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Abstract: Lysophosphatidic acid receptor 1 (LPA1) contributes to brain injury following transient
focal cerebral ischemia. However, the mechanism remains unclear. Here, we investigated whether
nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome activation might be an underlying mechanism involved in the pathogenesis of brain
injury associated with LPA1 following ischemic challenge with transient middle cerebral artery
occlusion (tMCAO). Suppressing LPA1 activity by its antagonist attenuated NLRP3 upregulation in
the penumbra and ischemic core regions, particularly in ionized calcium-binding adapter molecule
1 (Iba1)-expressing cells like macrophages of mouse after tMCAO challenge. It also suppressed
NLRP3 inflammasome activation, such as caspase-1 activation, interleukin 1β (IL-1β) maturation,
and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck
formation, in a post-ischemic brain. The role of LPA1 in NLRP3 inflammasome activation was
confirmed in vitro using lipopolysaccharide-primed bone marrow-derived macrophages, followed
by LPA exposure. Suppressing LPA1 activity by either pharmacological antagonism or genetic
knockdown attenuated NLRP3 upregulation, caspase-1 activation, IL-1β maturation, and IL-1β
secretion in these cells. Furthermore, nuclear factor-κB (NF-κB), extracellular signal-regulated kinase
1/2 (ERK1/2), and p38 were found to be LPA1-dependent effector pathways in these cells. Collectively,
results of the current study first demonstrate that LPA1 could contribute to ischemic brain injury by
activating NLRP3 inflammasome with underlying effector mechanisms.

Keywords: LPA1; transient middle cerebral artery occlusion; NLRP3 inflammasome; bone
marrow-derived macrophage; LPA; lipopolysaccharide

1. Introduction

Lysophosphatidic acid (LPA) is a bioactive lysophospholipid that possesses diverse physiological
and pathological functions throughout the body by activating its specific six G protein-coupled
receptors (LPA1–6) [1,2]. LPA receptors have been of considerable therapeutic interest for drug
development to treat many diseases [2,3]. In particular, targeting LPA1 has become a promising
strategy for drug development due to clinical trials for pulmonary fibrosis (ClinicalTrials.gov ID:
NCT01766817) and psoriasis (ClinicalTrials.gov ID: NCT02763969). In case of cerebral ischemia that
occurs by a sudden blockade of blood supply in the brain and causes severe brain damage, LPA1 has
been identified as a pathogenic factor for brain injury after ischemic challenge. Suppressing LPA1

activity by either pharmacological antagonism or genetic deletion can reduce brain damage, such
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as brain infarction, functional neurological deficits, and pain [4–6]. In particular, administration of
an LPA1 antagonist (AM095) immediately after reperfusion significantly reduced brain infarction
and neurological deficit score in mice at 1 day and 3 days after transient middle cerebral artery
occlusion (tMCAO) challenge [4], supporting that LPA1 could contribute to brain injuries after
ischemic challenge. As an underlying pathogenesis, LPA1 can regulate immune responses in
post-ischemic brain by upregulating proinflammatory cytokines and increasing numbers of cells
expressing ionized calcium-binding adapter molecule 1 (Iba1), a marker for activated microglia or
infiltrated macrophages [4]. However, how LPA1 can contribute to brain injuries following ischemic
challenge remains unclear.

Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3
(NLRP3) is a sensor for various pathogen- and host-derived factors [7]. Upon activation, it forms
a complex called NLRP3 inflammasome, leading to the production of proinflammatory cytokines,
interleukin 1β (IL-1β) and IL-18 [8,9]. NLRP3 inflammasome activation contributes to tissue injuries
in various diseases throughout the body [10–14]. In cerebral ischemia, the importance of NLRP3
inflammasome activation as a pathogenic mediator has been suggested [15]. NLRP3 is upregulated
and NLRP3 inflammasome is activated in post-ischemic brain [15]. A genetic deletion of NLRP3
can decrease brain damage in mice after ischemic challenge [15]. Its pharmacological suppression
can ameliorate ischemic injury and neurovascular complications in cellular and animal models of
cerebral ischemia [16,17]. Recently, it was suggested that LPA can regulate NLRP3 inflammasome
activation in lipopolysaccharide (LPS)-primed bone marrow-derived macrophages (BMDMs) [18].
Considering increased amounts of LPA in human ischemic patients [19] and animal models of cerebral
ischemia [5,20], LPA signaling may regulate NLRP3 inflammasome activation in injured brain following
ischemic challenge. Moreover, LPA1 may be responsible for NLRP3 inflammasome activation.

To test such possible role of LPA1, the current study determined whether suppressing LPA1

activity by its specific antagonist could ameliorate NLRP3 upregulation in an injured brain of mouse
with tMCAO challenge through biochemical and immunohistochemical analyses. We also determined
whether it could suppress NLRP3 inflammasome activation by measuring caspase-1 activation and
IL-1β maturation in a post-ischemic brain. Through the previously reported in vitro system using
LPS-primed BMDMs, followed by an exposure to LPA [18], we confirmed the role of LPA1 in NLRP3
inflammasome activation. Furthermore, we determined which LPA1-dependent pathways were
involved in NLRP3 inflammasome activation.

