
[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1640 1640–1646

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 13 2009, pages 1640–1646
doi:10.1093/bioinformatics/btp283

Gene expression

Optimizing static thermodynamic models of transcriptional
regulation
Denis C. Bauer∗ and Timothy L. Bailey∗
Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld. 4072, Australia
Received on January 22, 2009; revised on March 31, 2009; accepted on April 21, 2009

Advance Access publication April 27, 2009

Associate Editor: Olga Troyanskaya

ABSTRACT

Motivation: Modeling transcriptional regulation using thermo-
dynamic modeling approaches has become increasingly relevant
as a way to gain a detailed understanding of transcriptional
regulation. Thermodynamic models are able to model the interactions
between transcription factors (TFs) and DNA that lead to a specific
transcriptional output of the target gene. Such models can be
‘trained’ by fitting their free parameters to data on the transcription
rate of a gene and the concentrations of its regulating factors.
However, the parameter fitting process is computationally very
expensive and this limits the number of alternative types of model
that can be explored.
Results: In this study, we evaluate the ‘optimization landscape’ of
a class of static, quantitative models of regulation and explore the
efficiency of a range of optimization methods. We evaluate eight
optimization methods: two variants of simulated annealing (SA), four
variants of gradient descent (GD), a hybrid SA/GD algorithm and
a genetic algorithm. We show that the optimization landscape has
numerous local optima, resulting in poor performance for the GD
methods. SA with a simple geometric cooling schedule performs
best among all tested methods. In particular, we see no advantage
to using the more sophisticated ‘LAM’ cooling schedule. Overall, a
good approximate solution is achievable in minutes using SA with a
simple cooling schedule.
Contact: d.bauer@uq.edu.au; t.bailey@imb.uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Transcription of a gene can be induced by the binding of specific
transcription factor (TFs) proteins to genomic regions called cis-
regulatory modules (CRMs). Bound TFs can act to either enhance
or repress transcription of the target gene, and this action can depend
on the relative locations within the CRM where the TFs are bound.
Bound TFs can also interact with each other, and the full range of
effects of such interactions on transcription is not well understood
at present. One hypothesis is that some TFs can act as repressors of
transcription by negating the effect of activating TFs bound within
a limited distance away within the CRM (Reinitz et al., 2003).

The frequency and duration of the binding events of TFs to a
CRM are influenced by thermodynamic properties of the TF protein
molecules and the DNA of the CRM. The probability of a TF

∗To whom correspondence should be addressed.

being bound to a particular site within the CRM is a function of
its concentration and its binding affinity to the particular sequence
of nucleotides making up the site. This affinity can be modeled as
a function of the log-odds score of the binding site, the ratio of
the probability of the site under a position-specific model to the
‘background’ probability of the site (Stormo, 1998), and can be
captured by a position-specific weight matrix (PWM) motif for the
specific TF. Knowing the PWM for a TF allows standard equations
for reversible binding events to be used to estimate the probability
of the bound and unbound state at a given site in the CRM. These
equations can also be extended to account for competition for sites
by TFs with similar binding affinity profiles, as well as competition
for overlapping sites by molecules of a single type of TF.

These ideas have been combined recently to produce several
variations of static, thermodynamic models of transcription (Bauer
and Bailey, 2008b; Janssens et al., 2006; Segal et al., 2008; Zinzen
and Papatsenko, 2007). These models allow us to predict in silico
the transcription rate of the modeled gene, given the DNA sequence
of its CRM and the concentrations of each of the TFs that affect
its transcription. Such models have many uses. They allow us to
propose testable hypotheses regarding the effect of mutations in the
CRM on the transcription rate of the gene. By building and validating
the predictions of additional variations of these models, hypotheses
regarding different modes of interaction among the TFs regulating
a gene can be examined in silico. Failure of a model to accurately
account for the response of a gene can suggest that the model is
missing inputs (e.g. missing regulatory TFs ).

Thermodynamic models of transcription contain a number of free
parameters. Typically, the models have up to two free parameters per
TF in addition to one or more model-wide parameters. The model
proposed by Reinitz et al. (2003) (herein called the ‘Reinitz’ model),
contains two parameters per TF, one of which is proportional to
the maximum association constant of the TF-DNA binding and the
other quantifies the ‘effectiveness’ of the TF as either an activator
or a repressor. (The role of the TF can be specified by the user,
but could also be considered a binary free parameter.) The Reinitz
model contains two additional parameters representing the maximal
transcription rate and the Gibbs free energy barrier to transcription.
The model proposed by Segal et al. (2008) additionally includes one
parameter per TF, describing the strength of synergistic effects, as
well as the PWMs as free parameters, greatly increasing the total
number of free parameters.

Creating a thermodynamic model of transcription requires tuning
the free parameters to minimize the difference in predicted

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/


[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1641 1640–1646

Thermodynamic model optimization

and observed rates of transcription. This amounts to function
optimization, where the inputs to the function are measurements
of TF concentrations and the output is the transcription rate of the
modeled gene. Because the models are highly non-linear and have
many free parameters, their optimization requires large amounts of
computer time. As a result, the computational cost of creating a
model limits our ability to explore refinements and variations that
would shed additional light on the mechanisms of regulation.

