 and combination with
M1184V also increased binding to DPP9 (Fig 1, B). Therefore,
when the N-terminus of NLRP1 is destabilized, inflammasome
activation proceeds regardless of DPP9 binding.

To independently confirm the inhibitory effect of M1184V on
NLRP1 activation induced by loss of DPP9 binding, we made use
of the DPP9 inhibitor Talabostat. Consistent with the findings
described for NLRP1 M1184V/P1214R, we found that activation
by Talabostat was inhibited for NLRP1 M1184V, however only at
lower thresholds of activation (Fig 2,A). IncreasedDPP9 binding in
NLRP1 M1184V after Talabostat stimulation was also confirmed
by immunoprecipitation (Fig 2, B). These results indicate that
NLRP1 activation induced by impaired DPP9 binding is reversed
by theM1184Vvariant, which stabilizes the interactionwithDPP9.
Nlrp12/2 mice show increased eosinophil

infiltration in asthma model
To better understand the role of Nlrp1 in asthma, we used an

alum/ovalbumin (OVA) mouse model. Noteworthy, mice variants
of Nlrp1 were reported to naturally carry a valine at the position
corresponding to the human M1184.21 We confirmed this finding
by multiple sequence alignment of the amino acid sequence of
NLRP1 in different organisms. Interestingly, we found that within
the analyzed sequences, including sequences from different
primate species, only humans have methionine as the canonical
amino acid at position 1184 (see Fig E4 in this article’s Online
Repository at www.jacionline.org).

Airway inflammation in mice was assessed by comparing
immune cell infiltration into the lung and cytokine levels of WT
and Nlrp12/2 mice. Histological comparison of lung sections of
WT and Nlrp12/2 mice revealed no overt difference. Nlrp12/2

mice showed no pathology at baseline (Fig 3, A), and both groups
developed alveolitis and showed immune cell infiltration into the
airways and lung vessels following alum/OVA treatment. Immune
cell infiltration into the lung was measured by flow cytometric
analysis of the lungs after BAL of alum/OVA-treated mice.
Interestingly, Nlrp12/2 mice showed increased eosinophilia
compared with WT mice, suggesting a protective effect of
NLRP1 in asthma (Fig 3, B). Levels of monocytes/macrophages,
neutrophils, TH2 cells, and type 2 innate lymphoid cells were
comparable for both WT and Nlrp12/2 mice (Fig 3, B and C).
A protective effect of Nlrp1 in the asthmamodel was also indicated
by an increase in IL-13 in the BAL fluid of Nlrp12/2 mice (Fig 3,
D). IL-4 and IL-5 levels were comparable for WT and Nlrp12/2

mice (Fig 3, D). Furthermore, IgE levels were comparable in the
serum and BAL fluid of WT and Nlrp12/2 mice (Fig 3, E).
Active Nlrp1 protects against asthma model in mice

independently of IL-1
The results obtained from Nlrp12/2 mice suggest a protective

effect of Nlrp1 activation in the asthma model. Therefore, we

http://www.jacionline.org
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FIG 1. M1184V has divergent effects on NLRP1 activation due to altered

DPP9 binding. A, A total of 3.53 104 HEK 293T cells stably expressing a hu-

man ASC-RFP fusion protein were stably reconstituted with dox-inducible

NLRP1-T2A-GFP (WT or indicated mutant). Cells were harvested 12 hours

after doxycycline induction and analyzed for ASC speck formation by

flow cytometric measurement. B, A total of 2.5 3 105 HEK293T cells were

transfected with 500 ng of a vector control or a plasmid encoding human

NLRP1-3xFLAG (WT or indicated mutant). Eighteen hours posttransfection,

cells were harvested, and immunoprecipitation was performed for analysis

of protein expression by western blot. Data in Fig 1, A, are 3

biological replicates, representative of 3 independent experiments.