2. Results

2.1. Suppressing LPA1 Activity Attenuates NLRP3 Inflammasome Activation in an Injured Brain after
tMCAO Challenge

To address whether LPA1 could regulate NLRP3 expression in an injured brain after tMCAO
challenge, we first determined mRNA expression levels of NLRP3 by qPCR analysis. Results showed
that mRNA expression levels of NLRP3 were significantly increased in the brain at one day after tMCAO
challenge compared to those in the sham group (Figure 1a). This upregulation of NLRP3 mRNA
in the injured brain was markedly attenuated by AM095 administration immediately after tMCAO
challenge (Figure 1a). We further determined whether LPA1 could influence protein expression levels
of NLRP3 in an injured brain after tMCAO challenge by immunohistochemical analysis. The number
of NLRP3-immunopositive cells was significantly increased after tMCAO challenge (Figure 1b,c). This
increase was observed mainly in the penumbra and ischemic core regions, but not in perilesional cortex
(Figure 1b,c). AM095 administration significantly reduced the number of NLRP3-immunopositive
cells in both the penumbra and ischemic core regions (Figure 1b,c).
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Figure 1. Lysophosphatidic acid receptor 1 (LPA1) antagonist attenuates nucleotide-binding 
oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) upregulation in 
injured brains after transient middle cerebral artery occlusion (tMCAO) challenge. Mice were induced 
with tMCAO. AM095 (30 mg/kg, p.o.) was administered immediately after reperfusion. (a) mRNA 
expression levels of NLRP3 at one day after ischemic challenge by qPCR analysis. (b,c) NLRP3 
expression determined by immunohistochemistry at one day after tMCAO challenge. (b) 
Representative images of NLRP3-immunopositive cells in perilesional cortex (P), penumbra (Pe), and 
ischemic core (C) regions. A graphical abstract image at the top shows cerebral areas where images 
in top, middle, and bottom planes are taken. Arrows indicate NLRP3-immunopostive cells. Cells in 
the insets are indicated as asterisks (*). (c) Quantification of NLRP3-immunopositive cells in 
penumbra and ischemic core regions. Scale bar, 50 µm (inset, 10 µm). n = 4 mice per group. *** p < 
0.001 versus sham. ### p < 0.001 versus vehicle-administered tMCAO group. Neurological deficit scores 
of mice used for qPCR analysis and immunohistochemistry are presented as a supplementary figure 
(Figure S1a,b). 

In a post-ischemic brain, NLRP3 upregulation can occur in Iba1-immunopositive cells [15]. Its 
attenuation by AM095 administration was clearly observed in the penumbra and ischemic core 
regions (Figure 1b,c). Therefore, we further determined whether the observed attenuation could 
occur in Iba1-expressing cells of the penumbra and ischemic core regions by NLRP3/Iba1 double 
immunofluorescence. The number of NLRP3/Iba1-double immunopositive cells was significantly 
increased in both the penumbra (Figure 2a,b) and ischemic core regions (Figure 2c,d) after tMCAO 
challenge. AM095 administration significantly reduced the number of NLRP3/Iba1-double 
immunopositive cells in both regions (Figure 2). 

Figure 1. Lysophosphatidic acid receptor 1 (LPA1) antagonist attenuates nucleotide-binding
oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) upregulation in
injured brains after transient middle cerebral artery occlusion (tMCAO) challenge. Mice were induced
with tMCAO. AM095 (30 mg/kg, p.o.) was administered immediately after reperfusion. (a) mRNA
expression levels of NLRP3 at one day after ischemic challenge by qPCR analysis. (b,c) NLRP3 expression
determined by immunohistochemistry at one day after tMCAO challenge. (b) Representative images of
NLRP3-immunopositive cells in perilesional cortex (P), penumbra (Pe), and ischemic core (C) regions.
A graphical abstract image at the top shows cerebral areas where images in top, middle, and bottom
planes are taken. Arrows indicate NLRP3-immunopostive cells. Cells in the insets are indicated as
asterisks (*). (c) Quantification of NLRP3-immunopositive cells in penumbra and ischemic core regions.
Scale bar, 50 µm (inset, 10 µm). n = 4 mice per group. *** p < 0.001 versus sham. ### p < 0.001 versus
vehicle-administered tMCAO group. Neurological deficit scores of mice used for qPCR analysis and
immunohistochemistry are presented as a supplementary figure (Figure S1a,b).

In a post-ischemic brain, NLRP3 upregulation can occur in Iba1-immunopositive cells [15].
Its attenuation by AM095 administration was clearly observed in the penumbra and ischemic
core regions (Figure 1b,c). Therefore, we further determined whether the observed attenuation
could occur in Iba1-expressing cells of the penumbra and ischemic core regions by NLRP3/Iba1
double immunofluorescence. The number of NLRP3/Iba1-double immunopositive cells was
significantly increased in both the penumbra (Figure 2a,b) and ischemic core regions (Figure 2c,d) after
tMCAO challenge. AM095 administration significantly reduced the number of NLRP3/Iba1-double
immunopositive cells in both regions (Figure 2).

To address whether LPA1 could regulate NLRP3 inflammasome activation in an injured brain
after tMCAO challenge, caspase-1 activation and IL-1β maturation were determined by Western
blot analysis. Caspase-1 activation and IL-1β maturation were known to be important events for
the activation of NLRP3 inflammasome [21–23]. Expression levels of cleaved caspase-1 and mature
IL-1β were significantly increased in the injured brain at one day after tMCAO challenge compared to
those in the sham group (Figure 3). AM095 administration immediately after reperfusion markedly
attenuated caspase-1 activation and IL-1β maturation (Figure 3).
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with tMCAO. AM095 (30 mg/kg) was administered immediately after reperfusion. NLRP3 expression 
in Iba1-immunopositive cells was determined in the penumbra and ischemic core regions at one day 
after tMCAO challenge by NLRP3/Iba1 double immunofluorescence. Representative image of 
NLRP3/Iba1-double immunopositive cells in the penumbra (a) and ischemic core regions (c) and 
quantification of their numbers (b,d) are shown. Scale bars, 20 µm. n = 4 mice per group. *** p < 0.001 
versus sham. ### p < 0.001 versus vehicle-administered tMCAO group. 
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challenge. Mice were induced with tMCAO. AM095 (30 mg/kg) was administered immediately after 
reperfusion. Caspase-1 activation and interleukin 1β (IL-1β) maturation were determined by Western 
blot analysis at 1 day after tMCAO challenge. Representative Western blots of pro-caspase-1, cleaved 
caspase-1, pro-IL-1β, and mature IL-1β (a) and quantification of caspase-1 activation (b) and IL-1β 
maturation (c) are shown. n = 4 mice per group. *** p < 0.001 versus sham. ###, p < 0.001 versus vehicle-
administered tMCAO group. Neurological deficit scores of mice used for Western blot analysis are 
presented as a supplementary figure (Figure S1c). 