The motivation of the current work is to reduce this bottleneck
in the studies of static, thermodynamic models of regulation. To
this end, we study the relative effectiveness of a number of standard
function optimization methods when training such models. To isolate
the optimization problem from the fact that the models are only
an approximation of reality, we train using synthetic data that is
very similar to—and derived from—real, biological data. To learn
about the difficulty of the problem, we first compare the speed and
accuracy of the standard optimization methods and devise a number
of variants tailored to this particular problem. We then examine
the optimization ‘landscape’ in detail. We evaluate members of
three optimization method categories: simulated annealing (SA),
gradient descent (GD) and genetic algorithms (GA). We also test
a hybrid SA-GD algorithm, which combines global and local
search approaches. All experiments are performed using STREAM,
our publicly available framework for modeling target-specific
transcriptional regulation (Bauer and Bailey, 2008a).

2 METHODS

2.1 Static, thermodynamic models of transcription
The experiments reported in this article use three variations of the Reinitz
model. We choose the Reinitz model because it is based on fundamental
biological concepts and has been studied well in previous works (Bauer and
Bailey, 2008b; Janssens et al., 2006). Furthermore, it contains far fewer free
parameters than other methods (e.g. Segal et al., 2008) and is thus quicker to
train. Both types of model are based on very similar assumed mechanisms
of regulation. We therefore believe that the observations made in this
study about the optimization landscape and performance of the optimization
methods, should largely be applicable to the other thermodynamic model
approaches (Segal et al., 2008; Zinzen and Papatsenko, 2007).

The Reinitz model has been described in detail elsewhere (Janssens et al.,
2006). In a nutshell, it models the transcription rate of a gene as a function of
a vector of model-free parameters, �, and a vector of model inputs, X. The
free parameters comprise a maximum association constant (K) for each TF,
an ‘effectiveness’ constant for each TF, (E), the Gibbs free energy threshold
(G0) of transcription and the maximal transcription rate (R0). The role—
activator or repressor—of each TF is specified by the user, and not treated
as free. The model inputs are the concentrations of a set of TFs, and a set of
positions and log-odds scores for (high-scoring) TF binding sites (TFBSs)
in the controlling CRM. (We call this set of positions and log-odds scores a
‘TFBS-map’.)

The transcription rate function computed by the Reinitz model is

R(X,�) =
{

R0 exp(M(X,�)−G0) if M(X,�)<G0

R0 otherwise,
(1)

where M(X,�) is the decrease in free energy caused by the ‘effective’number
of bound activators. The function M(X,�) is differentiable, and it takes into
account the positions and log-odds scores of sites and the concentration of
each of the TFs. It also incorporates competition for sites by TFs and the
reduction in activation caused by bound repressors, which ‘quench’ nearby
bound activators. Details are given in Janssens et al. (2006).

The function in Equation (1) presents two difficulties for optimization.
First, all of the free parameters must be non-negative in order to be

biologically meaningful, so the optimization must be constrained. (It makes
no sense, for instance, to talk about negative TF-DNA association constants.)
Second, the output is ‘capped’ (at a maximum value of R0) so the function
is not continuously differentiable.

In order to easily use gradient information in the optimization of the
transcription rate function, the objective function should be continuously
differentiable. We therefore test two additional variants of Equation (1) with
GD. We call the original Reinitz function ‘max’. One variant, ‘nomax’,
simply removes the cap at a maximum transcription rate of R0. The second
variant, which we call ‘softmax’, uses the sigmoid function, sigm(x), to cap
the rate function at R0.

The three variants of the Reinitz rate function can all be expressed as

R(X,�) = R0F(g), (2)

where g=M(X,�)−G0, and F(g) has one of the three forms

max : F(g) =
{

exp(g) if g<0,

1 otherwise,

softmax : F(g) = sigm(g)

nomax : F(g) = exp(g).

The behaviors of these three versions of F(g) is illustrated in the
Supplementary Section 1, Paragraph 3. The sigmoid function used in the
‘nomax’ variant is defined as

sigm(g) = 1

(1+exp(−(g ·b)−c))
,

with b=2.5 and c=2. These values of b and c were chosen to shift and
steepen F(g) to achieve a closer resemblance of ‘softmax’ to ‘max’ for legal
values of x. The sigmoid transformation causes the function to be smooth
and differentiable.

When using unconstrained optimization methods like GD, we rewrite
Equation (2) to use transformed parameters. Optimization is done in the
unconstrained, transformed space, and the inverse transformation is used
to retrieve the underlying parameter values in the original space of the
rate function. Our parameter transformation limits the actual value of the
parameters to a user-defined upper limit and to a lower limit of zero. (Details
of the parameter transformations and ranges are given in the Supplementary
Sections 1 and 5.)

2.2 Optimization methods
We use optimization methods to attempt to find values for the model-free
parameters that minimize the root mean-squared (RMS) error, B, between
the known transcription rate and the rate predicted by the model, averaged
over a set of input points (Bauer and Bailey, 2008b). The RMS error function
B(D,�) takes a set of input data points, D (TF expression, TFBS-map, known
transcription rate), as well as a specific set of parameter values, �, and
calculates the RMS error. Where it is clear what input data points, D, we are
referring to, we abbreviate the notation to B(�).

