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Stllnrltlary 

The glycosphingolipid globotriaosyl ceramide (CD77) and other globo-series glycolipids containing 
terminal galactose (Gal)otl-4Gal residues function as receptors for the verotoxin (Shiga-like toxin) 
family of Escherichia coli-elaborated toxins. CD77 is also a marker for germinal center B lym- 
phocytes and Burkitt's lymphoma cells. The pan B cell marker CD19 is a 95-kD membrane 
protein that appears early in B cell differentiation and is only lost upon terminal differentiation 
to plasma cells. CD19 is involved in signal transduction and has a regulatory role in B cell 
proliferation and differentiation in response to activation in vitro. However, an endogenous ligand 
for CD19 has not yet been identified. We report herein that the extracellular domain of CD19 
has a potential CD77-binding site with extensive sequence similarity to the verotoxin B-subunits. 
These B-subunit-like sequences on CD19 are in close proximity following the organization of 
intervening amino acids into disulfide-linked domains. Cocapping of CD19 and CD77 on Burkitt's 
lymphoma-derived Daudi cells with anti-CD19 antibodies indicates that CD19 and CD77 are 
associated on the B cell surface. Cell surface binding of anti-CD19 antibodies is decreased on 
CD77-deficient mutant Daudi cells, suggesting that CD77 expression influences the surface 
expression of CD19. Wild-type Daudi cells, but not the CD19/CD77-deficient mutants, bind 
to matrices expressing the carbohydrate moiety of CD77 or other Galc~l-4Gal containing glyco- 
lipids. This binding can be inhibited by anti-CD77 antibodies, the CD77-binding verotoxin 
B-subunit or anti-CD19 antibodies. Daudi cells exhibit a degree of spontaneous homotypic adhesion 
in culture while the CD77/CD19-deficient Daudi mutants grow as single cells. The stronger 
homotypic adhesion that occurs in B cells after antibody ligation of CD19 and that involves, 
to some extent, the integrin system, is also dramatically lower in the mutant cells relative to 
the parent cell line. However, reconstitution of mutant cells with CD77 restores the anti-CD19 
mAb-induced adhesion to wild-type Daudi cell levels. These studies represent the first time that 
CD19-mediated signaling has been reconstituted in a low-responder B cell line. These convergent 
observations provide compelling evidence that CD19/CD77 interactions function in adhesion 
and signal transduction at a specific stage in B cell development and suggest that such interactions 
have a role in B lymphocyte homing and germinal center formation in vivo. By targeting CD77 + 
B cells, verotoxins may suppress the humoral arm of the immune response during infection. 
This may explain the infrequent and sporadic nature of antitoxin antibody responses in individuals 
exposed to verotoxin-producing E. coll. 

1 ~] 'erotoxins  (VTs) produced by serotype 0157:H7 and 
~ o t h e r  enterohemorrhagic Escherichia coli have been im- 
plicated in the etiology of hemorrhagic colitis and hemolytic 
uremic syndrome (the so-called "hamburger disease") (1). Also 
known as Shiga-like toxins (2), they are composed of a single 
A-subunit with N-glycanase activity and a pentameric array 

1 Abbreviations used in this paper: ASA, acetylated silylaminated 8-methoxy- 
carbonyloctyl linkage arm; DGDG, digalactosyl diglyceride; FDC, follicular 
dendritic cells; Gal, galactose; GalNac, N-acetyl galactosamine; Gb4, 
globotetraosyl ceramide; Glc, glucose; GlcNac, N-acetyl glucosamine; 
TRITC, tetramethylrhodamine isothiocyanate; VT, verotoxin; VTB, 
verotoxin B-subunit; VT1 B, verotoxin 1 B-subunit. 
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of noncovalently associated B-subunits (3, 4). The A-subunit 
cleaves a specific adenine residue on the 28S ribosomal sub- 
unit causing inhibition of protein synthesis and, ultimately, 
cell death (5, 6). B-subunits specifically target terminal galac- 
tose (GaI)c~l ~ 4 Gal residues of globoseries glycosphin- 
golipids exposed on cell surfaces (7-9). Although terminal 
Galotl --~ 4 Gal residues are present on CD77 (globotriaosyl 
ceramide [Gb3]), galabiosyl ceramide, and P1 blood-group 
glycolipids, CD77 is by far the most common of these glyco- 
sphingolipids and is the only one yet shown to function as 
a receptor for VT on human cells (10). The internal Galc~l 
--~ 4 Gal residues of globotetraosyl ceramide (Gb4-globo- 
side) are not recognized by VTs associated with human dis- 
ease (11). However, both CD77 and GB4 can function as 
receptors for VT2e (11, 12), which has been implicated in 
the etiology of edema disease in swine (13). Terminal digalac- 
tosyl residues on a diglyceride backbone (9, 14, 15) or as free 
oligosaccharide (8) are not recognized by VTs. While CD77 
is found on a variety of human cell types in vitro, it has been 
proposed that certain cells, notably pediatric glomerular en- 
dothelial cells, are especially susceptible to the effects of VT 
in vivo (16). 

