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Post-traumatic headache (PTH) is a challenging clinical condition to identify and treat

as it integrates multiple subjectively defined symptoms with underlying physiological

processes. The precise mechanisms underlying PTH are unclear, and it remains to

be understood how to integrate the patient experience with underlying biology when

attempting to classify persons with PTH, particularly in the pediatric setting where patient

self-report may be highly variable. The objective of this investigation was to evaluate

the use of different machine learning (ML) classifiers to differentiate pediatric and young

adult subjects with PTH from healthy controls using behavioral data from self-report

questionnaires that reflect concussion symptoms, mental health, pain experience of

the participants, and structural brain imaging from cortical and sub-cortical locations.

Behavioral data, alongside brain imaging, survived data reduction methods and both

contributed toward final models. Behavioral data that contributed towards the final

model included both the child and parent perspective of the pain-experience. Brain

imaging features produced two unique clusters that reflect regions that were previously

found in mild traumatic brain injury (mTBI) and PTH. Affinity-based propagation analysis

demonstrated that behavioral data remained independent relative to neuroimaging data

that suggest there is a role for both behavioral and brain imaging data when attempting

to classify children with PTH.
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INTRODUCTION

Post-traumatic headache (PTH) is a neurological condition that impacts a large percentage of
persons after a mild traumatic brain injury (mTBI) and personifies the opaque nature of pain
symptom reporting. Persons with PTH can experience different headache characteristics that
include tension-type headache, occipital neuralgia, cluster headache, and migraine (1). Of those
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who suffer an mTBI, approximately 15% continue to experience
PTH at 3 months post-injury (2). Headache associated with PTH
is usually accompanied by other symptoms, such as depression
and anxiety (3) and pain (4), which can lead to considerable
disability. The clinical reqchanges in the grey and white matter
that typically resolve around tuirements for PTH necessitate that
the headache is present for more than 7 days post-injury (3),
suggesting a lingering element that can have a dynamic presence
– being exacerbated by stress (5). PTH represents a challenging
symptom to manage as it is reliant on accurate patient symptom
reporting.With the development of more objective measures that
includemachine learning (ML) classifiers, it remains unclear how
pediatric self-reports should be applied in the clinical setting.

Post-traumatic headache is associated with a breadth of
behavioral symptoms and has been correlated with underlying
neurostructural and neurofunctional alterations. Pediatric
subjects with PTH often present with symptoms that can span
the categories of somatic, vestibular, emotional, cognitive,
and sleep symptoms (6). In the acute setting there may be
variable changes in the grey or white matter of persons with
PTH (7); however, in the chronic setting (>3 months) there
are documented changes in the grey and white matter that
typically resolve around the 1-year mark post-injury (8). There
is evidence of correlations between headache frequency and
cortical thickness (8, 9) and that certain neurofunctional features,
such as the functional connectivity of the periaqueductal gray
and precuneus (10) and the interaction between the salience
and memory networks (11), are implicated as biomechanisms
of symptom progression. Interesting work has been done by
Schwedt et al. to understand the diversity of neurostructural
and neurofunctional structures that are implicated in PTH [see
(12)]. There has been one previous investigation that evaluates
PTH relative to Migraine participants with ML, showing that
behavioral markers of depression and concussion severity were
integral in classifying PTH participants alongside characteristics
of white matter pathways relative to persons with migraine (13).
To date, there has been no research done on differentiating
pediatric subjects with PTH from healthy controls.

We do not currently understand the mechanisms underlying
PTH. The use of ML classifiers in mTBI has been previously
explored using clinically oriented (14, 15) and neuroimaging
(16, 17) data with variable success rates (accuracy range 72–
94%). In adults with PTH, Schwedt et al. have shown that ML
can, on average, be improved by including both subjective and
objective data when comparing participants with a PTH to a
migraine cohort (13). Children as young as 5 have been able to
accurately report health-related quality of life (18), suggesting
their perspective should be integrated into classification tools.
It remains to be determined how pediatric self-reporting should
be integrated into classification models attempting to delineate
persons with a neurological injury from healthy controls. In
the following investigation we evaluated (1) how subjective and
objective data contributed to classify persons with PTH relative
to healthy controls, (2) the role of different types of classifiers
in predicting persons with PTH relative to healthy controls, and
(3) how a reduced set of features cluster to classify pediatric and
young adult subjects with PTH relative to healthy controls.

