
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10524  | https://doi.org/10.1038/s41598-022-13469-7

www.nature.com/scientificreports

Modeling synergistic effects 
by using general Hill‑type 
response surfaces describing drug 
interactions
Michael Schindler

The classification of effects caused by mixtures of agents as synergistic, antagonistic or additive 
depends critically on the reference model of ’null interaction’. Two main approaches to describe 
co‑operative effects are currently in use, the Additive Dose (ADM) or concentration addition (CA) 
and the Multiplicative Survival (MSM) or independent action (IA) models. Recently we proposed an 
approach which describes ’zero‑interaction’ surfaces based on the only requirement that simultaneous 
administration of different drugs leads to Hill‑type response surfaces, which are solutions of the 
underlying logistic differential equations. No further assumptions, neither on mechanisms of action 
nor on limitations of parameter combinations are required. This defines—and limits—the application 
range of our approach. Resting on the same principle, we extend this ansatz in the present paper in 
order to describe deviations from the reference surface by generalized Hill‑type functions. To this end 
we introduce two types of parameters, perturbations of the pure drug Hill‑parameters and interaction 
parameters that account for n‑tuple interactions between all components of a mixture. The resulting 
‘full‑interaction’ response surface is a valid solution of the basic partial differential equation (PDE), 
satisfying appropriate boundary conditions. This is true irrespective of its actual functional form, as 
within our framework the number of parameters is not fixed. We start by fitting the experimental 
data to the ‘full‑interaction’ model with the maximum possible number of parameters. Guided by the 
fit‑statistics, we then gradually remove insignificant parameters until the optimum response surface 
model is obtained. The ’full‑interaction’ Hill response surface ansatz can be applied to mixtures of 
n compounds with arbitrary Hill parameters including those describing baseline effects. Synergy 
surfaces, i.e., differences between full‑ and null‑interaction models, are used to identify dose‑
combinations showing peak synergies. We apply our approach to binary and ternary examples from 
the literature, which range from mixtures behaving according to the null‑interaction model to those 
showing strong synergistic or antagonistic effects. By comparing ’null‑’ and ’full‑response’ surfaces 
we identify those dose‑combinations that lead to maximum synergistic or antagonistic effects. In 
one example we identify both synergistic and antagonistic effects simlutaneously, depending on the 
dose‑ratio of the components. In addition we show that often the number of parameters necessary 
to describe the response can be reduced without significantly affecting the accuracy. This facilitates 
an analysis of the synergistic effects by focussing on the main factors causing the deviations from 
’null‑interaction’.

The observation of synergistic or antagonistic effects after simultaneous administration of mixtures of active 
ingredients (a.i.s) is relevant for many areas of life-science. However, despite its importance in pharmacy, toxi-
cology, epidemiology, environmental science, agrochemistry and many other fields there is no consensus on the 
correct definition of synergy.

This consensus would be very helpful as it is necessary to define a reference behaviour, namely the response 
of an ensemble of compounds acting independently, in order to classify the observed effects as synergistic or 
antagonistic.

OPEN

Institute of Theoretical Chemistry, Ruhr-University Bochum, 44780 Bochum, Germany. email: Michael.Schindler@
rub.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-13469-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:10524  | https://doi.org/10.1038/s41598-022-13469-7

www.nature.com/scientificreports/

Hence, interaction-1 or combination-indices2, used to quantify the effects, are often based on differing defini-
tions of  additivity3,4.

The history of attempts to explain synergism was summarized in 1989 by the seminal work of  Berenbaum5, 
followed by a series of related  publications3,4,6–13, to quote only a few reviews.

Almost all approaches that describe synergy can be traced back to two competing assumptions on the action of 
drugs in mixtures, ADM and  MSM14. ADM was introduced by  Loewe15 and is based on the idea that an arbitrary 
dose of drug A in a mixture can be replaced by an iso-effective dose of another drug B in order to achieve the 
same effect. This is true if the doses are additive, with both drugs having parallel dose-response curves. As a con-
sequence the effect of the mixture can not exceed that of its most potent ingredient. While the terms ‘effect sum-
mation’, ‘dose addition’, and ‘concentration addition’ are used synonymously for ADM, a better characterization 
of the model would be ’mutually exclusive action’2,5. In order to handle mixtures of partially overlapping agonists, 
the original ADM  approach1,15–17 was extended and termed generalized concentration addition (GCA)  model8.