Figure 2. LPA1 antagonist attenuates NLRP3 upregulation in ionized calcium-binding adapter
molecule 1 (Iba1)-immunopostive cells of injured brains after tMCAO challenge. Mice were induced
with tMCAO. AM095 (30 mg/kg) was administered immediately after reperfusion. NLRP3 expression
in Iba1-immunopositive cells was determined in the penumbra and ischemic core regions at one
day after tMCAO challenge by NLRP3/Iba1 double immunofluorescence. Representative image of
NLRP3/Iba1-double immunopositive cells in the penumbra (a) and ischemic core regions (c) and
quantification of their numbers (b,d) are shown. Scale bars, 20 µm. n = 4 mice per group. *** p < 0.001
versus sham. ### p < 0.001 versus vehicle-administered tMCAO group.
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Figure 3. LPA1 antagonist attenuates NLRP3 inflammasome activation in injured brains after tMCAO
challenge. Mice were induced with tMCAO. AM095 (30 mg/kg) was administered immediately after
reperfusion. Caspase-1 activation and interleukin 1β (IL-1β) maturation were determined by Western
blot analysis at 1 day after tMCAO challenge. Representative Western blots of pro-caspase-1, cleaved
caspase-1, pro-IL-1β, and mature IL-1β (a) and quantification of caspase-1 activation (b) and IL-1β
maturation (c) are shown. n = 4 mice per group. *** p < 0.001 versus sham. ###, p < 0.001 versus
vehicle-administered tMCAO group. Neurological deficit scores of mice used for Western blot analysis
are presented as a supplementary figure (Figure S1c).

To further address the role of LPA1 in NLRP3 inflammasome activation in an injured brain
after tMCAO challenge, the adaptor molecule apoptosis-associated speck-like protein containing
a caspase recruitment domain (ASC) speck formation was determined by ASC/NLRP3 double
immunofluorescence. The number of cells with ASC/NLRP3 specks was significantly increased
in both the penumbra (Figure 4a,b) and ischemic core regions (Figure 4c,d) after tMCAO challenge.
AM095 administration significantly reduced the number of cells with ASC/NLRP3 specks in both
regions (Figure 4).
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Figure 4. LPA1 antagonist attenuates apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) speck formation in injured brains after tMCAO challenge. Mice were
induced with tMCAO. AM095 (30 mg/kg) was administered immediately after reperfusion. ASC speck
formation in NLRP3-immunopositive cells was determined in the penumbra and ischemic core regions
at one day after tMCAO challenge by ASC/NLRP3 double immunofluorescence. Representative images
of ASC/NLRP3 speck formation in the penumbra (a) and ischemic core regions (c) and quantification of
their numbers in percentage (b,d) are shown. Scale bars, 10 µm. n = 4 mice per group. *** p < 0.001
versus sham. ###, p < 0.001 versus vehicle-administered tMCAO group.

2.2. LPA1 Contributes to NLRP3 Upregulation and NLRP3 Inflammasome Activation in LPS-Primed
Macrophages Followed by LPA Exposure

A previous study [15] and the current study (Figure 2) showed that NLRP3 was upregulated
in cells expressing Iba1, a marker of infiltrated macrophages or activated microglia in post-ischemic
brains [24,25]. These independent studies suggest that NLRP3 upregulation after ischemic challenge
can occur in macrophages. Therefore, we studied the role of LPA1 in NLRP3 inflammasome activation
in vitro using cultured BMDMs. To induce NLRP3 inflammasome activation, cells were primed with
LPS and then exposed to LPA as previously reported [18] because ischemic challenge can increase
amounts of LPA [5,20]. However, LPA itself cannot induce NLRP3 upregulation in BMDMs [18].
Instead, LPA was proven to enhance NLRP3 upregulation in LPS-primed BMDMs in a dose-dependent
manner [18]. Therefore, we employed the same in vitro system of our previous study [18] to address
the role of LPA1 in NLRP3 upregulation and NLRP3 inflammasome activation in macrophages. We
first determined whether LPA1 could be involved in NLRP3 upregulation in macrophages. BMDMs
were primed with LPS (500 ng/mL) for 4 h, followed by LPA exposure (1 µM) for 1 h. To determine
the role of LPA1, cells were pretreated with AM152 (1 µM) for 30 min prior to LPS stimulation. As
previously reported [18], NLRP3 was markedly upregulated in LPS-primed BMDMs, followed by
LPA exposure (Figure 5a). However, AM152 significantly reduced expression levels of NLRP3 in
LPS-primed BMDMs, followed by LPA exposure (Figure 5a).
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Figure 5. LPA1 antagonist attenuates LPA-induced NLRP3 inflammasome activation in
lipopolysaccharide (LPS)-primed bone marrow-derived macrophages (BMDMs). Cells were primed
with LPS (500 ng/mL) for 4 h, followed by an exposure to LPA (1 µM) for 1 h. (a–d) Protein expression
levels of NLRP3, pro-caspase-1, cleaved caspase-1, pro-IL-1β, and mature IL-1β determined by Western
blot analysis. (a) NLRP3 expression determined by Western blot analysis. AM152 was treated at
different concentration (0; 0.1 and 1 µM). n = 3 per group. *** p < 0.001 versus control BMDMs (Veh). ##,
p < 0.01 versus stimulated BMDMs (LPS-primed BMDMs, followed by an exposure to LPA; LPS+LPA).
(b–d) Caspase-1 activation and IL-1β maturation determined by Western blot analysis. AM152 was
treated at 1 µM. Representative Western blots of pro-caspase-1, cleaved caspase-1, pro-IL-1β, and
mature IL-1β (b) and quantification of caspase-1 activation (c) and IL-1β maturation (d) are shown. n =