METHODS

Subjects
Participants were recruited from the greater Boston area as
part of a 5-year study evaluating PTH in youth. An overview
of recruitment can be found in Figure 1 and Table 1. Eligible
participants were identified through a Power Chart review
of all patients presenting to the Boston Children’s Hospital
Sports Medicine Clinic at Boston and Waltham, MA, USA
or self-referral via community advertisements and flyers hung
around college campuses in the Longwood Medical Area and on
Partners Health Care portal. All patients with PTH fulfilled the
International Classification of Diseases, Ninth Revision criteria
for mTBI, completed a neurological examination (confirmed by
neurologist), and reported to have developed a headache within
7 days after mTBI. Patients who had their headache symptoms
conclude within 2 weeks to 1 month after the injury and no
longer experienced PTHs and after the 1-month mark were
placed in the resolved group. Headache recovery was determined
through patient self-reporting. Persons in the Persistent cohort
were still experiencing post-traumatic headaches past the 1-
month mark post injury. This division was performed to
clearly distinguish persons with resolved vs. persistent symptoms,
although the official designation of persistence was maintained
at 3 months from point of injury. The resolved and persistent
groups were combined as one group of patients with mTBI and
compared to healthy controls. This was performed to account
for persistent abnormalities in brain structure in asymptomatic
persons previously found in this cohort (11) and others (19). A
total of 61 age- and sex-matched subjects (mTBI patients n =

40, 29 women; and healthy control subjects n = 21, 12 women)
were analyzed and all underwent imaging at Boston Children’s
Hospital in Waltham, MA, USA. All subjects were right-handed
and between ages 12 and 24 at the time of participation with
no significant history of pre-existing headaches, chronic pain, or
psychiatric neurological conditions (such as clinical depression
or anxiety). Enrolled participants were screened for drugs of
abuse (such as barbiturates, benzodiazepines, amphetamines,
and tetrahydrocannabinol) and medications that would interfere
with study findings. The study protocol was approved by the
Institutional Review Board at Boston Children’s Hospital and
conducted in accordance with the principles of the Declaration
of Helsinki. Informed consent and assent were obtained from all
subjects prior to enrollment.

Psychological Questionnaires and Testing
At the time of each study visit, each participant met with a
physician or registered nurse to review eligibility and concussion
symptomology. The following questionnaires were completed
by both mTBI patients and healthy controls cohorts: depression
(Childhood Depression Inventory [CDI]; age <18), Beck
Depression Inventory (BDI; age >18), Revised Children’s
Manifest Anxiety Scale (RCMAS), Pubertal Developmental
Scale (PDS), Pain Catastrophizing Scale (PCS), Childhood
Anxiety Sensitivity Index (CASI), Child and Parent Fear of
Pain Questionnaire (FOPQ) filled by patients and their parents,
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FIGURE 1 | Consort diagram showing included/excluded participants in this investigation.

TABLE 1 | Participant demographics.

PTH Control

Total N 40 21

Female N 29 12

Avg Age (years)

[age range]

16.03 (2.56)

[12.02–21.88]

16.86 (2.66)

[12.64–22]

Avg days Since Injury 89.9 (28.41) NA

Avg Impact Total Score 11.39 (17.58) 1.4 (2.06)

Avg Impact Headache Score 1.12 (1.5) 0

Means and standard deviations are provided for participant demographics and

psychological testing at the first study visit.

Pediatric Pain Screening Tool (PPST), and Immediate Post-
concussion Assessment and Cognitive Testing (IMPACT)
concussion survey. T-scores were extracted and used from
the CDI and BDI and integrated into the Depression metric.
T-scores for the BDI were obtained using scoring for the
Patient Reported Outcomes Measurement Information
System depression subscale. mTBI patient cohort received
two additional questionnaires: the Rivermead Concussion
Survey and the Allodynia Symptom Checklist (ASC-12) to
assess for post-concussive symptoms and sensitivity to painful
stimuli respectively.