Ct, C-terminal fragment; fl, NLRP1 full-length; GFP, green fluorescent pro-

tein; ns, nonsignificant; Nt, N-terminal fragment; WCL, whole cell lysate.

Data are mean 6 SEM. P values were calculated using unpaired t test be-

tween 2 groups. ***P < .001. ****P < .0001.
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FIG 2. Activation of NLRP1 by Talabostat is reduced for M1184V because of

enhanced DPP9 binding. A, A total of 3.5 3 104 HEK293T cells stably

expressing a human ASC-RFP fusion protein were stably reconstituted

with dox-inducible NLRP1-T2A-GFP (WT or M1184V). Sixteen hours after

doxycycline treatment, cells were stimulated with fresh medium containing

increasing concentrations of Talabostat or the highest equivalent amount of

dimethyl sulfoxide and incubated for 6 hours. Cells were harvested, andASC

speck formation analysis was performed by flow cytometry. B, A total of

2.5 3 105 HEK293T cells were transfected with 500 ng of a vector control

or NLRP1-3xFLAG (WT or M1184V). Eighteen hours posttransfection, cells

were stimulated with 2 mM Talabostat or an equivalent amount of dimethyl

sulfoxide as described in Fig 2, A. Following the treatment, cells were har-

vested, and immunoprecipitation was performed for protein expression

by western blot. Data in Fig 2, A, are 3 biological replicates, representative

of 3 independent experiments. Data in Fig 2,A, were pooled from 3 indepen-

dent experiments. Ct, C-terminal fragment; fl, NLRP1 full-length; GFP, green
fluorescent protein; ns, nonsignificant;Nt, N-terminal fragment;WCL, whole

cell lystae. Data are mean6 SEM. P values were calculated using unpaired t
test between 2 groups. ***P < .001. ****P < .0001.
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FIG 3. OVA-treated Nlrp12/2 mice show increased lung eosinophilia and

elevated IL-13 levels. A, Representative hematoxylin and eosin histology

of left-lung lobe from WT and Nlrp12/2 mice show no overt differences,

either before or after OVA treatment. (B) Numbers of eosinophils (Eos),

monocytes/macrophages (Mono/Mac), and neutrophils (Neut), and of

(C) TH2 and ILC2 cells in the lungs of OVA-treated WT and Nlrp12/2 mice.

D, Cytokine levels in the BAL fluid of OVA-treated WT and Nlrp12/2

mice. E, Serum and BAL fluid IgE levels of OVA-treated WT and Nlrp12/2

mice. BALF, BAL fluid; ILC2, type 2 innate lymphoid cell. Data are

mean 6 SEM. Representative of 3 independent experiments. P values

were calculated using unpaired t test between 2 groups. *P < .05. **P < .01.
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wanted to further investigate the role of the proinflammatory cy-
tokines IL-1b and IL-18 in mediating protection during asthma,
because both cytokines are released on Nlrp1 activation. To this
end, we first looked at immune cell infiltration and cytokine levels
in Il1r2/2 and Il1r2/2/Neut1m/m mice during asthma. Neut1m/m

mice were described to have an Nlrp1a variant carrying an
activating mutation (Q593P).40 Although Neut1m/m mice
have spontaneous lung inflammation, this is totally resolved in
Il1r2/2/Neut1m/m mice, which can be used in models of
disease to establish effects that are independent of IL-1R.
Il1r2/2/Neut1m/m mice exhibited decreased eosinophilia in the
lung during asthma (Fig 4, A), indicating a protective effect of
NLRP1 activity even in the absence of IL-1R. This was further
supported by a decrease in IL-5 and IL-13 levels in the BAL fluid
of alum/OVA-treated Il1r2/2/Neut1m/m mice compared with
Il1r2/2 mice (Fig 4, C). Levels of monocytes/macrophages, neu-
trophils, TH2 cells, and ILC2s were comparable for both groups
(Fig 4, A and B). IL-4 levels in the BAL fluid of both groups
were also similar (Fig 4, C).