Evidence in support of a specific role for CD77 in B cell 
differentiation includes reports that CD77 expression in B 
lymphocytes is largely restricted to germinal center cells (17, 
18) and that IgG and IgA responses are selectively inhibited 
by VT in vitro (19) and, possibly, in vivo (20), whereas IgM 
responses remain relatively intact. Burkitt's lymphoma cell 
lines express high levels of CD77 (21) and thus may serve 
as in vitro models for germinal center B cells. Mutants of 
the Burkitt's lymphoma-derived Daudi cell line that are 
deficient in CD77 are resistant to both the cytotoxic effects 
of verotoxin and the antiproliferative effects of type I IFN 
(22). Similarities in amino acid sequences (23) between 
verotoxin B-subunits (VTBs) and the NH2 terminus of the 
63-kD subunit of the human IFN-cx receptor (24) suggest 
a direct role for CD77 in IFN signaling. This has recently 
been confirmed (25, 26). 

A search of the National Biomedical Research Foundation 
(NBRF) protein data bank for proteins with amino acid se- 
quences similar to those of the VTBs, identified CD19 as 
another potential CD77-binding protein. CD19, the earliest 
marker of cells committed to the B lymphocyte lineage, is 
only lost upon terminal differentiation to plasma cells (27). 
It forms a complex on the B cell surface with CD21, TAPA-1, 
and Leu-13 (28, 29). Although an endogenous ligand for CD19 
has not been described, antibody ligation of CD19 has been 
shown to modulate signal transduction, adhesion, prolifera- 
tion, and differentiation following B cell activation (28, 30-36). 
CD19 is a 95-kD protein with an extracellular region that 
includes three potentially disulfide-linked domains, two of 
which are immunoglobulin-like, a short hydrophobic trans- 
membrane region, and a long cytoplasmic tail with multiple 
potential phosphorylation sites (37). We propose that a CD77- 
binding site in the extracellular region of CD19 is involved 
in the homotypic adhesion and homing of germinal center 
B cells, and that CD77 is a component of the CD19 mem- 
brane complex. By targeting CD77-positive B lymphocytes, 
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VTs may allow enterohemorrhagic E. coli to evade the hu- 
moral arm of the immune response during infection. 

Materials and Methods 
Reagents. Verotoxin 1 B-subunit (VT1 B) was isolated as pre- 

viously described (4). Anti-CD19 (clone 84 and B4-FITC) and 
isotypic control antibodies were purchased from Coulter Electronics 
(Hialeah, FL) and tetraraethylrhodaraine isothiocyanate (TILITC)- 
conjugated goat anti-mouse IgG from Sigma Chemical Co. (St. 
Louis, MO). Anti-CD77 raAb (clone 38.13) was a gift ofJ. Wids 
(Institut Gustave Roussy, Villejuif Cedex, France). CD77, P1 and 
Gb4-based Synsorb matrices were a gift of G. Armstrong (Univer- 
sity of Alberta, Edmonton, Canada). Acetylated silylaminated 
8-methoxycarbonyloctyl linkage arm (ASA) and ~-glucose matrices 
were from O. Hindsgaul (University of Alberta). 