Magnetic Resonance Imaging (MRI) Data
Acquisition
Magnetic resonance imaging data were collected on a 3T Siemens
MAGNETOM Trio Tim scanner with a 12-channel phased-array

head coil (Erlangen, Germany). T1 Magnetization-Prepared
Rapid Acquisition Gradient-Echo (MPRAGE) anatomical images
were collected using a gradient echo-echo planar pulse sequence
with 1.0 × 1.0 × 1.0mm resolution. MPRAGE scan parameters
consisted of the following: repetition time (TR) = 2,520 msec;
echo time (TE) = 1.74, 3.54, 5.34, 7.14 msec; field of view (FOV)
= 220·× 220; flip angle (FA) = 7◦; and axial slices = 176.
Resting-state functional connectivity (RS-FC) data were collected
using a gradient echo-echo planar pulse sequence with 3.0 × 3.0
× 3.0mm resolution. Functional MRI (fMRI) scan parameters
consisted of the following: TR = 1,100 msec; TE = 30 msec;
FOV = 228 × 228; FA = 70◦; axial slices = 51; volumes =

320; and acquisition time = 6min. Patients were instructed to
remain still, clear their minds, and keep their eyes open during
the scan sequence.

Structural Brain Data
Cortical reconstruction and volumetric segmentation were
performed with FreeSurfer (version 5.3) image analysis suite.
Once the cortical models were completed, parcellation of the
cerebral cortex into regional units was finished. This method
produced representations of cortical thickness and subcortical
volume extracted from T1-weighted images. For data analyzed
in this study, all surfaces were visually checked, and manual
interventions were used as needed to correct small defects.

Data Gathering and Preparation
The full data set used as the initial unprocessed input for this ML
investigation included raw brain imaging and psychological data
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combined. For the brain imaging data, cortical and subcortical
volume measures were used with a total of 70 extracted regions
of interest (ROIs). For psychological data, measures related to
pain levels (PCS, FOPQ-C, FOPQ-P, and PPST) and head injury
(IMPACT total scored and IMPACT headache subscale) were
used. The combined brain and psychological data also collapsed
across groups (mTBI patients and healthy controls together)
and study visits (all 4 time points together). Thus, the full
data set consisted of columns that represent the 70 ROIs and
6 psychological measures and rows that represent each subject
across groups and time points. Variables withmissing values were
eliminated reducing the number of individual timepoints from
239 to 228. Feature scaling was conducted by standardizing and
converting all values to Z-scores. Python 3.9 was used to convert
raw values to Z-scores and produces the initial Data Frame to be
used for the rest of the investigation. For all the following analyses
explained below, Python 3.9 was used with Jupyter Notebook
code scripts provided on github (https://github.com/scottneuro/
ML_PTH_Headache/upload). The libraries used in this article
include NumPy, pandas, Matplotlib, Seaborn, SciPy, and the ML
Scikit-learn library.

Data Reduction
Pearson correlation from the Pandas library was used to compute
the pairwise correlation of columns to each other (ROIs and
psychological measures). A correlation matrix of the absolute
values of standard correlation coefficients was then created,
where columns with correlation coefficients >0.5 were dropped.
Higher correlations meant that these variables/columns were too
like another and thus can be dropped. This helps in avoiding
redundancy and model overfitting by improving the robustness
of training and testing ML classifiers and allowing them to
generalize well on unseen data. A resulting reduced Data Frame
was created with the left selected features.

Data Splitting
In the reduced data set, the target column was set to Group. The
goal was to assess the ability of various models to generalize on
unseen data by accurately predicting in which group (mTBI or
patient) a new subject would fall under from their new subcortical
volume and psychological data. To do so, the data set was first
split into two, training and testing sets, using the Scikit learn
library train test split tool. The function splits the reduced data set
matrix into random train and test subsets. The training set used
80% of the reduced data to train the following models presented
below. The testing set used the rest of the 20% of the reduced data
to test the accuracy of the models’ predictions.

Data Modeling and Analytics
After the training and testing subsets were ready, they were fitted
into the following models: support vector machines (SVMs; with
a linear kernel), k-nearest neighbor (KNN; K = 5), and decision
trees (DTs). These three models were used from the Scikit learn
library of classifiers in Python. Model predictions were done
using the test data subset only. The accuracy score of each model
was calculated using the ratio of true positives and true negatives
from all predictions. Receiver Operating Characteristic (ROC)

curves were generated for each model to show the predictive
accuracy of each of these binary classifiers.