Because the protective effect of NLRP1 in asthma was
independent of IL-1R signaling, we hypothesized that IL-18
plays a major role in mediating protection. We
therefore investigated asthma pathology in Il1r2/2Il182/2 and
Il1r2/2Il182/2Neut1m/m mice. Again, we looked at immune
cell infiltration into the lungs of these mice and at cytokine levels
in the BAL fluid. Interestingly, there were no differences in
eosinophilia or IL-5 and IL-13 cytokine levels observed for
both groups (Fig 4, D and F). In addition, the levels of
monocytes/macrophages, neutrophils, TH2 cells, and type 2
innate lymphoid cells were also comparable for both groups
(Fig 4, D and E). These results indicate a role for IL-18 in
mediating protection to asthma in an NLRP1-dependent manner.
DISCUSSION
The herein presented data are consistent with literature

covering genetic associations of the inflammasome and IL-18 to
asthma and further advances our understanding of the role of
NLRP1 in this chronic disease.10-12,22,51,52 One limitation of our
approach was to interrogate NLRP1 haplotypes that were previ-
ously established in vitiligo and other autoimmune disorders,45

so we may not have captured haplotype effects that were specific
to asthma. In addition, a larger or more diverse asthmatic popula-
tion than what we currently have available would be needed to
replicate and validate these genetic associations. Our in vivo
data establish that activation of Nlrp1a is protective in mouse
models of this condition,51 via IL-18. Extrapolating from this,
we provide evidence that the M1184Vallele results in decreased
inflammasome activation in the context of DPP9 inhibition. This
would be consistent with the allele providing an increased disease
risk, which we confirmed by genetic analysis of patients with
asthma.

Our findings are novel because until now, studies looking at the
role ofM1184V did not activate the NLRP1 inflammasomewith a
specific stimulus. Using patient mutations that destabilize the
N-terminus, or DPP9-inhibiting mutations/molecules, we are the
first to observe that there is a dichotomous response, with
the former resulting in increased inflammasome activation and
the latter resulting in decreased inflammasome activation. Previ-
ously, it was documented that M1184V can increase autocatalytic
cleavage of NLRP1,21 and that this could account for increased
activation in the presence of N-terminal–destabilizing mutations.
This is consistent with the observation that, where genetic infor-
mation was available, all patients with dominantly inherited de-
stabilizing N-terminal mutations have also possessed the
M1184V allele, thus increasing NLRP1 activity.24 However, we
now show that M1184V also increases binding to DPP9. Conse-
quently, this would prevent its activation by DPP9 inhibition,
which we also observed (Figs 1 and 2).

Dichotomous effects of M1184Von NLRP1 activation are also
consistent with dichotomous effects in human diseases. Gathering
all known disease associations for this allele, it is clear that
a protective/causative role is not always consistent with
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FIG 4. Protective effect of Nlrp1 in asthma model requires IL-18 signaling. Mice carrying an activating

mutation of Nlrp1a (Q593P), referred to as Neut1m/m, are overtly healthy on the Il1r2/2 background, and

studied compared with Il1r2/2 as control in the alum/OVA asthma model for (A) numbers of eosinophils

(Eos), monocytes and macrophages (Mono/Mac), and neutrophils (Neut) in the lungs and (B) numbers of

TH2 cells and ILC2s in the lungs. C, Cytokine levels measured in the BAL fluid. Il1r2/2Il182/2Neut1m/m

mice were next investigated compared with Il1r2/2/Il182/2 as control and studied in the alum/OVA asthma

model for (D) numbers of eosinophils (Eos), monocytes and macrophages (Mono/Mac), and neutrophils