Our goal is to determine which function optimization method is fastest
(in terms of computer time) at training static, thermodynamic transcription
models. The function optimization methods we study here are variants of SA,
GD with random restart and GA. Whereas SAand GAare global optimization
strategies, GD is a local function optimizer. We therefore combine GD with
random restart from a different set of initial parameters. The hybrid SA-GD
algorithm we test uses GD to locally refine a single solution proposed by SA
in the hope of faster convergence.

2.2.1 Simulated annealing The SA global function optimization method
is an iterative method that starts with an initial (random) estimate of the
function parameters, �(0), and computes its prediction error, B(�(0)). At
each succeeding iteration, i, SA randomly selects a value of � in the region
of parameter space near the current estimate of the parameters, �(i), and
accepts � as the new estimate, �(i+1), if it has lower error than the current

1641



[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1642 1640–1646

D.C.Bauer and T.L.Bailey

estimate. If � has larger error it may still be accepted depending on the size
of the difference in error and the ‘cooling schedule’.

An SA method has been used by us and others previously for optimizing
Reinitz models of transcription in Drosophila (Bauer and Bailey, 2008b;
Janssens et al., 2006). The SA variant in those studies was developed by Chu
et al. (1999), and uses the so-called LAM cooling schedule. The LAM cooling
schedule takes the properties of the problem into account when calculating
the exponential cooling function (Lam, 1988). The optimization will stop
if the system is considered ‘frozen’ for a specified number of iterations, z,
where ‘frozen’ means the temperature has dropped below a defined value κ .
The values of z and κ affect the number of optimization steps and therefore
the computer time consumed. We will refer to this optimization method as
‘SA_LAM’.

The second SA variant we examine uses a simple, geometric cooling
schedule. This method sets the ‘temperature’ for iteration i as

T (i+1) =r(i)T (i),

where the reduction factor, r(i), is defined as r(i) =exp
(
log(0.006)/i

)
, and r

is adjusted with the user determined maximal number of iterations, n, to keep
it at a value larger than zero at the n-th iteration (here 0.006). This method
stops examining new potential solutions when a user-specified maximum
number of iterations, n, has been reached, or when the RMS error is <10−6.
We refer to this optimization method as ‘SA_geom’.

SA uses a so-called ‘neighborhood’ function to propose new candidate
values, x(i+1),∀x∈�. The neighborhood function randomly samples from a
ball around the current parameter x with a radius, p, that is maximally 30%
of the parameter range and that shrinks with decreasing temperature.

Our neighborhood function chooses a new value for each parameter x∈�

by first determining whether to decrease or increase x by randomly and
uniformly choosing W ∈{−1,1}, then choosing the size of the change, δ(x(i)),
then multiplying by the current temperature, T (i) ≤1 and finally adding the
result to the current value of x:

x(i+1) = x(i) +Wδ(x(i))T (i).

The neighborhood function chooses the size of the change, δ(x(i)), by
sampling uniformly from the interval [0,p], where the sampling radius, p, is

p =
{

min(0.3Rx,x(i) −Lx) if W =−1
min(0.3Rx,Ux −x(i)) if W =1.

The definition of p insures that the new estimate of x remains within its legal
interval [Lx,Ux], and Rx is defined as Rx =Ux −Lx . We limit the valid ranges
to be biologically plausible when generating a new parameter set by the
neighborhood function (see Supplementary Section 5). See Supplementary
Section 6 for a comparison of various neighborhood functions.

2.2.2 Gradient descent We also study random-restart GD to optimize the
transcription rate model. This method starts from a randomly chosen value of
the free parameters, �, and follows the gradient of the RMS error function,
until the improvement in RMS error between one iteration and the next is
smaller than the user-defined value εc. Since convergence may be at a local
minimum, the above process is repeated from a new random value of �.
The method stops evaluating new solutions when the user-defined maximal
number of iterations, n, has been reached.

As noted above, the transcription rate function in Equation (1) is not
continuously differentiable, so neither is the RMS error function derived
from it. However, it is differentiable when M �=G0. Two of our variants of
Equation 2, ‘softmax’and ‘nomax’, are differentiable, as are the derived error
functions. The partial derivatives with respect to each parameter in � of the
error functions are given in Supplementary Section 1, Paragraph 2. We will
refer to the GD applied to these three models as ‘GD_max’, ‘GD_softmax’
and ‘GD_nomax’, respectively.

The GD methods minimize B(�) using the update rule

x(i+1) = x(i) −
(

ν · ∂B(�(i))

∂x

)
,∀x∈�, (3)

where �(i) is the current values of the free parameters, �(i+1) is the proposed
set of updated values of the parameters, and ν is the ‘learning rate’. If the
change in all parameters is <10−16, the algorithm stops. If the proposed
solution is legal (all parameters are within their legal ranges), and its error
is less than that of the previous solution, it is accepted, and �(i+1) replaces
�(i), and ν is increased by 5%. Otherwise, �(i+1) is rejected, ν is reduced by
90% and the update rule is reapplied to the current solution (�(i)). When the
reduction in error between two accepted solutions is less than εc, the current
solution is saved if it is the best so far, the iteration budget is reduced by i,
and the method restarts with a new, random value of �(0). Unless otherwise
noted, we set εc to 10−6.