Feature Selection and Clustering
After performing data reduction using Pearson correlation and
training/testing the reduced data using the 3 different classifiers,
we wanted to know the specific contribution of each of these
reduced variables to the target and which ROI or psychological
measures best predict the group a new subject would be put
into. To do this, we used the Univariate Selection, SelectKBest,
method, where the features with the strongest relationships
to the target output variable are selected. SelectKBest class
selects a specific number of features and uses the chi-squared
(chi²) test for non-negative features to select x number of the
best features from the data. After performing feature selection,
we were also interested in exploring the relationship between
these reduced salient features to see what ROIs/psychological
data would cluster together. Hierarchical Clustering using
SciPy’s Agglomerative Clustering method was used to generate
corresponding dendrograms.

RESULTS

Participant Characteristics
A list of participant demographics and injury characteristics is
provided in Table 1. Participants included persons with an mTBI
resulting from sports, falls, and accidents. Brain imaging and
questionnaire data were included in the classification analysis
from 238 individual time points. A total of 158 individual time
points were evaluated for all participants with PTH and 80
individual time points were provided for healthy controls and
were divided as follows: 3-month (n = 64), 6-month (n = 62),
9-month (n= 62), and 12-month (n= 50) data.

Data Reduction Heatmaps
Pearson correlation was successfully able to reduce the original
initial input dataset that contains 70 ROIs and 6 psychological
metrics into 14 salient features (Figure 2). From these 14 reduced
features, which are used in the rest of the analysis steps, there are
11 ROIs and 3 psychological measures as shown in Figure 2. The
brain regions were superior temporal sulcus – left hemisphere,
caudal anterior cingulate – left hemisphere, caudal middle frontal
– left hemisphere, cuneus – left hemisphere, entorhinal – left and
right hemispheres, fusiform – left hemisphere, parahippocampal
– left and right hemispheres, temporal pole – left and right
hemispheres, PCS, FOPQ-P, and PPST.

Prediction Accuracy of Models
Across the three models used to train and test the reduced dataset
of 14 selected features, SVM had the highest prediction accuracy
of classifying persons with PTH from healthy controls with a
score of 0.85. KNN came second with a score of 0.83 and DTs
came last with a score of 0.74. ROC curves outlined in Figure 3

highlight similar trends between the three ML models. The SVM
model provided a slightly better positivity rate for false positives;
however, the KNN and deep learning (DL) models performed
with similar true- and false-positive rates.
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FIGURE 2 | Heat maps before and after data reduction. (A) Shows the compiled heatmap of all 76 features before dropping out the highly correlated variables. (B)

Shows the heatmap of reduced dataset with only 14 features left after dropping highly correlated variables.

FIGURE 3 | ROC curves of 3 analyzed models representing the prediction accuracy of each. The orange curves show the trade-off between sensitivity (True Positive

Rate – TPR on y axis) and specificity (False Positive Rate – FPR on x axis). Curves closer to the left-top corner indicate better performance. The blue dashed lines – No

Skill, are the baseline diagonals (FPR = TPR), where classifiers are expected to give point lying on this line. The closer the orange curves are to the 45 degrees blue

diagonal, the less accurate the model is. (A) Shows the ROC curve of the SVM model with the highest accuracy score and the closest tip to the y-axis and the left-top

corner. (B) shows the ROC curve of the Decision Tree analysis with the lowest accuracy score and (C) shows the ROC curve of the KNN model with the second

highest accuracy score.

Feature Contribution to the Models
Using the SelectKBest Univariate Feature Selection method
(Table 2), FOPQ-P psychological measure had the highest score
among all 14 features. It has the most contribution and best
ability to predict the group of a new subject when compared
to the rest of the 13 features. The superior temporal sulcus had
the lowest score and contribution. Notably, a reduction of the
classifiers to include only those with factor contributions >1 did
not improve the model accuracy.