3 per group. * p < 0.05, ** p < 0.01, and *** p < 0.001 versus control BMDMs (Veh). # p < 0.05 and ### p <

0.001 versus stimulated BMDMs (LPS-primed BMDMs, followed by an exposure to LPA; LPS+LPA). (e)
Amounts of secreted IL-1β into the culture medium were measured by enzyme-linked immunosorbent
assay (ELISA) analysis. n = 6 per group. *** p < 0.001 versus control BMDMs (Veh). ### p < 0.001 versus
stimulated BMDMs (LPS + LPA).

Next, we determined whether LPA1 could regulate LPA-mediated NLRP3 inflammasome activation
in LPS-primed BMDMs by analyzing caspase-1 activation and IL-1β production. LPA induced the
caspase-1 activation and IL-1β maturation in LPS-primed BMDMs (Figure 5b–d). LPS alone did not
induce caspase-1 activation in BMDMs (Figure 5b,c). However, LPS alone induced IL-1β maturation in
BMDMs, but to a lesser extent than that in LPS-primed BMDMs, followed by LPA exposure (Figure 5b,c).
IL-1β secretion into the culture medium was also elevated in LPS-primed BMDMs, followed by LPA
exposure (Figure 5e). AM152 treatment significantly attenuated caspase-1 activation, IL-1β maturation,
and IL-1β secretion (Figure 5b–e).

We confirmed the role of LPA1 in NLRP3 inflammasome activation by a genetic knockdown
using a specific small interfering RNA (siRNA) for LPA1. LPA1 knockdown (Figure 6a) significantly
attenuated NLRP3 upregulation in LPS-primed BMDMs, followed by LPA exposure (Figure 6b,c). It
also significantly attenuated NLRP3 inflammasome activation in these cells as evidenced by attenuated
caspase-1 activation (Figure 6b,d), IL-1β maturation (Figure 6b,e), and IL-1β secretion (Figure 6f).
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2.3. LPA1 Regulates NLRP3 Upregulation in LPS-Primed Macrophages Followed by LPA Exposure by
Enhancing Nuclear Factor-κB (NF-κB) Translocation and Activating Extracellular Signal-Regulated Kinase 1/2
(ERK1/2) and p38 Mitogen-Activated Protein Kinase (MAPK)

NF-κB pathway is known to play an important role in NLRP3 inflammasome as a priming
signal to induce NLRP3 upregulation [26–28]. Therefore, the role of LPA1 in NF-κB activation was
determined by analyzing NF-κB translocation from the cytosol into the nucleus. LPA caused a marked
translocation of NF-κB into the nucleus in LPS-primed BMDMs without affecting expression levels
of NF-κB in the cytosol (Figure 7). When LPA1 activity was suppressed by AM152, such marked
translocation was significantly weakened (Figure 7). We further determined that LPA1 could regulate
NF-κB phosphorylation in BMDMs by Western blot analysis. NF-κB was markedly phosphorylated
in LPS-primed BMDMs, followed by LPA exposure (Figure S2). This phosphorylation seemed to be
induced solely by LPS priming because LPS itself also induced NF-κB phosphorylation to the similar
extent (Figure S2). AM152 did not attenuate NF-κB phosphorylation in both LPS-treated BMDMs
and LPS-primed BMDMs, followed by LPA exposure (Figure S2). These data indicate that LPA1

may activate NF-κB pathway by enhancing NF-κB translocation rather than its phosphorylation in
LPS-primed BMDMs, followed by LPA exposure.
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Figure 7. LPA1 antagonist inhibits LPA-induced nuclear factor-κB (NF-κB) activation in LPS-primed
BMDMs. Cells were primed with LPS (500 ng/mL) for 4 h, followed by an exposure to LPA (1 µM) for 1
h. NF-κB activation was determined by comparing expression levels of cytosolic and nuclear NF-κB
p65 based on Western blot analysis. Representative Western blots of cytosolic and nuclear NF-κB p65
(a) and quantification of NF-κB p65 translocation into the nucleus (b,c) are shown. n = 3 per group. * p
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MAPK pathways, such as ERK1/2, p38, and c-Jun N-terminal kinase (JNK), are known to
participate in NLRP3 inflammasome by upregulating NLRP3 [29–31]. These pathways are effector ones
of LPA1 [32]. Therefore, the LPA/LPA1 signaling axis might regulate NLRP3 upregulation by activating
MAPKs. To determine which MAPKs might be involved in NLRP3 upregulation in LPS-primed
BMDMs, followed by LPA exposure, cells were treated with inhibitors of MAPKs, respectively, for
30 min prior to LPS priming. The upregulation of NLRP3 was significantly attenuated after inhibition
of p38 and ERK1/2 but not after inhibition of JNK (Figure 8a). Whether ERK1/2 and p38 pathways
could be regulated by LPA1 in LPS-primed BMDMs, followed by LPA exposure, was then determined.
Both ERK1/2 and p38 were activated in LPS-primed BMDMs, followed by LPA exposure (Figure 8b–d).
Similarly, they were also activated in cells treated with LPS alone (Figure 8b–d). However, AM152
significantly suppressed the activation of ERK1/2 and p38 in LPS-primed BMDMs, followed by LPA
exposure (Figure 8b–d).
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Figure 8. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated
protein kinase (MAPK) is involved in LPA1-mediated NLRP3 upregulation in LPS-primed BMDMs,
followed by LPA exposure. Cells were primed with LPS (500 ng/mL) for 4 h, followed by an exposure to
LPA (1 µM) for 1 h. Protein expression levels of NLRP3 and phosphorylation of p38 and ERK1/2 were
determined by Western blots. (a) Effects of MAPK inhibitors on NLRP3 upregulation in LPS-primed
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BMDMs based on Western blot analysis. Representative blots and quantification data are shown. Cells
were treated with each inhibitor for 30 min prior to LPS priming. n = 3 per group. *** p < 0.001 versus
control BMDMs (Veh). ## p < 0.01 and ### p < 0.001 versus stimulated BMDMs (LPS + LPA). (b-d) Effects
of LPA1 antagonist on activation of p38 or ERK1/2 in LPS-primed BMDMs determined by Western blot
analysis. Representative Western blots of phosphorylated p38 (p-p38), total p38 (p38), phosphorylated
ERK1/2 (pERK1/2), total ERK1/2 (ERK1/2), and β-actin (b) and quantification of activation of p38 (c)
and ERK1/2 (d) are shown. n = 3 per group. * p < 0.05 and ** p < 0.01 versus control BMDMs (Veh).
## p < 0.01 versus stimulated BMDMs (LPS + LPA).