Immunofluorescence and Flow Cytometry. Daudi ceUs and the 
Daudi-derived VT500 mutant were maintained as described (38). 
VTS00 cells were periodically checked for CD77 + revertants by 
iraraunofluorescence using VT1 B-subunit conjugated to FITC 
(VTB-HTC) (16), VTB-FITC and primary antibodies were used 
at 10/~g/ral unless otherwise indicated. Capping of CD19 was per- 
formed by incubating cells with anti-CD19 raAb for 30 rain at 
4~ followed by TRITC-conjugated goat anti-mouse IgG (Sigma 
Chemical Co.) at 37~ for 1.5 h. Cells were then washed in cold 
PBS and incubated with VTB-FITC for 30 min at 4~ Capping 
of CD77 was performed by incubation of cells with VT1 B-FITC 
at 37~ for 1 h. Cells were then washed in cold PBS and incubated 
with anti-CD19 followed by TRITC-2nd antibody at 4~ Double- 
labeling of VT500 revertant cells for CD77/CD19 was performed 
by incubating cells (5 x 10 s) with VTB-HTC and anti-CD19 
mAb at 4~ for 30 rain. The cells were washed in cold PBS and 
TRITC-conjugated anti-raouse IgG was added at 4~ for 30 rain. 
For flow cytoraetry, Daudi and VT500 cells were labeled with B4- 
FITC or IgGI-FITC (Coulter Electronics) for 30 min at 4~ and 
washed in cold PBS. Cells were then analyzed on an Epics Profile 
Analyzer (Couher Electronics). 

Binding of Cells to Glycolipid-based Carbohydrate Matrices. CeUs 
(5 x 10 s) in 1 ral RPMI 1640 with 10% FBS were added to 250 
#g of oligosaccharide matrices (39) and incubated at 37~C, 5% 
CO2, for 24 h. The VT1 B and mAbs against CD77 and CD19 
were used at 10 #g/ral. For the assays in which Galc~l-4Gal-con- 
taining matrices were blocked with anti-CD77 or VT1 B-subunit, 
results shown are for Pl oligosaccharide matrices that had been 
preincubated with 10/~g of mAb or B-subunit for 2 h in PBS at 
4~ They were then washed in PBS before addition to cells. Daudi 
cell aggregates were dispersed through a 50-~m mesh cell strainer 
(Becton Dickinson & Co., Mountain View, CA) before binding 
assays. 

Reconstitution of VT500 Cells with Glycolipids Incorporated into 
Liposomes and Anti-CD19 Antibody-induced Homotypic Adhesion 
Assays. CD-77 deficient VT500 calls were reconstituted with 
CD77, Gb4, or digalactosyl diglyceride (DGDG) incorporated into 
fusigenic liposomes at 4 x 1@ cells/ml according to previously 
published methods (10, 38). These cells, along with VT500 and 
Daudi cell controls at 1@ cells/ral, were then treated with anti- 
CD19 antibody at 10 I~g/ml and subsequently monitored for in- 
creased horaotypic adhesion. 

Results 

CD19 Has a Potential CD77 Binding Site Based on Sequence 
Similarities to VTBs. The similarities in amino acid compo- 
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Figure 1. Comparison of amino acid sequences from the extracdlular regions of CD19 and the 63-kD subunit of the IFN-ol receptor with VTB 
sequences. (.4) Asterisks represent intervening sequences in CD19 that do not resemble VTB sequences. Numerical designations for CD19 NH2-terminal 
amino acids are from the NBKF protein data bank (41). VTB seqtmaces are gha~ in their entirety. (B) Extracelhlar region of CD19 organized into 
disulfide-linked domains (37). VT-like sequences are shaded grey. 

sition between VTBs and the corresponding sequences in the 
extracellular domain of CD19 (40, 41) are aligned in Fig. 1 
A. The similarity is quite extensive and includes several se- 
quences which are not shared with the 63-kD subunit of the 
IFN-ol receptor. A model for CD19 has been proposed in 
which the intervening, VT-dissimilar sequences form disulfa~ 
linked domains (37), thus bringing the VT-like regions into 

dose proximity (Fig. 1 B). When optimally aligned, the VT- 
like CD19 sequences have 41%, 34%, and 37% identity to 
VT1, VT2, and VT2e B-subunits, respectively. If these CD19 
sequences are compared with a "consensus" sequence of VTBs, 
then the identity rises to 46% (49% ffconservative substitu- 
tions are included). The space-fiUing model of VT1 B (Fig. 
2) is based on the crystal structure (42). Most of the amino 

Figm~ 2. Space-filllng model ofVT1 B 
oligomer highlighting amino acids shared 
with CD19 (as shown in Fig. 1 A). Side 
chains of identical amino acids are shown 
in black whereas those of similar amino 
acids are in white. The arrow indicates the 
proposed CD77-binding deft (42). 
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acids shared by the CD19 extracellular region lie within the 
proposed CD77-binding cleft between monomers. 