(Neut) in the lungs and (E) numbers of TH2 cells and ILC2s in the lungs. F, Cytokine levels measured in

the BAL fluid. ILC2, Type 2 innate lymphoid cell. Data are mean 6 SEM. Fig 4, A-C, representative of 2 inde-

pendent experiments. P values were calculated using unpaired t test between 2 groups. *P < .05.
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TABLE III. Diseases associated with the M1184V polymorphism

Disease Odds ratio P value

M1184V (rs11651270) contributes/

protects to/from disease (PMID)

Inflammasome contributes/

protects to/from disease (PMID)

Vitiligo and associated

autoimmunity

1.6 NA Contributes together with

L155H/V1059M45 (23382179)

IL-1b contributes53,54 (28082234, 25221996)

Asthma 3.4 .013 Contributes22 (29154202) IL-1b contributes55-57 (16210060, 23837489, 8527954)

IL-18 protects12,51,52 (12006423, 10629451, 11972614)

Breast cancer NA .013 Potentially contributes58

(23107584)

IL-1b contributes59 (30545915)

IL-18 protects60 (29725393)

HPV infection and

associated cervical

cancer

0.43 .003 Protects61 (26945813) IL-1b contributes to cancer62 (19904560)

IL-18 protects from infection63 (11470273)

Crohn disease 1.35 .02 Contributes to inflammatory

phenotype64 (20403135)

IL-1b contributes65,66 (22891275, 7817982)

IL-18 contributes67,68 (10352304, 10384110)

Chagas cardiomyopathy NA .036 Contributes69 (29438387) IL-1b involvement unclear70 (30354432)

IL-18 involvement unclear71 (25743241)

Type 1 diabetes 0.643 .002 Protects72 (31396539) IL-1b unclear73,74 (23562090, 21518168)

IL-18 contributes75,76 (25576800, 18359638)

Diabetic kidney disease 0.36 .01 Protects77 (29031829) IL-1b contributes78,79 (27516236, 31191559)

IL-18 contributes80-82 (12759891, 16306550, 17425653)

Malaria (Plasmodium

vivax)

NA NA Potentially contributes83

(26946405)

IL-1b potentially contributes to severity84 (29602073)

IL-18 reduces severity (with IL-12)85 (28615061)

Bacterial meningitis 2.32 .023 Potentially contributes86

(23053059)

IL-1b protects87 (12707352)

IL-18 contributes to inflammation88 (12742650)

NA, Not applicable/available.
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inflammasome inhibition/activation, respectively (Table III).53-88

Therefore, we suggest that in conditions such as asthma, where
M1184V contributes to disease but NLRP1 has a protective
role, the underlying mechanism of activation for NLRP1 resem-
bles DPP9 inhibition. In contrast, for conditions in which
M1184V and NLRP1 both contribute to disease, NLRP1 inflam-
masome activation would be mediated via destabilization of the
N-terminus.

Previously, deletion of Nlrp1b was found to protect mice
against inflammation in the lung due to inhalation of anthrax
lethal toxin.89 This is consistent with the mechanism of that dis-
ease model being dependent on IL-1b and neutrophil influx. In
contrast, our data to demonstrate that activation of Nlrp1 can pre-
vent a model of asthma are consistent with results from amodel of
bleomycin-induced lung fibrosis.90 In that model, Talabostat
(PT100) inhibition of DPP9 reduced collagen deposition and
inflammation, which would agreewith Nlrp1 activation providing
a protective effect in vivo, presumably via IL-18.91 Given that
insufficient NLRP1 exacerbated eosinophilia and IL-13 levels
in the mouse model we studied, it is conceivable that blocking
this axis with agents such as IL-4Ra may work more effectively
in carriers of the NLRP1 M1184V variant. However, there are
critical differences between NLRP1 in humans and mice, so the
conclusions from our work need to be viewed in this context.