3. Discussion

LPA1 is of great interest because it is being therapeutically pursued through ongoing clinical trials
(Clinicaltrials.gov ID: NCT01766817; Clinicaltrials.gov ID: NCT02763969) for drug development to treat
pulmonary fibrosis and psoriasis [33–35]. Other than these diseases, targeting LPA1 has been indicated
to be beneficial for various diseases, including neuropathic pain and cerebral ischemia [4,6,36]. In
particular, LPA1 antagonism can result in neuroprotection against an acute brain injury following
transient ischemic challenge by modulating immune responses in the injured brain [4]. The current
study addressed how LPA1 could contribute to an acute brain injury following ischemic challenge
along with underlying molecular mechanisms (Figure 9). The pathogenic role of LPA1 in cerebral
ischemia was associated with NLRP3 inflammasome activation, including NLRP3 upregulation, ASC
speck formation, caspase-1 activation, and IL-1β maturation in a post-ischemic brain. This contribution
of NLRP3 inflammasome activation to LPA1-dependent ischemic injury could be supported by the
pathogenic role of NLRP3 inflammasome activation in a post-ischemic brain [37,38]. Either a genetic
deficiency [37] or a pharmacological inhibition [38] might attenuate brain damages after ischemic
challenge. As underlying molecular mechanisms, LPA1 signaling was found to be able to regulate
NLRP3 inflammasome activation by activating NF-κB, ERK1/2, and p38 based on in vitro studies using
cultured macrophages.
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Figure 9. Schematic diagram showing the mechanism of NLRP3 inflammasome activation by LPA1.
In injured brains after tMCAO challenge, NLRP3 is upregulated in the penumbra and ischemic core
regions, particularly in cells expressing Iba1 (a marker of macrophages). NLRP3 inflammasome
activation including ASC speck formation, caspase-1 activation, and IL-1β maturation occurs in injured
brains. LPA1 contributes to NLRP3 upregulation (Signal 1) and NLRP3 inflammasome activation (Signal
2) in injured brains. In cultured macrophages, LPA1 also regulates NLRP3 upregulation and NLRP3
inflammasome activation (caspase-1 activation, IL-1β maturation, and IL-1β secretion) in LPS-primed
macrophages, followed by LPA exposure. As underlying mechanisms, LPA1 regulates translocation
of NF-κB into the nucleus and activation of p38 and ERK1/2 in these stimulated macrophages. It has
been reported that LPA1 can regulate such underlying mechanisms in injured brains after ischemic
challenge [4].
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NLRP3 inflammasome activation can be regulated by priming signal (signal 1) and activation
signal (signal 2) in macrophages [39]. Signal 1 is responsible for the upregulation of NLRP3 and IL-1β
via NF-κB activation. Signal 2 is responsible for an assembly of NLRP3 inflammasome complex and
caspase-1-dependent IL-1β maturation. A variety of endogenous/exogenous molecules can regulate
NLRP3 inflammasome activation [40,41]. Recently, it was demonstrated that LPA signaling can
regulate NLRP3 inflammasome activation in primed macrophages [18]. LPA can induce both NLRP3
upregulation and NLRP3 inflammasome activation in LPS-primed BMDMs, but not in unprimed
BMDMs [18]. Moreover, LPA5, one of LPA receptors, can regulate both NLRP3 upregulation and NLRP3
inflammasome activation in LPS-primed cells, followed by LPA exposure [18]. The current in vitro
study provided evidence that LPA1 could also regulate these events in LPS-primed macrophages,
followed by LPA exposure. Importantly, the pathogenic role of LPA1 signaling in cerebral ischemia [4]
could be closely associated with NLRP3 inflammasome activation (the current study). LPA amounts
are increased in plasma samples of ischemic stroke patients [19] and injured brains of animal models
following ischemic challenge [20], indicating that LPA may contribute to ischemic brain injury. Indeed,
exogenous LPA can increase cortical infarction in rats after tMCAO challenge [42]. Suppressing LPA
production with an autotaxin inhibitor can reduce brain infarction and neural cell apoptosis in rats with
the same challenge [20]. It is of note that LPA can induce NLRP3 inflammasome activation as shown
in our previous study [18] and the current study. It is also of note that both LPA1 [5,6] and NLRP3
inflammasome activation [16,17,37,38] can contribute to an ischemic brain injury. More importantly,
the current in vivo study demonstrated that suppressing LPA1 activity with its specific antagonist
attenuated NLRP3 upregulation and NLRP3 inflammasome activation in an injured brain following
tMCAO challenge. Therefore, NLRP3 inflammasome activation could be an underlying mechanism
of LPA1-mediated brain damage following ischemic challenge. The current study also indicated that
LPA1 could be a novel regulator of NLRP3 inflammasome activation.