CDI9/CD77 Interactions on B Cells In Vitro. Daudi cells 
normally express high levels of CD77 (21, 43). Cocapping 
of CD19 and CD77 with anti-CD19 antibodies indicates that 
they are associated on the Daudi cell surface (Fig. 3, A and 
B). However, the capping of CD77 by the VT1 B does not 
result in the cocapping of CD19 (Fig. 3, C and D). Anti-# 
mAb also cocaps CD77 (results not shown), which could 
be due to the presence of CD19 in the antigen receptor com- 
plex (30). 

Daudi cell mutants that lack CD77 have reduced surface 
CD19 levels as determined by flow cytometry (Fig. 4 E). In 
contrast, surface levels of CD10, CD20, HLA-DK, and IgM 
on the VT500 cells are similar to those of wild-type Daudi 
cells (results not shown). Occasionally, some VT500's will 
spontaneously revert to the wild-type CD77 + phenotype in 
culture. These revertants show a coincident increase in CD19 
surface expression to a level approximating that of wild-type 
Daudi cells (Fig. 4, C and D). 

Binding of B Cell Lines to Glycolipid-based Oligosaccharide 
Matrices. Verotoxins wiU bind matrices of CD77 oligosac- 
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Figure 3. Association of CD19 and 
CD77 on the surface of Daudi cells. (A) 
Capping of CD19 on wild-type Daudi 
cells with anti-CD19 mAb and TRITC- 
conjugated goat anti-mouse IgG results 
in (B) the cocapping of CD77 as visual- 
ized by the binding of FITC-conjugated 
VT1 B (VTB-FITC). (C) Capping of 
CD77 on wild-type Daudi cells with 
VTB-FITC does not result in the cocap- 
ping of CD19 molecules (D). 
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Figure 4. Homotypic adhesion and binding of Daudi cell lines to CD77- 
based oligosaccharide matrices correlates with levels of CD77 and CD19 
at the cell surface. (,4) Binding of wild-type Daudi cells and (B) lack of 
binding of VTS00, the CD77/CD19-deficient Dandi mutant line, to CD77- 
based matrices (Galoel --* 4GalB1 --~ 4Glc). Note, also, the spontaneous 
homotypic adhesion evident in the wild-type but not the mutant cells. 
(C) VTB-FITC labeling of CD77 + VTS00 revertants. (D) The same field 
of cells as in (/3) but labeled with anti-CD19 followed by TRATC-conjugated 
goat anti-mouse IgG. Only the CD77 + revertants have high levels of sur- 
face CD19 similar to the parent Dandi line. (E) Flow cytometer histogram 
showing a difference in the reactivity of anti-CD19 on Dandi and VT500 
cells. Mean fluorescence intensity was 12.58 and 5.82 (log10 fluorescence) 
for wild-type Daudi cells and the CD77-deficient VT500 mutants, respec- 
tively. Thin lines denote labeling with IgG1-FITC (isotypic controls), thick 
lines B4-FITC mAb conjugated to FITC. (Solid lines) Daudi cell fluores- 
cence; (dashed lines) VT500 cell fluorescence. 

charides (Galotl-4Galfll-4 glucose [Glc]) and other terminal 
Galc~l -*  4Gal matrices (39). Wild-type Daudi cells, but not 
the CD19-deficient VT500 cells, also bind Galoll -*  4Gal 
containing matrices, further implicating CD19 as a mediator 
of  Galotl -~ 4Gal adhesion (Fig. 5 A). Preincubation of these 
matrices wi th  anti-CD77 mAb prevents the binding to blood 
group Pl  (Galotl -~ 4Galfll - -  4N-acetyl glucosamine 
[GlcNac]) and CD77-based matrices. The VT1 B inhibits 
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binding to a lesser extent (Fig. 5 B), likely due to the penta- 
meric nature of  VTBs in aqueous solution that may allow 
some binding to Galoll --* 4Gal residues on cells and ma- 
trices simultaneously, potentially cross-linking cells to the 
matrices. The VT1 B does not bind to Gb4 carbohydrate 
matrices (N-acetyl galactosamine [GalNacfll] -~ 3Galc~l --~ 
4Galfll  --* 4Glc) (G. Armstrong,  personal communication) 
which contain non-terminal Galc~l -*  4Gal residues and there- 