Collectively, this work defines the role of NLRP1 in asthma at a
molecular level, and explains how the M1184V risk factor
decreases activation in the context of DPP9 inhibition. This has
implications for targeted therapies in asthma, and broader
considerations for the NLRP1 inflammasome in other diseases
associated with the M1184V allele.
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Key messages

d NLRP1 SNP M1184V is associated with asthma.

d NLRP1 M1184V alters inflammasome formation depend-
ing on the method of activation.

d NLRP1 activation decreases severity of mouse asthma
model.
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FIG E1. Gating strategy for inflammatory cell identification. Debris was gated out, and beads were identified

for quantification. Beads were further defined to remove contaminating cells. Doublets were removed and

live leukocytes identified before gating for granulocyte populations. First, granulocytes were defined as

CD45.21, B2202, or CD192, CD11b1 cells and afterwards further separated into eosinophils or neutrophils

on the basis of Siglec-F1 Ly6G2 or Siglec-F2 Ly6Ghi, respectively. Macrophages/monocytes were defined

as Siglec-F-, Ly6G2, and CD11b1. FSC-A, Forward scatter-area; FSC-H, forward scatter-height; SSC-A, side
scatter-area; SSC-H, side scatter-height.

J ALLERGY CLIN IMMUNOL

VOLUME 147, NUMBER 6

MOECKING ET AL 2145.e2



FIG E2. Gating strategy for T-cell subset and ILC identification. Debris was gated out, and beads were

identified for quantification. Beads were further defined to remove contaminating cells. Doublets were

removed, and live T lymphocytes were defined as CD451CD31CD41. T lymphocytes were further classified

as regulatory T cells, TH2 cells, or TH17 cells by expression of FoxP3, GATA3, or RORgt, respectively. ILCs

were defined as CD451CD32CD42 cells stratified into ILC2 or ILC3 by expression of GATA3 or RORgt,

respectively. ILC, Innate lymphoid cell; ILC2, type 2 innate lymphoid cell; ILC3, type 3 innate lymphoid

cell; SSC-A, side scatter-area; SSC-H, side scatter-height.
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FIG E3. Homology model of the NLRP1 FIIND domain. The model of the NLRP1 FIIND domain (residues

1084-1278) was generated using Swiss model.E1 Secondary structure elements are shown in cartoon repre-

sentation. Amino acid side chains of the cleavage site residues S1211 and F1212 as well as the side chains of

the proposed catalytic triad S1213, H1186, and E1195 and the methionine affected by the polymorphism

(M1184) are shown in stick representation. M1184 is not in direct proximity of the cleavage site but near

the catalytic H1186. Potentially, substitution of M1184 affects cleavage by changing the positioning of the

catalytic histidine, allowing it to induce cleavage more efficiently. Images and distance measurements

were generated using PyMOL. The structure of the cytoplasmic domain of Unc5b (PDB: 3G5B)E2 served

as a template for structure modeling.
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FIG E4. Sequence alignment of NLRP1 from different species. Sequence alignment of the amino acid

sequence of NLRP1 from different organisms. Sequences were taken from NCBI. Multiple sequence

alignment was performed using the Clustal Omega online tool with default settings.E3 Methionine 1184 in

human NLRP1 and corresponding residues in other species are highlighted. Stars/dots in the bottom line

indicate similarity (dots) or identity (stars) of the amino acids in the respective position.
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TABLE E1. GALA II Mexican American study participant demographics (discovery data set)

Characteristic Asthma cases Asthma controls P value*

N 610 295 �
Age (y), mean (SE) 12.6 (0.12) 15.0 (0.2) 2.20 3 10216

Sex: female, % 42.60 59.30 3.45 3 10206�
Obese§ (N obese/N nonobese) 254/356 85/210 2.49 3 10204�

*Values presented were produced using the Wilcoxon rank-sum test unless otherwise indicated.

�Not determined.

�P value presented was generated using the x2 test.