NF-κB, ERK1/2, and p38 MAPK seemed to be involved in the LPA/LPA1 signaling axis-dependent
activation of macrophage NLRP3 inflammasome activation. All these signaling pathways can
influence NLRP3 inflammasome activation as players for the priming signal to induce NLRP3
upregulation [26,27,29–31]. They are also well-known as effector pathways after LPA1 activation [32].
Indeed, the current in vitro study clearly showed that suppressing LPA1 activity by AM152 treatment
attenuated the activation of NF-κB, ERK1/2, and p38 in LPS-primed BMDMs following LPA exposure.
Interestingly, LPA1 can regulate the activation of all these signaling molecules in a post-ischemic
brain [4]. Suppressing LPA1 activity with AM095 administration can attenuate NF-κB activation in the
ischemic core region following tMCAO-challenge [4]. It can also attenuate the activation of ERK1/2
and p38 in an injured brain after tMCAO challenge [4]. Considering the influence of LPA1 signaling on
these three effectors in BMDMs in vitro (the current study) and in post-ischemic brains in vivo [4], the
role of LPA1 in NLRP3 inflammasome activation in post-ischemic brain observed in the current study
might also be regulated by NF-κB, ERK1/2, and p38 signaling pathways.

In the current study, we revealed that LPA1 could regulate neuroinflammatory responses in
post-ischemic brains through upregulating NLRP3 expression and promoting NLRP3 inflammasome
activation. Such roles of LPA1 were reaffirmed in LPS-primed macrophages, followed by LPA exposure.
In fact, neuroinflammation is a key pathogenic event in post-ischemic brains [43,44], and targeting
neuroinflammation could be an appealing strategy for developing therapeutics to treat cerebral
ischemia [45,46]. In this view, targeting NLRP3 inflammasome activation with LPA1 antagonists
could be of interest. However, the multiphasic roles of inflammatory cells, such as neuroprotective
and neuroharmful roles, should be considered because the wrong treatment at the wrong time could
lead to detrimental effects [47,48]. During the acute phase, inflammatory cells, such as brain resident
microglia and infiltrated macrophages, are mainly involved in neuronal damage by accelerating
inflammatory cascades through the profound release of proinflammatory cytokines (i.e., tumor necrosis
factor-α (TNF-α), IL-1β, and interleukin 6 (IL-6)) [47]. In contrast, at the later stage, these cells are
also responsible for ischemic recovery [47]. Therefore, anti-inflammatory treatments might be mostly
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effective during the acute phase of ischemic challenge. Our recent study revealed that suppressing
LPA1 activity could efficiently attenuate inflammatory responses in post-ischemic brains [4]. AM095,
an LPA1 antagonist, attenuated activation of microglia and astrocytes, their proliferation, microglial
NF-κB activation, and production of proinflammatory cytokines, such as TNF-α, IL-6, and IL-1β, in
injured brains during the acute phase after tMCAO challenge (at 1 or 3 days after the challenge) [4].
These findings suggest that targeting LPA1 can lead to significant anti-inflammatory responses during
the acute phase after ischemic challenge possibly through suppressing glial activation. However,
whether LPA1 can be involved in the ischemic recovery during the later phase after ischemic challenge
remains unclear.

In conclusion, the current study demonstrates NLRP3 inflammasome activation is an underlying
mechanism for LPA1-mediated brain injury following ischemic challenge with experimental evidence
for possible signaling pathways in this event. Other than cerebral ischemia, both NLRP3 inflammation
and LPA1 signaling have been independently suggested as promising targets to develop therapeutics
in various diseases, including tissue fibrosis and psoriasis. In this context, findings of the current study
might be applied to understand how LPA1 can contribute to tissue injuries in these diseases.

4. Materials and Methods

4.1. Animals

Male ICR mice (six weeks old) were purchased from Orient Bio (Seongnam-Si, Gyeonggi-do,
Korea). All animal experiments were approved by Lee Gil Ya Cancer and Diabetes Institute (LCDI) at
Gachon University (animal protocol approval No.: LCDI-2019-0027, 1 March 2019) and performed in
accordance with the Institutional Animal Care and Use guidelines. Mice were housed under controlled
conditions: 12 h/12 h light/dark cycle, temperature of 22 ± 2 ◦C, and humidity of 60 ± 10%. They had
free access to food and water through the experiment.

4.2. Transient Focal Cerebral Ischemia Challenge and AM095 Administration

Transient focal cerebral ischemia in mice was induced by MCAO for 90 min and reperfusion
(‘tMCAO’) as described previously [49]. Briefly, mice were anesthetized with isoflurane (3% for
induction and 1.5% for maintenance) with an air mixture of oxygen:nitrous oxide at ratio of 30:70%.
Vertical neck incision was made and the right common carotid artery (CCA) was carefully separated
from the vagus nerve. The external carotid artery and internal carotid artery were then carefully
separated and MCAO was induced by inserting a silicon coated 5-0 monofilament (9-mm-long) toward
the MCA through the internal carotid artery from CCA bifurcation. Mice were allowed to recover and
subjected to an examination of intra-ischemic scores [50,51] to confirm successful MCAO at 1 h after
occlusion. Monofilament was withdrawn at 90 min after occlusion to restore the blood flow under
an anesthetic condition. Body temperature was controlled at 37 ◦C during surgery. To mitigate the
post-operative pain, 2% lidocaine cream was applied to the surgical sites. To replenish a fluid loss
during the surgery, physiological saline (10 mL/kg, i.p.) was administered after the surgery. For the
sham-operated group, animals underwent the same anesthetic and surgical procedures without MCAO.