Figure 5. Binding of Daudi cells to Galod ~ 4Gal residues correlates 
with the availability of CD19 on the cell membrane. (A) Binding assays 
of wild-type Daudi cells and CD77/CD19-deficient VT500 cells to CD77, 
P1 (Galod --~ 4GalB1 --~ 4GlcNac) and Gb4 or globotetraosyl ceramide 
(GalNacB1 -'~ 3Galo~l --~ 4Gal~l --- 4Glc)-based matrices. #.Glucose and 
ASA matrices included as controls. The CD19-ddldem cells show no 
significant binding to Gakxl -~ 4Gal matrices. (B) Blocking of Daudi cell 
binding to Gahxl ---- 4Gal-containlng matrices by anti-CD77 mAb or VT1 
B. (C) Blocking of Daudi cell binding to Galod --~ 4Gal-containing ma- 
trices by anti-CD19 mAb. Anti-CD19 mAb was added to Daudi cells just 
prior to their addition to CD77, Gb4, or #-glucose (control)-based car- 
bobydrate matrices. 

fore does not inhibit Daudi celi-Gb4 matrix adherence. Anti- 
CD19 antibodies inhibit binding of Daudi ceils to all Galcd 
--~ 4Gal containing matrices but not to B-glucose matrices 
(Fig. 5 C). The CD19-deficient Daudi mutants are also capable 
of B-glucose binding (Fig. 5 A). 

CDI9/CD77 Mediated Homotypic Adhesion. In contrast 
to Daudi cells that spontaneously exhibit homotypic adhe- 
sion in culture, the CD77/CD19-deficient Daudi mutants 
grow as single cells (Fig. 4, A and B). The stronger adhe- 
sion, which is induced in Daudi cells after ligation of CD19 
by antibody, is also dramatically reduced in VT500 cells (Fig. 
6, A and B). However, levels of antibody-induced adhesion 
similar to that observed in Dandi cells can be induced in VT500 
cells that have been reconstituted with CD77 but not Gb4, 
DGDG, or liposome phospholipids, alone (Fig. 6, C-F). 
Results shown are ceils at 40 h post-treatment with anti- 
CD19 antibody. 

Discuss ion 

The binding specificity of VT B-subunits for Gala1 
4Gal residues of glycosphingolipids has been extensively in- 
vestigated (7-9, 12, 14, 15, 44, 45). Reconstitution of VT- 
resistant calls with CD77 (10) or Gb4 (38) and the induc- 
tion of CD77 synthesis (46, 47) have shown that these globos- 
eries glycolipids are functional cell surface receptors for VTs. 
By targeting globoseries glycolipids on human calls, VTs pro- 
vide important tools for investigating the function of these 
glycosphingolipids in normal cell physiology. 

Recently it has been shown that VTBs resemble the ex- 
traceUular domain of the 63-kD subunit of the IFN-a receptor 
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in their amino acid sequences (23). This provided a molec- 
ular explanation for the earlier observation that cells that were 
CD77-deficient were resistant to both IFN-c~-induced growth 
inhibition and VT cytotoxicity (22, 48). Similarly, a role for 
CD77 in B cell development was anticipated due to the re- 
stricted appearance of CD77 in human B cell stages (18, 49, 
50) and the differential action of VT on B cell populations 
(18, 19, 51). 

The VT-like amino acid sequence of the IFN-a receptor 
subunit is contiguous and lies near the NH2 terminus in the 
extracelhlar domain (23). The majority of these shared amino 
acids are also found in CD19. However, additional VT-like 
sequences are present in CD19 that are not in the IFN-a 
receptor subunit (Fig. 1). Although the VT-like sequences 
of the CD19 extracellular region are not contiguous, the 
predicted secondary structure of CD19 results in their close 
apposition. A common structural motif for carbohydrate- 
binding proteins, including the VTB, has been described in 
which a barrel of antiparaUe115-sheets is capped by a a-helix 
(52). The CD19 sequences which resemble VTBs include the 
B-subunit a-helix (residues 180-189 of CD19), whereas the 
corresponding IFN-a receptor subunit sequences do not. 
However, the amino acids of the a-helix do not appear to 
be directly involved in carbohydrate-binding (42). VTB amino 
acids important for the specific binding of CD77 and Gb4 
glycolipid receptors have been identified using a combina- 
tion of site-directed mutagenesis, chemical modification, and 
crystal structure analysis (42, 44, 53, 54). The proposed CD77- 
binding clefts lie between the monomers of the pentameric 
B-subunits, suggesting that CD19 oligomers may be required 
in order to bind CD77. Many of the amino acids shared by 



Figure 6. Restoration of anti-CD19 induced homotypic adhesion in VT500 cells reconstituted with CD77. Homotypic adhesion after antibody 
ligation of CD19 in (A) wild-type Daudi cells; (B) VTS00 cells; and VT500 cells reconstituted with liposomes containing (C) CD77, (D) Gb4, (E) 
DGDG, and (F) liposome phospholipids, only. Cells treated with mouse IgG1 as isotypic control: (G) VTS00 cells reconstituted with CD77 liposomes 
(VTS00 cells reconstituted with other glycolipid/liposome preparations and normal VT500 cells similar); (H) wild-type Daudi cells. IgG1 results are 
similar to untreated cells in culture (not shown). 