§Obesity definition: Obese 5 BMI > 95th percentile; nonobese 5 BMI <_ 95th percentile.
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TABLE E2. GALA II Puerto Rican study participant demographics (replication data set)

Characteristic Asthma cases Asthma controls P value*

N 1078 340 �
Age (y), mean (SE) 12.5 (0.1) 12.9 (0.1) .002

Sex: female, % 45.92 56.18 .0012�
Obese§ (N obese/N nonobese) 320/758 78/262 .02�

*Values presented were produced using the Wilcoxon rank-sum test unless otherwise indicated.

�Not determined.

�P value presented was generated using the x2 test.

§Obesity definition: Obese 5 BMI > 95th percentile; nonobese 5 BMI <_ 95th percentile.
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TABLE E3. SAGE African American study participant demographics (replication data set)

Characteristic Asthma cases Asthma controls P value*

N 877 379 �
Age (y), mean (SE) 14.1 (0.1) 16.2 (0.2) 2.20 3 10216

Sex: female, % 48.35 57.52 .0035�
Obese§ (N obese/N nonobese) 320/758 78/262 .0055�

*Values presented were produced using the Wilcoxon rank-sum test unless otherwise indicated.

�Not determined.

�P value presented was generated using the x2 test.

§Obesity definition: Obese 5 BMI > 95th percentile; nonobese 5 BMI <_ 95th percentile.
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TABLE E4. Imputation quality control metrics

Variant ID rs ID Alleles Imputation R2

R1366C rs2137722 G/A *

� rs6502867 T/C *

V1241L rs11653832 C/G *

M1184T rs146932154 A/G 0.98

M1184V rs11651270 T/C 0.99

M1119V rs35596958 T/C *

V1059M rs2301582 C/T *

T995I rs34733791 G/A *

T878M rs11657747 C/A 0.99

T782S rs52795654 G/C 0.99

T246S rs11651595 G/C 0.99

L155H rs12150220 A/T 0.99

� rs2670660 A/G 0.99

� rs8182352 C/T 0.99

*SNP was directly genotyped on the LAT1 genotyping array.

�No variant ID.
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TABLE E5. SNP allele frequencies in Mexican Americans

Variant ID rs ID Effect allele Alternate allele

Effect allele frequency

Asthma cases Asthma controls All participants

L155H rs12150220 T A 0.44 0.39 0.42

V1059M rs2301582 T C 0.42 0.36 0.40

M1184V rs11651270 C T 0.47 0.42 0.45
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TABLE E6. SNP allele frequencies in Puerto Ricans

Variant ID rs ID Effect allele Alternate allele

Effect allele frequency

Asthma cases Asthma controls All participants

L155H rs12150220 T A 0.29 0.30 0.30

V1059M rs2301582 T C 0.27 0.27 0.28

M1184V rs11651270 C T 0.42 0.40 0.42
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TABLE E7. SNP allele frequencies in African Americans

Variant ID rs ID Effect allele Alternate allele

Effect allele frequency

Asthma cases Asthma controls All participants

L155H rs12150220 T A 0.11 0.11 0.12

V1059M rs2301582 T C 0.14 0.15 0.14

M1184V rs11651270 C T 0.52 0.50 0.52
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TABLE E8. NLRP1 haplotype definitions

Variant ID rs ID Alleles

NLRP1 haplotype definitions

1 1C 2A 2B 3

R1366C rs2137722 G/A G G G G A

* rs6502867 T/C T C T T C

V1241L rs11653832 C/G C C C C G

M1184T rs146932154 A/G A A A G A

M1184V rs11651270 T/C T T C C C

M1119V rs35596958 T/C T T T T C

V1059M rs2301582 C/T C C T T C

T995I rs34733791 G/A G G G G A

T878M rs11657747 C/A G G G G A

T782S rs52795654 G/C G G G G C

T246S rs11651595 G/C G G G G C

L155H rs12150220 A/T A A T T T

* rs2670660 A/G A A G G G

* rs8182352 C/T T T C C C

Reference haplotype used for regression analyses is highlighted in boldface.