AM095 was used as an LPA1 antagonist for in vivo experiments. After MCAO surgery, mice were
randomly divided into a vehicle (1% dimethyl sulfoxide in 10% Tween-80)-administered group and
an AM095-administered group. Vehicle or AM095 (30 mg/kg) was administered into mice by oral
gavage using a stomach tube immediately after reperfusion. The dosage of AM095 was set based
on previously reported in vivo studies, including ours [4,52–54]. The administration was done by an
investigator blinded to treatment groups. In the current study, one mouse from a vehicle-administered
group died before an experimental endpoint and this dead mouse was excluded from the study.
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4.3. Determination of Functional Neurological Deficit Score

Functional neurological deficit score was analyzed at one day after tMCAO challenge in a ’blinded
fashion using a modified neurological severity score (mNSS) grade to assess deficits of motor, sensory,
reflex, and balance functions in mice as previously described [55]. The mNSS grade ranged from zero
point for normal to 18 points for the maximal deficit. The determined neurological deficit score data
for all mice that were used for qPCR analysis, histological assessment, and Western blot analysis are
shown in Figure S1.

4.4. Quantitative Real-Time PCR (qPCR) Analysis

Total RNAs were isolated from ipsilateral brains at one day after ischemic challenge using
RNAiso plus (Takara, Kusatsu, Japan). Total RNAs (1 µg) were used to synthesize cDNAs by
reverse transcription using an All-in-One First-Strand cDNA Synthesis SuperMix (TransGen Biotech,
Haidian, China). qPCR analysis was done using a StepOnePlusTM qPCR system (Applied Biosystems,
Foster City, CA, USA) with Power SYBR Green PCR master mix (Life Technologies, Carlsbad, CA,
USA). Expression levels of NLRP3 mRNA were calculated using the 2−∆∆CT method. Mouse β-actin
housekeeping gene was used as a reference. The following primers were used: β-actin forward,
5′-AGCCTTCCTTCTTGGGTATG-3′; β-actin reverse, 5′-CTTCTGCATCCTGTCAGCAA-3′; NLRP3
forward, 5′-TCG CCC AAG GAG GAA GAA GAA-3′; NLRP3 reverse, 5′-TGA GAA GAG ACC ACG
GCA GAA-3′.

4.5. Immunohistochemistry for NLRP3 and Double Immunofluorescence for NLRP3/Iba1 or ASC/NLRP3

Brain samples for histological assessment were collected at one day after ischemic challenge.
Mice were anesthetized with a mixture of Zoletil 50® (10 mg/kg, i.m., Virbac Laboratories, Carros,
France) and Rompun® (3 mg/kg, i.m., Bayer HealthCare LLC, Shawnee Mission, KS, USA), perfused
transcardially with ice-cold phosphate-buffered saline, and fixed with paraformaldehyde (PFA). Brains
were removed, post-fixed with 4% PFA overnight, immersed in 30% sucrose solution, embedded
in Tissue-Tek Optimal Cutting Temperature compound, and frozen on dry ice. These frozen brain
samples were cut into 20-µm coronal sections using a cryostat (RD-2230, Roundfin, Liaoning, China).

For NLRP3 immunohistochemistry, brain sections were post-fixed in PFA, exposed to 0.01M
sodium citrate at 90–100 ◦C and 1% H2O2, blocked with 1% fetal bovine serum (FBS), and incubated with
a mouse anti-NLRP3 primary antibody (1:200, AdipoGen Life Sciences, San Diego, CA, USA) overnight
at 4 ◦C, followed by labeling with a biotinylated secondary antibody (1:200, Santa Cruz Biotechnology,
Dallas, TX, USA), for 2 h at room temperature (RT). These sections were further incubated with ABC
reagent (1:100, Vector Laboratories, Burlingame, CA, USA). Signals were developed with a DAB kit
(Dako, Santa Clara, CA, USA), rinsed with water, dehydrated with alcohol and xylene, and mounted
with an Entellan media (Merck, Darmstadt, Germany).

For NLRP3/Iba1 double immunofluorescence, brain sections after blocking with 1% FBS were
incubated with mouse anti-NLRP3 (1:100) and rabbit anti-Iba1 (1:500, Wako Pure Chemicals, Osaka,
Japan) primary antibodies overnight at 4 ◦C. In case of ASC/NLRP3 double immunofluorescence,
rabbit anti-ASC (1:200, AdipoGen Life Sciences) and mouse anti-NLRP3 (1:100) primary antibodies
were used. Sections were then labeled with AF488- and Cy3-conjugated secondary antibodies (1:1000,
Jackson ImmunoResearch West Grove, PA, USA) for 2 h at RT, followed by counterstaining with
4’,6-diamidino-2-phenylindole (DAPI) (Carl Roth, Karlsruhe, Germany). Labeled sections were
mounted with VECTASHIELD® (Vector Laboratories).

Bright-field or fluorescence images were photographed with a microscope equipped with a DP72
camera (BX53T, Olympus, Tokyo, Japan) or with a confocal microscope (Eclipse A1 Plus, Nikon, Tokyo,
Japan). All representative images were prepared using Adobe Photoshop Elements 8. For quantification,
three different photos (600 µm× 600 µm) of each brain region were taken in a blind fashion. The number
of immunopositive cells in each photo was manually counted and then converted to the number of
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immunopositive cells per unit area (mm2). The mean was used for the number of immunopositive
cells for the region of a single mouse. In case of ASC/NLRP3 double immunofluorescence, the number
of ASC/NLRP3-double immunopositive cells of each photo (200 µm × 200 µm) was manually counted
and then used for calculating % of cells with ASC/NLRP3 specks versus total cells (DAPI-positive cells).