CD19 and VTB lie within these clefts (42) (Fig. 2). How- 
ever, most of the identical amino acids lie in the (n+l) VT 
B monomer forming the binding cleft (Fig. 2). It may be 
this that "side" of the cleft is sufficient to define the glycolipid 
binding specificity and that mutations made in the (n) 
monomer (53, 55) only compromise carbohydrate access. The 
shared amino acids include glutamic acids 27 (10; numbers 
in brackets indicate the corresponding positions of VT1 B 
amino acids), 30 [16] and 120 [28] and aspartic acid 32 [17] 
that have the potential to form hydrogen bonds with polar 
groups on CD77, and phenylalanine 122 [30] and trypto- 
phan 124 [34] which could stack against a saccharide ring 
by hydrophobic interactions. In the area of amino adds 30-33 
of CD19 [16-18], the EGDN sequence of CD19 most closely 
resembles the corresponding EDN sequence of VT2e (Fig. 
1 A), the only member of the VT family that binds internal 
as well as terminal Galeel ~ 4Gal residues of glycolipids (12, 
14). Alteration of the VT1 B-subunit using site-directed muta- 
genesis to change aspartic acid 18 to asparagine, as occurs 
in VT2e, resulted in a toxin which bound Gb4 in addition 
to CD77 (44). The possibility that CD19 may bind both CD77 
and Gb4 is supported by the results of the oligosaccharide 
matrix binding assays. 

Daudi cells bind matrices containing both terminal (CD77 
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and Pl-based) and internal (Gb4-based) Galotl -~ 4Gal 
residues (Figs. 4 and 5). This binding can be blocked by prein- 
cubation of the CD77 and P1 matrices with Galotl -* 4Gal 
binding agents such as VT1 B or anti-CD77 mAb (Fig. 5 
B). Treatment of Daudi cells with anti-CD77 mAb and VTB 
directly was avoided as ligation of surface CD77 has been 
shown to induce apoptosis in Burkitt's lymphoma cells (51). 

Treatment of Daudi cells with anti-CD19 mAb also blocks 
the binding to Galcel --~ 4Gal-containing matrices. Anti- 
CD19 does not prevent binding of Daudi cells to/~-glucose 
matrices, thus specifically implicating CD19 as a mediator 
of Galo~l --~ 4Gal adhesion (Fig. 5 C). The CD77-deficient 
mutant, VT500, has low surface expression of CD19 (Fig. 
4) although surface levels of CD10, CD20, HLA-DR, and 
IgM on the VT500 cells are similar to those of wild-type 
Daudi cells. VTS00 cells do not bind any of the Galotl --~ 
4Gal matrices although they are capable of B-glucose binding 
(Fig. 5 A). Therefore, the mechanism for/~-glucose binding, 
which is not known, does not involve CD19. VT500 cells 
also do not exhibit the spontaneous homotypic adhesion typical 
of Daudi cells in culture, as would be expected if such inter- 
actions are mediated through the binding of CD19 to CD77 
molecules on adjacent cells in a manner analogous to Daudi 
cell CD19/matrix CD77 binding. VT500 cells that have 



reverted to express wild-type levels of CD77 also express wild- 
type CD19 levels. It is possible that the presence of CD77 
changes the conformation of CD19, thereby causing an in- 
crease in antibody recognition. CD77 binding could direct 
the folding of nascent CD19 protein such that a CD77-binding 
site, stabilized by disulfide-linked domains (37), is formed 
(Fig. 1 B). Thus CD19 synthesized in CD77-negative or 
deficient B cells may lack CD77-binding capability. 