When optimizing the ‘max’ version of the model, a proposed solution is
rejected if it predicts a value of R larger than R0 for any point in the input
data. If this is the case, ν is reduced by 90% and the update rule is reapplied to
the current solution. In this way, the optimization can find a gradient leading
away from the invalid solution space or converging to a good solution very
close to the boundary.

Since the RMS error function seems to have large flat regions that make
GD inefficient, we also study a variation of the above GD optimization
method motivated by ‘resilient back-propagation’ (Rprop) (Riedmiller and
Braun, 1994). This version of GD, which we call ‘GD_Rprop’, uses only the
sign of the gradient in its update rule and can be applied to all GD variants,
replacing the derivative in Equation 3 with

sign

(
∂B

∂x

)
=

⎧⎪⎨
⎪⎩

1 if ∂B
∂x >0,

−1 if ∂B
∂x <0,

0 otherwise,
(4)

for all x∈�.

2.2.3 SA-GD hybrid algorithm We also test a hybrid method that uses the
SA_geom first to perform a global search before switching to GD_max and
following the gradient to the nearest optimum. The hybrid splits the given
iteration budget and gives two-thirds to the SA_geom and one-third to the
GD method. Only one switch is made from SA to GD. Other splits have been
tested but produce inferior results (data not shown).

2.2.4 Genetic algorithms A function optimization approach that is more
directed than SA, and less technically constrained than GD, is GAs (Holland,
1975). Rather than exploring the whole parameter space, GAs restrict the
search to the neighborhood of successful solutions. The search is inspired
by the biological processes of mutation and recombination, which introduce
small changes to an already successful solution. The objective of GA is to
constrain the search space to promising regions.

We use the JGAP (http://jgap.sourceforge.net) java-implementation of the
GA to optimize the RMS error of the transcription rate model. Each of the
free parameters of the model is defined to be a ‘gene’, and concatenated to
collectively represent � as a ‘chromosome’. Each gene can be constrained to
take only values from a defined value range (see Supplementary Section 5).
We generate 80 different chromosomes representing 80 different �. For
each chromosome, we assess its fitness as the RMS, B(�). In the subsequent
‘selection round’, only the fittest chromosome is preserved all others undergo
mutation and recombination steps and the whole population enters the next
selection round. The number of selection rounds can be varied in order to
control the total computer time consumed.

2.3 Experimental data
2.3.1 Biological data We use two experimental datasets from Drosophila
blastocysts (Janssens et al., 2006; Segal et al., 2008). The first dataset,
‘eve_stripe2_multitime’, contains 406 measurements of mRNA levels of a
gene construct containing the eve gene MSE2 CRM (Janssens et al., 2006).
Each measurement corresponds to a different time point during development
and a different position along the antereoposterior axis of a fruit fly embryo.
The second dataset, ‘dros_singletime’, contains mRNA levels of 10 different
fruit fly development gene CRM constructs (Segal et al., 2008) measured

1642

http://jgap.sourceforge.net


[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1643 1640–1646

Thermodynamic model optimization

at 100 different anteroposterior positions. Unlike the eve_stripe2_multitime
data, the responses are only measured in binary levels (on/off) and only
at one time point. We chose 10 CRMs randomly from the 35 for which
Segal et al. (2008)’s model achieved a ‘good’ (18) or ‘fair’ (17) fit. Seven
of the 10 CRMs were judged to have a ‘good’ fit—‘d_+4’, ‘eve_stripe_46’,
‘hb_anterior’ ‘Kr_CD1_run’, ‘pdm2’, ‘run_stripe3’ and ‘run_stripe5’—and
three to have a ‘fair’ fit—‘cad_+14’, ‘h_stripe34’ and ‘slp_-3’. We chose
to include fair-fitting CRMs to simulate the level of noise that has to be
expected in real data.

Both datasets also contain concentration data, measured at the
corresponding time and positions along the embryo, for the TFs Bicoid,
Caudal and Hunchback as activators, and Giant, Knirps, Krüppel and Tailless
as repressors (Janssens et al., 2006). For the second dataset, following Segal
et al. (2008), we designate Hunchback to be a repressor and we include an
additional activator—Torso-response element.

The eve_stripe2_multitime dataset, a single TFBS-map with the positions
and log-odds scores of in silico predicted TFBSs in the 1.7 kb DNA region
upstream of the eve gene, as described in Bauer and Bailey (2008b). Only
sites with predicted log-odds scores of at least 9.0 bits are included in the
TFBS-map. The dros_singletime dataset contains a separate TFBS-map for
each of the 10 CRMs created in the same way.

2.3.2 Synthetic data The definitive quality of the found solutions
generated by the optimization methods, can only be evaluated if the ‘correct’
solution is known. Since we do not know what the correct solution of the
biological data is, we have no means to quantify the distance of the found to
the correct solution.