4.6. BMDMs Primary Culture, Treatment, and LPA1 Knockdown

Bone marrow cells isolated from leg bones of ICR mice (male, 8 weeks old, Orient Co. Ltd.)
were differentiated into BMDMs for three days by incubation with minimum essential medium alpha
(α-MEM) containing recombinant mouse macrophage colony stimulating factor (30 ng/mL, R&D
systems, Minneapolis, MN, USA) as described previously [56]. For experiments, BMDMs (5 × 106

cells/well in a 6-well plate) were serum starved overnight by incubation with serum-free α-MEM. Cells
were then primed with LPS (500 ng/mL, Sigma-Aldrich, St. Louis, MO, USA) for 4 h, followed by an
exposure to LPA (1 µM, Avanti Polar Lipids, Birmingham, AL, USA) for 1 h. Fatty acid-free bovine
serum albumin (0.1%, Sigma-Aldrich) was used as a vehicle.

To suppress LPA1 activity in vitro, BMDMs were serum starved overnight and treated with
AM152 (another specific antagonist for LPA1) for 30 min. Cells were then primed with LPS and
exposed to LPA. Alternatively, BMDMs were subjected to a transient transfection with LPA1 siRNA
(Dharmacon, Lafayette, CO, USA) or control siRNA (Dharmacon) with Lipofectamine® RNAiMAX
(Life Technologies) under a serum-free and antibiotics-free condition, as previously described [18]. For
experiments, transfected cells were serum starved, primed with LPS, and exposed to LPA.

4.7. Western Blot Analysis

Proteins were extracted from either the ipsilateral brain hemisphere at one day after ischemic
challenge or cultured BMDMs using a neuronal protein extraction reagent (Thermo Fisher Scientific,
Waltham, MA, USA). Protein samples were separated by SDS-PAGE and transferred to polyvinylidene
difluoride (PVDF) membranes (Merck Millipore, Burlington, MA, USA). These membranes were
blocked with 5% skim milk, incubated overnight with primary antibodies against NLRP3 (1:1000),
pro-caspase 1 (1:1000, Abcam, Cambridge, UK), cleaved caspase-1 (1:1000, AdipoGen Life Sciences),
pro-IL-1β (1:1000, Cell Signaling Technology, Danvers, MA, USA), mature IL-1β (1:1000, Abcam),
phospho-NF-κB p65 (1:1000, Cell Signaling Technology), and β-actin (1:10000, Bethyl Laboratories,
Montgomery, TX, USA). They were then incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies (1:10000, Santa Cruz Biotechnology). Protein bands were detected using an
enhanced chemiluminescence detection kit (Donginbiotech Co., Seoul, South Korea). Expression levels
of target protein bands were quantified using ImageJ software (National Institute of Mental Health,
Bethesda, MD, USA).

4.8. Measurement of IL-1β in Conditioned Medium

Cell-free supernatants were collected from treated cells by centrifugation at 1500 rpm for 5 min.
They were then concentrated using a VIVASPIN 500 (Sartorius, Goettingen, Germany). Protein levels of
secreted IL-1β into the culture medium were determined using IL-1β enzyme-linked immunosorbent
assay kits (R&D systems, Minneapolis, MN, USA), according to the manufacturer’s instructions.

4.9. Determination of NF-κB Translocation

Cytosolic and nuclear proteins were extracted from BMDMs using ProteoExtract® Subcellular
Proteome Extraction Kit (Merck) according to the manufacturer’s instructions. Briefly, cells on a culture
dish (60 mm2) were washed with Wash Buffer three times and incubated with ice-cold Extraction
Buffer I containing protease inhibitor cocktail for 10 min at 4 ◦C under gentle agitation. Supernatant
(fraction 1: cytosolic protein) was carefully removed and used for Western blot analysis. Extraction
Buffer II containing protease inhibitor cocktail was added to the dish that was further incubated for
30 min at 4 ◦C under gentle agitation. Supernatant (fraction 2) that contain membrane/organelle
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protein was carefully removed. Finally, Extraction Buffer III containing protease inhibitor cocktail and
Benzonase®Nuclease was added to the dish that was further incubated for 10 min at 4 ◦C under gentle
agitation. Supernatant (fraction 3: nuclear protein) was carefully removed and used for Western blot
analysis. Cytosolic and nuclear proteins were subjected to SDS-PAGE gel electrophoresis, transferred
into PVDF membranes, and blocked. These membranes were incubated with primary antibodies
against NF-κB p65 (1:1000, Cell Signaling Technology), β-actin (1:10000), and histone H3 (1:1000,
Abcam) and incubated with HRP-conjugated secondary antibodies (1:10000).

4.10. Statistical Analysis

All data analyses were performed using GraphPad Prism 7 (GraphPad Software Inc., La Jolla, CA,
USA). Date are presented as mean ± S.E.M. Statistical significance was analyzed by either Student′s
t-test between two groups or one-way ANOVA, followed by a Newman–Keuls post hoc test, for
comparisons among groups. Statistical significance was considered when p-value was less than 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/22/8595/s1,
Figure S1: Administration of a lysophosphatidic acid receptor 1 (LPA1) antagonist, AM095, reduced neurological
deficit score in mice after transient middle cerebral artery occlusion (tMCAO) challenge. Figure S2: AM152, an
LPA1 antagonist, does not inhibit NF-κB phosphorylation in lipopolysaccharide (LPS)-primed BMDMs, followed
by lysophosphatidic acid (LPA) exposure.
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mNSS Modified neurological severity score
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