The cocapping of CD77 and CD19 by anti-CD19 mAb 
indicates that they are able to associate on the B cell surface 
(Fig. 3). Therefore, CD77 could be considered a component 
of the CD19 complex in Burkitt's lymphoma and germinal 
center B cells. While CD21 and TAPA-1 are associated with 
CD19 in this complex, neither possesses VTB-like sequences. 
Therefore, they are unlikely to be responsible for the cocap- 
ping of CD77 and CD19 by anti-CD19 mAb. In contrast, 
CD19 is not capped by VT1 B. Relative to glycolipids such 
as CD77, CD19 may be more firmly anchored in the mem- 
brane by association with other membrane proteins or cyto- 
skeletal components. However, such "nonreciprocal" cocap- 
ping has been previously reported for CD19-associated proteins. 
For example, anti-IgM caps both surface IgM and CD19 on 
B cells although anti-CD19 does not cap IgM (30). 

The relatively weak "spontaneous" homotypic adhesion 
of Daudi cells in culture cannot be inhibited by anti-CD19 
mAb because antibody ligation of CD19 induces a much 
stronger homotypic adhesion in B cells. This strong adhe- 
sion, which is mediated, in part, through the integrin system 
(56), may require the interaction of CD19 and TAPA-1, the 
tetraspan protein member of the CD19 complex (29, 31). 
This anti-CD19-induced homotypic adhesion is also reduced 
in the VT500 cells relative to wild-type Daudi cells (Fig. 6 
A and B). Restoration of anti-CD19 induced homotypic adhe- 
sion to wild-type levels by reconstitution of VTS00 cells with 
CD77-containing liposomes provides further evidence for a 
functional interaction between CD19 and CD77 within a 
cell (Fig. 6, C-H). Failure of Gb4 to reconstitute this strong 
adhesion mechanism, even though Daudi cells bind both 
Gb4- and CD77-based matrices, implicates CD77 as having 
a specific function in the CD19 signaling pathway. VT that 
has bound cell surface CD77 undergoes an unusual "retro- 
grade transport" through the Golgi apparatus and endoplasmic 
reticulum to the nuclear membrane (57). Perhaps CD19-medi- 
ated signal transduction requires a retrograde transport mech- 
anism that is provided by CD77, but not Gb4. Alternatively, 
CD77 could be modulating this adhesion by regulating CD19 
surface expression as discussed above. 

Taken together, these observations provide compelling evi- 
dence that CD19/CD77 interaction is involved in homotypic 
adhesion of Daudi cells at two levels: First, our results indi- 
cate that the spontaneous homotypic adhesion of Daudi cells 
in culture is mediated, to some extent, through CD19/CD77 
interactions between adjacent CD77+CD19 + cells. CD19 
contains a potential CD77-binding domain similar to that 
of VTBs, whose ability to bind CD77 and other Galc~l --~ 
4Gal containing glycolipids is well characterized. The Daudi- 
derived VT500 cells, which are CD77/CD19-deficient rela- 

tive to the parent cell line, do not exhibit this spontaneous 
homotypic adhesion and do not bind CD77 or other Galod 

4Gal-containing oligosaccharide matrices. Wild-type Daudi 
cells do bind Galod ~ 4Gal-containing matrices, and this 
binding can be inhibited by anti-CD19 and anti-CD77 mAb 
and the VT1 B. Second, our evidence indicates CD77 is in- 
volved in the anti-CD19-induced homotypic adhesion which 
is not mediated directly through CD19/CD77 interaction, 
but rather through the integrin system and, perhaps, other 
strong adhesion mechanisms. We propose that CD77's role 
in this type ofhomotypic adhesion is due to interaction with 
CD19 molecules within the same cell. Cocapping of CD19 
and CD77 with anti-CD19 mAb indicates that they are as- 
sociated in the plasma membrane of Daudi cells. The CD77- 
deficient VT500 cells have reduced surface expression of CD19 
as determined by immunofluorescence and flow cytometry. 
However, VT500 cells that have reverted to express wild-type 
levels of CD77 also exhibit wild-type CD19 surface expres- 
sion. CD77 binding could influence the anti-CD19 antibody 
recognition by inducing a conformational change in the VT- 
like region of CD19 by directing formation of disulfide-linked 
extracellular domains. Antibody ligation of CD19 induces 
dramatically reduced levels of homotypic adhesion in VTSO0 
cells relative to wild-type Daudi cells. Reconstitution of VT500 
cells with CD77, but not Gb4, DGDG, or liposomes alone, 
restores the anti-CD19 induced homotypic adhesion in these 
cells to wild-type Daudi cell levels. This provides direct evi- 
dence of a functional role for CD77 in the CD19 signaling 
pathway. 