We derive a set of synthetic data from eve_stripe2_multitime data, to
obtain training data for which we know the optimal value of the parameters,
and for which the optimal RMS error is zero. We use GD_nomax to find a
value of � that (hopefully) is close to the correct solution, which we call
�̂. We then replace each of the observed transcription rate values, R, with
values R̂=R(X,�̂), which are the values predicted by the model with � set
to �̂.

GD_nomax was chosen over GD_softmax or GD_max because it uses
the original Reinitz objective function and is therefore less biased towards
one of the variants. Whether GD or SA is used to optimize this objective
function does not influence the nature of the synthetic data (data not shown).
GD_nomax was allowed a total iteration budget of 5000 and trained on
all the data. The synthetic data were used in all experiments unless stated
otherwise. A comparison between the real and ‘corrected’ data can be seen
in the Supplementary Section 9.

2.4 Evaluating the optimization methods
Using the synthetic data described above, we measure the average, cross-
validated accuracy of the models found by the different optimization methods
as a function of the amount of computer time required. Our accuracy metric
is Pearson’s correlation coefficient (CC). The CC between the prediction and
the synthetic transcriptional output provides a normalized estimate (between
−1 and 1, with one being the maximal correlation) of the quality of the
trained model. We chose to use the CC to evaluate the trained models because
it measures whether the ‘shape’ of the model predictions matches the ‘shape’
of the ‘correct’ transcriptional output, and compared with the RMS error
metric, CC is less sensitive to discrepancies in the magnitude of the predicted
output.

We run each optimization method with a series of time budgets ranging
from 1 to 400 min on a single x86_64 processor under Linux. For each
method and budget, we perform 5-fold cross-validation, training on four-
fifths of the data points and measuring accuracy on the remaining one-fifth.
We do this in order to estimate the true generalization accuracy achieved in
the given time. We repeat each cross-validation experiment 15 times using
different seeds, which generates a different cross-validation split, as well as
different parameter values for each restart of the methods. We report the
average CC over the cross-validation splits and restarts.

2.5 Exploring the optimization landscape
Using the synthetic data described in the previous section, we analyze the
‘basin of attraction’ of the global minimum. We define the basin of attraction
around the known solution, �̂, as all initial values, �, from which GD
converges back to �̂. We explore the basin of attraction in two ways. First,
we examine the region around �̂ by perturbing one dimension at a time.
Second, we explore the entire landscape, by sampling random values of �.

We calculate the scaled distance in parameter space between a solution
found by GD, �′, and the known solution �̂, as

D(�′,�̂) =
√√√√ 1

n

∑
x∈�

(
x̂

Ux
− x′

Ux

)2

,

where Ux is the maximal value the parameter x is allowed to have. The
normalization of each parameter value to range between zero and one insures
that all parameters have the same impact on the sum of changes in D. For
comparison, we similarly compute the scaled distance between a starting
point for GD and the known solution, D(�(0),�̂).

Our first study examines the landscape in the immediate neighborhood of
the known solution, �̂. To determine the basin of attraction of �̂, we perform
the following steps. First, we perturb one parameter of �̂ by multiplying the
parameter value by either 0.99 or 1.01 to generate a starting point, �(0),
for GD. Second, we run GD_nomax from �(0) for n=10000 iterations or
until the change in RMS error is below the machine precision (εc =10−16)
to identify the nearest minimum, �′. This is repeated independently for each
parameter. (Note that GD is not allowed to restart in these experiments.)

In our study of the basin of attraction of �̂, we execute GD_nomax in
two different ways. First, we prevent all parameters except the perturbed one
from being updated by GD. This ensures that � moves only in the dimension
of the perturbation and all other parameters are held fixed at their optimal
values. Second, GD is allowed to adjust all parameters. The first experimental
setup tests the ‘smoothness’ of the landscape in only one dimension, while
the second tests the convergence in all dimensions.

Our second study examines the global landscape. We randomly sample
m (legal) values of �(0) and observe the convergence of GD_nomax. We
run GD_nomax for n=10000 iterations or until the change in RMS error is
below (εc =10−16) to identify the nearest minimum, �′.

3 RESULTS

3.1 Comparison of optimization methods
In this section, we compare the optimization methods on the
biological datasets using cross-validated Pearson’s CC. The rankings
of the methods are unchanged using cross-validated RMS error as
the evaluation criterion (See Supplementary Section 10).

3.1.1 Simulated annealing We first examine the performance of
variants of the SA algorithm. There seems to be little benefit in using
the more sophisticated LAM cooling schedule with the SA algorithm
(SA_LAM), as illustrated in Figure 1. Our SA-variant with a simple
geometric cooling schedule (SA_geom) performs equally well if not
better with all time budgets.

Our SA algorithm with geometric cooling also finds reasonable
solutions in a very short time. For example, with this data, models
found by SA_geom after only 60 s of run time have an average,
cross-validated CC of 0.97. An additional advantage of SA_geom
is that its cooling schedule can be adjusted to terminate after any
desired amount of run time, whereas, due to technical issues, the
SA_LAM cooling schedule always requires at least 16 min with this
problem (hence the missing points in Fig. 1).