Hierarchical Clustering
The Agglomerative Clusteringmethod was performed to evaluate
how each of the 14 selected features cluster (Figure 4).
Psychological data were all grouped together in one cluster that

includes the 3 features (PPST, FOPQ-P, and PCS). Brain data were
split into 2 clusters. Cluster 1 included the superior temporal
sulcus – left hemisphere, caudal middle frontal – left hemisphere,
and parahippocampal – left and right hemisphere. Cluster 2
was composed of the remaining brain regions that included
the caudal anterior cingulate – left hemisphere, cuneus – left
hemisphere, entorhinal – left and right hemispheres, fusiform –
left hemisphere, and temporal pole – left and right hemispheres.

DISCUSSION

Headache biomechanisms in pediatrics are poorly understood.
It remains unclear how objective and subjective data contribute
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toward understanding PTH in pediatric and young adult subjects
who have suffered an mTBI. The pathology underlying mTBI
impacts multiple cortical regions (20), and has been shown in
PTH as well (12). The question of how to incorporate their self-
report symptoms has not yet been addressed. Accurate reporting
is dependent on a subjective rating and has been shown reliable in
pediatrics (21); however, it is unclear how self-report contributes
toward patient classification. Findings from this investigation
(1) emphasize pediatric and young adult self-reporting and
caregiver reporting, (2) highlight unique brain clusters that may

TABLE 2 | Importance or Contribution scores of the 14 reduced selected features

by the SelectKBest feature selection method.

Feature Score

FOPQ-P 4.663250

LH Caudal Middle Frontal 3.702541

LH Cuneus 2.668843

RH Entorhinal 2.551437

LH Fusiform 1.233778

PPST 1.178420

LH Para Hippocampal 0.398127

PCS 0.354847

RH Para Hippocampal 0.139298

LH Temporal Pole 0.094458

LH Caudal Anterior Cingulate 0.070233

RH Temporal Pole 0.022997

LH Entorhinal 0.020928

LH Superior Temporal Sulcus 0.002227

underscore mTBI vs. PTH mechanisms, and (3) how subjective
and objective features cluster in unique patterns.

Pain-focused metrics contribute to classify pediatric and
young adult subjects with PTH from healthy controls. The
presence and extent of PTH are currently subjectively defined
through patient self-reporting (3) and parallel that of pain (22)
as there is no definitive objective test. The behavioral symptoms
that can accompany persons with PTH can be diverse, such as
somatic, vestibular, emotional, cognitive, and sleep-related, with
a potential sex-based effect (6), and persons as low as 5 years
of age have been shown to provide reliably self-reporting of
quality of life (18). The use of the PPST, a screening tool for
the identification of pain in youth (23), highlights that pain is
a prominent factor in youth with PTH [see also (11)]. The PCS
was developed to understand the presence of an “exaggerated
negative mental set” (24), further underscoring the vulnerable
mental health state of youth. Interestingly, the inclusion of Fear of
Pain reporting from parental/caregiver sources in the final model
highlights a role for how caregivers are involved in the mTBI and
PTH diagnostic process, perhaps alluding to parents/caregivers
providing exaggerated reportings (25) or perhaps demonstrating
a role for experienced advocacy. The absence of features that
reflect the extent of mTBI symptoms or mental health concerns,
such as anxiety or depression, is likely the result of headache-
focused recruitment and redundant feature elimination and the
use of screening for mental health prior to study enrollment. As
such, we show a strong role for the use of pain screening in youth
with suspected PTH.

Brain regions contribute to the models align with both the
mTBI and PTH literature. There was a total of 11 brain regions
that contributed toward the optimal classification of patients

FIGURE 4 | Factor loading (left) and dendrogram (right) showing the clustering of the 14 selected variables. The orange cluster is the psychological data. The green