This two-step model of CD19/CD77-mediated adhesion 
has important implications for B cell adhesion in vivo. Daudi 
cells and other Burkitt's lymphoma cells are phenotypically 
similar to a subset of normal germinal center B cells (CD77 + 
CD19+CD10+CD20+HLA-DR+) (49). Therefore, CD19/ 
CD77 interactions could be involved in germinal center for- 
mation. Follicular dendritic cells (FDCs) are the only cells 
other than B lymphocytes that express CD19 (58). Because 
FDCs as well as macrophages in histological sections of lym- 
phoid tissue also have been reported to be CD77 § (59), 
these cells have the potential to anchor B cells in follicles 
through CD19/CD77 interactions. Homotypic adhesion of 
B cells in the germinal centers could then occur, at least ini- 
tially, through CD19/CD77 binding between adjacent cells 
in a manner similar to the spontaneous Daudi cell aggrega- 
tion in culture. Stronger mechanisms of adhesion that could 
play a subsequent role in the interactions of these cells in- 
clude the transient LFA-1/intercellular adhesion molecule 1 
(ICAM-1) interactions and the other, as yet unidentified, mech- 
anisms of adhesion that occur after antibody ligation of CD19 
and other B cell membrane proteins (56, 60). Interestingly, 
IFN-ol also induces a strong homotypic adhesion in B cells 
through as yet undetermined mechanisms (61). CD77 could 
play a similar role in this adhesion, as well, through interac- 
tion with the extracellular domain of the IFN-c~ receptor 
subunit (23). Subsequent downregulation or loss of CD77 
from germinal center B cells, perhaps followed by downregu- 
lation of surface CD19 expression, would lead to the dispersal 
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of cells from germinal centers. In support of this model, B 
cell stages associated with other areas of lymphoid tissue are 
CD77-negative (62) and the terminally differentiated plasma 
cells are CD19-negative (27). 

The ability of B cells to bind Galotl ~ 4Gal residues may 
also have a function in B lymphocyte homing to sites of inflam- 
mation. For example, TNF-o~ has been shown to upregulate 
CD77 expression on human endothelial cells (47, 63, 64), 
and endothelial GB4 expression is modulated by IFN-3/(65). 

The two step CD19/Galotl --~ 4Gal adhesion system that 
we propose appears to function in a manner analogous to 
the selectin/sialyl Lewis x system that mediates the initial 
"leukocyte rolling" along endothelial cells, with subsequent 
tighter adhesion mediated by integrins and other adhesion 
mechanisms (66). However, in this system, the protein (CD19) 
and glycoconjugate (CD77) appear to function within the 
cells in the subsequent stronger adhesion mechanisms, as well. 
Also, P- and E-selectins bind sialyl Lewis x determinants on 
both glycolipids and glycoproteins. In contrast, Galc~l 
4Gal determinants on human ceUs are restricted to glycosphin- 
golipids (26). Therefore, CD77, and possibly Gb4, would 
play a central role as endogenous ligands for CD19 in this 
adhesion system. 

These results have important implications for enterohemor- 
rhagic E. cob pathogenesis. Antibody responses to VTs are 

highly variable with the majority of patients exposed to VT 
never developing an antitoxin titer (20) (67). In vitro, VT 
causes a significant reduction in antibody production by human 
tonsillar B cells, with IgG and IgA-producing cells more se- 
verely affected than IgM producers (19). CD77 + germinal 
center B cells have been shown to be highly susceptible to 
death by apoptosis (18) and CD77 § Burkitt's lymphoma 
cells die by apoptosis following treatment with VT1 holotoxin 
or VT1 B alone (51). This inherent sensitivity to apoptosis 
may be involved in selecting against B cells expressing low 
affinity antibodies or antibodies that are not specific for epi- 
topes of an invading pathogen. By targeting this population 
of B cells during infection, VT producing E. coli may inhibit 
maturation of antibody responses including memory cell 
generation, affinity maturation, and isotype-switching. An- 
tigen presentation may also be impaired as many potential 
antigen-presenting cells including surface immunoglobulin- 
positive B cells, FDCs, and certain cells of the myelomono- 
cytic series are CD77 + and thus possible targets of VTs (26). 
While the cytotoxic activity of VTs on CD77 § cells would 
result in the modulation of humoral immune responses in 
general, responses specifically directed against VTs could also 
be suppressed in order to prevent autoimmune reactions against 
epitopes shared with CD19 and the 63-kD component of 
the IFN-ot receptor. 
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