Nonetheless, the convergence of the SA algorithms is slow after
the first minute of run time, with both SA-based optimization

1643



[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1644 1640–1646

D.C.Bauer and T.L.Bailey

1 2 5 10 20 50 100 200 500

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

time [minutes]

C
C

SA LAM
SA geom

Fig. 1. Effectiveness of SA with different cooling schedules. The figure
shows the cross-validated CC as a function of run time (log scale) for the
two different SA optimization methods.

methods requiring about 50 min to find models with average CC very
close to 1.0. This illustrates the high-computational cost—∼1 h—
of training a single static, quantitative model of transcription of
this size (7 TFs, 20 binding sites) with this amount of data (406
points, 20 TFBSs) using SA-based algorithms. A comparison of
the real and predicted transcriptional output with CC = 0.97 and
1.0, respectively, is given in the Supplementary Section 4, which
illustrate the usefulness of the model trained for 1 min only.

3.1.2 Gradient descent We hoped to reduce the high-computation
cost of the SA-based algorithms by using GD-based approaches,
which take advantage of knowledge of the derivative of the error
function. Surprisingly, compared with the SA_geom method, all
three GD-based methods find inferior models for all run times up
to about 200 min on the MSE2 dataset (Fig. 2a). The superiority
of SA_geom is even clearer when 10 CRMs are fit simultaneously
(dros_singletime dataset) where, even after more than 200 min, the
GD-based methods find models with <70% of the accuracy (CC)
found by models using SA_geom (Fig. 2b).

We tried another GD-based variant designed to reduce the effect of
the optimization landscape. This method, GD_Rprop, uses only the
sign of the gradient. Since it uses a gradient-independent step size
it can proceed faster through ‘plains’ (regions with low gradient)
and might not ‘step over’ a minimum if the slope leading to it
was steep. GD_Rprop was able to increase the performance for
some GD variants for short runs but could not improve beyond the
performance of GD_nomax (Supplementary Section 2).

3.1.3 SA-GD hybrid Our hybrid SA-GD optimization method
does not perform substantially better than the SA_geom method,
as seen in Figure 3. With very short running times, the average
CC of the models found by the hybrid method is slightly higher
than those found by SA_geom, but this difference is not statistically
significant (paired t-test). For running times longer than 5 min, the
quality of the solutions found on this data by the two methods are
indistinguishable. Note that the SA-GD hybrid uses our GD_max
local optimization method, which shows inferior performance to the
GD_nomax method when the time budget is small (Fig. 2). However,
the GD_nomax optimizes a slightly different model than SA_geom,
so we did not construct an SA_geom-GD_nomax hybrid. Note, also,

(a)

1 2 5 10 20 50 100 200 500

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

time [minutes]

C
C

SA_geom
GD_softmax
GD_nomax
GD_max

(b)

1 2 5 10 20 50 100 200 500
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

time [minutes]

C
C

SA_geom
GD_softmax
GD_nomax
GD_max

Fig. 2. Effectiveness of variants of GD. The figure shows the cross-validated
CC as a function of run time (log scale) for the three GD variants compared
with the SA_geom optimization method on the eve_stripe2_multitime dataset
(a) and the dros_singletime dataset (b).

1 2 5 10 20 50

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

time [minutes]

C
C

SA_geom
GD_max
Hybrid

Fig. 3. Effectiveness of SA-GD hybrid optimization algorithm. The figure
shows the cross-validated CC as a function of run time (log scale) for the
SA-GD hybrid, GD_max and SA_geom optimization methods.

that our hybrid runs GD from only a single solution found by SA,
and we did not test other possible hybrid strategies.

3.1.4 Genetic algorithm The GA optimization method performs
the worst among all the methods we tried (Supplementary Section 8).
Not even after an extensive 700 min training time was the GA

1644



[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1645 1640–1646

Thermodynamic model optimization

Table 1. Convergence behavior of GD.

Experiment D(�(0),�̂) D(�′,�̂) ‖�B(�′)‖ Error
(mean) (mean) (mean) Red. (%)

1% (held) 3.4×10−4 0 1.4×10−13 100
1% (free) 3.4×10−4 2.8×10−4 4.3×10−5 88
Random 0.10 0.11 0.04 96.99

Column one: 1% was added or subtracted from a single parameter, or the parameter
vector (�) was randomly sampled; ‘held’—all parameters were held fixed at their
optimal value during GD except the perturbed parameter; ‘free’—all parameters are
updated by GD. Column two: the initial distance to the known solution. Column three:
the final distance to the known solution. Column four: the final gradient. Column five:
the improvement (reduction) in the error function. All values are means for 32 sets (16
parameters, ±1% perturbation) or 100 sets (random sampling) using the GD_nomax
algorithm.

method able to match the performance of any of the SA or GD
variants. The variance in performance remains considerably large
as shown by the SD bars.