cluster is cluster 2 and the red cluster is cluster 1.
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from healthy controls. The structural neuroimaging features
are grouped into two clusters. In one cluster, we observed
the caudal middle frontal and parahippocampal regions from
the left and right hemispheres with the superior temporal
sulcus. The caudal middle frontal gyrus has previously been
found in persons with PTH (26) and may represent the visual
disturbances in persons withmTBI and headache that can include
photosensitivity and photophobia (27). The superior temporal
sulcus is a region associated with multisensory integration,
such as touch sound and vision (28, 29), all symptoms
impacted commonly in mTBI. A previous investigation found
bilateral decreased volume in the parahippocampal regions
during the performance of a navigational task (30). This
cluster may reflect more mTBI-related dysfunction. In the
second cluster, we see the caudal anterior cingulate, cuneus,
entorhinal, fusiform, and temporal pole. In a previous study
on trigeminal neuralgia, both the cuneus and fusiform were
found to be reduced and implicated in multisensory integration
and cognitive processing (31). This may align with the caudal
region of the anterior cingulate cortex (ACC) being found as
it is involved in the more cognitive nature of performance
monitoring and updating internal cognitive and motor models
(32). Moreover, a form of temporal lobe epilepsy located
in the temporal pole has been tied toward facial pain and
trigeminal nerve trauma (33). This further aligns with work
showing activation of the trigeminal nerve system in persons
with PTH [see (3) for review]. Together, findings may point
toward two clusters that relate to the independent impact of the
mTBI and PTH.

Proposed ML models integrating subjective self-reporting
with objective brain imaging data present competitive accuracies
relative to existing models. Using resting-state EEG waveforms
in combination with a DL algorithm to differentiate persons
with mTBI from healthy controls produced an accuracy of
over 90% (34). The use of dynamic functional connectivity
has been shown to yield accuracies of 92% using an SVM
approach (linear kernel) (16, 17). There has been one prior
investigation using ML with post-traumatic headache (13),
finding that adults with persistent PTH were best classified, on
average, from persons with migraine using both questionnaire
and imaging data (average accuracy was 78.05%); however, this
did not address clinical from non-clinical participants. Our
work evaluated a PTH cohort relative to healthy controls in the
pediatric and young adult age range, an important distinction
in the context of pain considering ongoing neurodevelopmental
processes (35, 36). Although their group used diffusion and
morphometric data, preventing direct comparison with our
use of only morphometric data, it is interesting to compare
clinical/questionnaire data. Whereas their behavioral metrics
reflected the use of a concussion survey tool, and a sub-scale of
the BDI, our metrics were very pain centric. In fact, there were
no pain-related scales in their analysis. Moreover, we show in our
analysis the role of parental/caregiver responses, which highlights
inherent limitations with pediatric self-report data. As such, our
investigation extends their findings by showing the relevance of
using both subjective and objective features in a pediatric and

young adult PTH cohort and the specific role of pain metrics in
classifying a headache cohort.

There are limitations to this investigation. (1) Population
size: There was a low number of individuals included in
this investigation based on limitations from the primary
investigation. To help address this, multiple time points for
everyone were integrated into the analyses to increase the
number of sample sizes. These data integrate the resolution and
persistence of PTH symptoms; however, future investigations
with more inter-subject variability may help to improve classifier
performance. (2) Breadth of classifiers: We included three
classifiers in this investigation as examples for the performance
of subjective and objective data. There are other algorithms,
such as DL algorithms and sub-tools, such as modification
of non-linear kernels for SVMs, that may have impacted the
performance of the included algorithms. These will be explored
in future work that aimed at optimizing classifiers for persons
with PTH. (3) Only structural neuroimaging was used. The use
of structural MRI was done based on the literature showing the
involvement of features, such as cortical thickness and brain
region volume, in persons with PTH (12). This was performed
knowing that there are also functional features that can aid in
the classification strength of each algorithm. However, the aim of
this investigation was to demonstrate the relative contribution of
behavioral and MRI-based features and future investigations will
be more inclusive of features that could improve classification
accuracy. (4) Age range: This study included participants
from 12 to 22 years of age and as such included significant
diversity in neurodevelopment. Focus on particular subsets of
this age range may produce different results depending on the
stage of development.

CONCLUSION

Post-traumatic headache is a relatively common condition
experienced after an mTBI with little understanding regarding
its biomechanisms. This condition that is characterized through
self-reporting of headache and pain symptoms is optimally
defined through the use of pain-focused metrics and objective
MRI-based features. This investigation underscores the role of
the patient and caregiver experience when attempting to classify
persons with PTH and potentially other pain-related disorders.
It is critical to find ways of integrating patient-provided features
into ML algorithms where it is possible to improve both
ecological validity and classification accuracy.
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