*No variant ID.
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TABLE E9. NLRP1 haplotype frequencies by asthma status in Mexican Americans

Haplotype

Haplotype frequency

Asthma cases Asthma controls Overall

Haplotype 1 0.31 0.38 0.33

Haplotype 1C 0.17 0.15 0.17

Haplotype 2A 0.14 0.11 0.13

Haplotype 2B 0.25 0.22 0.24

Haplotype 3 0.01 0.02 0.01

Reference haplotype used for regression analyses is highlighted in boldface.
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TABLE E10. NLRP1 haplotype frequencies by asthma status in Puerto Ricans

Haplotype

Haplotype frequency

Asthma cases Asthma controls Overall

Haplotype 1 0.31 0.30 0.31

Haplotype 1C 0.16 0.19 0.17

Haplotype 2A 0.17 0.17 0.17

Haplotype 2B 0.05 0.05 0.06

Haplotype 3 0.01 0.02 0.02

Reference haplotype used for regression analyses is highlighted in boldface.
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TABLE E11. NLRP1 haplotype frequencies by asthma status in African Americans

Haplotype

Haplotype frequency

Asthma cases Asthma controls Overall

Haplotype 1 0.35 0.35 0.35

Haplotype 1C 0.04 0.04 0.04

Haplotype 2A 0.06 0.06 0.06

Haplotype 2B 0.007 0.008 0.008

Haplotype 3 0.02 0.02 0.02

Reference haplotype used for regression analyses is highlighted in boldface.
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TABLE E12. NLRP1 haplotypes associated with asthma status in Puerto Rican children from the GALA II study

Haplotype R1366C rs6502867 V1241L M1184T M1184V M1119V V1059M T995I T878M T782S T246S L155H rs2670660 rs8182352

Odds

ratio 95% CI

P

value

Haplotype 1 G T C A T T C G G G G A A T Reference haplotype

Haplotype 1C G C C A T T C G G G G A A T 0.84 0.64-1.10 .21

Haplotype 2A G T C A C T T G G G G T G C 0.96 0.74-1.25 .78

Haplotype 2B G T C G C T T G G G G T G C 0.91 0.60-1.36 .63

Haplotype 3 A C G A C C C A A C C T G C 0.65 0.31-1.35 .24
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TABLE E13. NLRP1 haplotypes associated with asthma status in African American children from the SAGE II study

Haplotype R1366C rs6502867 V1241L M1184T M1184V M1119V V1059M T995I T878M T782S T246S L155H rs2670660 rs8182352

Odds

ratio 95% CI

P

value

Haplotype 1 G T C A T T C G G G G A A T Reference haplotype

Haplotype 1C G C C A T T C G G G G A A T 0.84 0.51-1.38 .49

Haplotype 2A G T C A C T T G G G G T G C 1.16 0.78-1.73 .45

Haplotype 2B G T C G C T T G G G G T G C 1.81 0.63-5.21 .27

Haplotype 3 A C G A C C C A A C C T G C 0.83 0.42-1.65 .60
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TABLE E14. NLRP1 variant association with asthma status in Puerto Rican children from the GALA II study

Variant rs ID Effect allele Effect allele frequency Odds ratio 95% CI P value

L155H rs12150220 T 0.30 0.94 0.78-1.14 .55

V1059M rs2301582 T 0.28 1.00 0.83-1.21 .99

M1184V rs11651270 C 0.42 1.04 0.88-1.24 .64
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TABLE E15. NLRP1 variant association with asthma status in African American children from the SAGE II study

Variant rs ID Effect allele Effect allele frequency Odds ratio 95% CI P value

L155H rs12150220 T 0.12 1.05 0.78-1.40 .76

V1059M rs2301582 T 0.14 0.99 0.77-1.28 .97

M1184V rs11651270 C 0.52 1.08 0.91-1.29 .38
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