3.2 The optimization landscape
We were somewhat surprised that the GD-based methods, are less
efficient at optimizing the transcription rate RMS error function than
SA. In order to understand why, we investigate the properties of the
optimization landscape of the error function using synthetic data
based on real, biological data. As described earlier, we conduct two
studies. First, we determine the basin of attraction of the known
global optimum in the optimization landscape of the Reinitz model.
To do this, we perturb each parameter individually and examine the
properties of �′ at convergence of GD_nomax. Second, we study
convergence from random points in the parameter space. The results
of both studies are summarized in Table 1.

The GD algorithm (GD_nomax) always finds the known solution
when started from a point where one parameter has been perturbed
1% and we constrain the algorithm only to search along the perturbed
dimension. Under these conditions, the mean distance between the
known and found solutions is exactly zero (row 1, column 3 of
Table 1). This indicates that the landscape is smooth and reasonably
‘steep’ around the solution, when projected along one dimension
(see Supplementary Section 3). It also shows that the optimization
algorithm works correctly.

However, when our implementation of GD is started from a point
near the known solution and allowed to change the parameters in all,
rather than only in the perturbed dimension, it rapidly finds a nearby
region of very low gradient, but not the known solution. A typical
case is illustrated in Figure 4, which shows how the RMS error
function, distance to the known solution and size of the gradient
change during GD. The solutions found by GD are only marginally
closer to the known solution than the 1% starting point, but have
dramatically lower RMS error. As in this typical case, the size of the
gradient approaches zero after only about 20 iterations. (Refer to the
Supplementary Section 3 for similar plots for all model parameters.)

The generality of the convergence behavior illustrated in Figure 4
is made clear in Table 1, where row 2 shows that, on average,
the distance to the known solution from the solution found by
GD decreases only marginally—from 3.4×10−4 initially to 2.8×
10−4 after (at most) 10 000 iterations. The table also shows that,

1 10 100 1000 10000

0.
00

0.
06

0.
12

R
M

S
 e

rr
or

1 10 100 1000 100000e
+0

0
6e

−0
4

P
ar

am
et

er
 D

is
ta

nc
e

1 10 100 1000 10000

0.
00

0.
15

0.
30

iterations

N
or

m
 o

f g
ra

di
en

t

(a)

(b)

(c)

Fig. 4. Typical convergence behavior of GD near known optimal solution.
The panels show, as function of iteration number, i: (a) RMS error, B(�(i));
(b) distance to the known solution, D(�(i),�̂); (c): size of the gradient,
‖�B(�(i))‖.

on average, GD succeeds in reducing the error by 88%, and that,
when GD stops, the norm of the gradient is very small—4.3×10−5.

It is clear, therefore, that the region of the RMS error function
space surrounding the known solution is extremely flat, which makes
it difficult for GD to converge, and many have local minima. The
best evidence for this is that, for two of the parameters in the 1%
perturbation experiment, GD finds solutions that are more distant
from the known solution than the initial starting point (�(0)) is (see
Supplementary Section 3). In 14 out of 16 parameters, however, GD
finds solutions that are (somewhat) closer to the known solution than
the starting point is, as illustrated in Figure 4.

To further investigate the optimization landscape of the
transcription rate error function, we study the behavior of
GD_nomax when it is started from m=100 completely random
starting points. We observe that GD never finds the global optimum
from any of the 100 random starting points we try. On average, the
solutions found are slightly further from the known solution than
the starting points are (Table 1, row 3), and have 97% smaller error.
However, the closest solution found is distance 0.04 from the optimal
solution in (scaled) parameter space, and has error 0.61 (results are
shown in Supplementary Section 7).

When started from a random point, GD gets trapped in two
types of local minima. Referring again to the Section 7 of the
Supplementary Material, we see that for 47 out of 100 random starts,
GD converges to solutions that predict zero transcription. These
solutions have extremely small gradients (‖∇B(�′)‖<10−8) and
high errors (B(�′)≈41). In the other 53 runs, GD finds solutions
with small gradients (mostly <0.05) and much smaller error (average
7.24, median 3.07). These local minima are not all the same, since
they are at varying distances from the known solution.

In conclusion, the Reinitz function appears to be difficult to
optimize using gradient-based methods. First, the region around the
known optimal solution is extremely flat, causing extremely slow
convergence near the optimum. Second, the number of local optima
seems to be very large, causing the optimizer to get stuck or to move
away from the known solution.

1645



[10:24 6/6/2009 Bioinformatics-btp283.tex] Page: 1646 1640–1646

D.C.Bauer and T.L.Bailey

4 DISCUSSION
Our study of the static, quantitative models of transcription of the
type described in Reinitz et al. (2003) (‘Reinitz’ models) show that
they are difficult to optimize using gradient-based methods. This
difficulty becomes especially prevalent when the amount of data to
be fit simultaneously grows or the diversity within the data increases.
The most effective optimization method in our study is SA with a
simple geometric cooling schedule. Previous studies used SA with
the sophisticated LAM cooling schedule, but we see no evidence
that the more complicated algorithm is superior.

We have shown that Reinitz models have optimization landscapes
with a very large number of local minima. This present obvious
difficulties for optimization methods that use GD. Our experiments
of comparing several GD-based methods with SA methods bear this
out—using SA is superior to using the GD approaches presented
here.

We also observe that the optimization landscape is very flat near
the known optimum. This causes the GD algorithms to converge
extremely slow. Although we did not thoroughly explore hybrid
SA-GD algorithms, the large number of local minima and slow
convergence of GD near the known solution indicates that there
might not be a large improvement unless ways to overcome this slow
convergence are found. If the convergence rate could be improved,
hybrid algorithms that run GD from many solutions proposed by SA
could be effective. This approach is called basin-hopping, and has
proved useful for predicting protein folding (Prentiss et al., 2008).

The GA we studied performs very poorly compared with SA
and GD. The performance of GA might be improved by extensive
parameter tuning, but this would increase the risk of adapting the
optimization framework too much to the problem and therefore
biasing the performance estimation.

Further progress in optimizing Reinitz transcription rate models
using GD will require finding ways to reduce the number of
local minima and to increase the convergence rate. Almost half
of the local minima found in our experiments corresponded to
models that predict no transcription. These models have the
maximal transcription rate parameter, R0, set close to zero. Simply
constraining R0 to larger values might help reduce the number of this
type of minimum. Such ‘trivial’ minima tend to be found after very
few iterations of GD, however, so they have less effect on efficiency
than the non-trivial minima.

The non-trivial minima may be due to the form of the model,
which includes two parameters for each transcription factor. Since
one parameter determines the binding affinity and the other the
effectiveness of the TF, adjusting them in opposite directions tends to
produce highly similar models. This effect may be contributing to the
plethora of local minima. Reducing the number of these may require
changing the form of the model, or constraining one of them to a
single value. The likely candidate for this is the binding affinity of
the TF, which could be directly measured, or modeled (Manke et al.,
2008), to assign it a value. By fixing all the TF affinity parameters,
we would greatly reduce the complexity of the model, as well as

removing all of the local optima corresponding to ‘compensating’
adjustments of the TF affinity-effectiveness parameter pairs. We
intend to explore this idea in future work.

The difficulty of optimizing Reinitz models of transcription
does not mean that the (sub-optimally) optimized models provide
biological meaningless predictions. As shown in earlier work using
the SAalgorithm with the LAM cooling schedule, a model optimized
using data from D.melanogaster can produce accurate predictions
when applied to the TFBS-map of other Drosophila species (Bauer
and Bailey, 2008b). Of practical importance, our faster SA_geom
optimization algorithm allows us to train reasonably accurate models
of transcription rate in much less time than the LAM cooling version
of SA. We have thus achieved our goal of reducing the experimental
bottleneck represented by model training, since even sub-optimally
trained models can give insight into the relative merits of different
models.

ACKNOWLEDGEMENTS
The authors wish to acknowledge John Reinitz for providing the
code for the benchmark optimization and Lachlan Dufton for
providing the initial implementation of SA.

Funding:Australian Research Council Centre of Excellence in
Bioinformatics (to T.L.B.); National Institutes of Health (RO-1
RR021692-01 to T.L.B.); UQ International Research Tuition Award
(to D.C.B.).

Conflict of Interest: none declared.

REFERENCES
Bauer,D.C. and Bailey,T.L. (2008a) Stream: Static Thermodynamic REgulAtory Model

of transcription. Bioinformatics, 24, 2544–2545.
Bauer,D.C. and Bailey,T.L. (2008b) Studying the functional conservation of cis-

regulatory modules and their transcriptional output. BMC Bioinformatics, 9, 220.
Chu,K.-W. et al. (1999) Parallel simulated annealing by mixing of states. J. Comput.

Phys., 148, 646–662.
Holland,J.H. (1975) Adaptation in Natural and Artificial Systems. University of

Michigan Press.
Janssens,H. et al. (2006)Quantitative and predictive model of transcriptional control of

the Drosophila melanogaster even skipped gene. Nat. Genet., 38, 1159–1165.
Lam,J.K.-C. (1988) An Efficient Simulated Annealing Schedule. PhD Thesis, New

Haven, CT.
Manke,T. et al. (2008) Statistical modeling of transcription factor binding affinities

predicts regulatory interactions. PLoS Comput. Biol., 4, e1000039.
Prentiss,M.C. et al. (2008) Protein structure prediction using basin-hopping. J. Chem.

Phys., 128, 225106.
Reinitz,J. et al. (2003) Transcriptional control in Drosophila. Complexus, 1, 54–64.
Riedmiller,M. and Braun,H. (1994) Rprop—description and implementation details.

Available at http://citeseer.ist.psu.edu/old/711503.html
Segal,E. et al. (2008). Predicting expression patterns from regulatory sequence in

Drosophila segmentation. Nature, 451, 535–540.
Stormo,G.D. (1998) Information content and free energy in DNA–protein interactions.

J. Theor. Biol., 195, 135–137.
Zinzen,R.P. and Papatsenko,D. (2007) Enhancer responses to similarly distributed

antagonistic gradients in development. PLoS Comput. Biol., 3, e84.

1646

http://citeseer.ist.psu.edu/old/711503.html