Numerous response surface  models18–21 are based on the concept of Loewe additivity. They avoid to describe 
synergism or antagonism of a mixture simply by a single number. It may happen that one dose-combination 
acts synergistic and another combination of the same drugs acts antagonistic. For that reason it is appropriate 
to look at response surfaces instead of considering distinct points on these surfaces or at isoboles, which are 
merely iso-effect lines on the surface.

A completely different ansatz is followed by the second approach, MSM. It is based on the definition of inde-
pendence in probability theory and was introduced to agrochemical research by  Abbott22,  Limpel23 and  Colby24,25 
to classify mixture  effects26. In toxicology this approach is known as Bliss  independence27,28. The components of 
a mixture are assumed to act, mutually non-exclusively, by different modes of action. Hence, according to MSM 
the maximum possible effect is not limited by that of its most potent ingredient. Recently Bliss’ definition was 
extended to detect statistically significant synergy under various  designs29. Astonishingly, by simply substituting 
Hill’s dose-response formulas into Colby’s formula under the assumption that all maximum effects are 100%, a 
new model name, ZIP (zero interaction metric) was  created30!

Chou and Talalay’s median-effect  models2 are derived from the law of mass-action. They belong to the most 
often used models in the  literature31,32, although their mutually non-exclusive model is an ad hoc extension of 
the mutually exclusive one and has been criticized by several  authors5,7,18 because of its questionable validity. A 
new mechanistic approach for binary mixtures,  MuSyC33,34, is also based on the law of mass-action. It claims 
to unify different synergy metrics for binary mixtures and derives a Hill-like equation for a four-state state-
transition model. In addition to the pure-compound parameters, two new parameters for each drug and one for 
their combination are introduced.

All of the approaches currently discussed are explanatory and not predictive, meaning that they are mainly 
used to fit experimental data. Response surface models are predictive only in the limited sense that they are able 
to find the optimum dose-ratio on a fitted surface. All models have inherent limitations: while the IA ansatz is not 
sham-compliant by design, Loewe additivity requires sham-compliance to be consistent. On the other hand, IA 
permits joint effects larger than the individual ones while GCA limits the maximum effect to be that of the most 
potent component. Mechanistic models are restricted to those mixtures which obey the proposed mechanism 
and are expected to become rather involved if they are extended to cover mixtures of more than two components.

Recently we presented an approach which describes dose-response surfaces of ’zero-interaction’ relying solely 
on the assumption that simultaneous administration of different drugs results in Hill-type shaped response 
 surfaces35. While Hill’s  equation36,37 can be obtained by solving a first-order ordinary differential equation (ODE), 
the logistic differential equation, its n-dimensional generalization results from solving a semilinear PDE. Its 
boundary conditions require that Hill’s equation results in the pure compound limit, and that the solution of 
the PDE is sham-compliant, meaning that an artificial partitioning of the one-dimensional problem into an 
n-dimensional one does not change the results.

In the present work we extend this ansatz to describe deviations from the reference surface by accounting 
for all n-tuples of drug interactions in n-component mixtures. It rests on the same principle, namely that the 
effect of both the pure compounds and their mixture can be described by Hill-type functions which are solu-
tions of the underlying ODEs/PDEs with the appropriate boundary conditions. This defines - and limits - the 
application range of our approach. No further assumptions, neither on mechanisms of action nor on limitations 
of parameter combinations are necessary.

We introduce two types of parameters to the generalized Hill function, perturbations of the pure drug Hill 
parameters and interaction parameters that account for n-tuple interactions between all components of a mixture. 
The resulting ‘full-interaction’ response surface is a valid solution of the basic n-dimensional PDE, satisfying 
its boundary conditions. This is true irrespective of its actual functional form, as the number of parameters is 
not fixed within our framework. Starting from fitting the experimental data to the ‘full-interaction’ model with 
the maximum possible number of parameters, we gradually remove insignificant parameters until the optimum 
response surface model is obtained. Its quality is examined by the nonparametric Wilcoxon-Mann-Whitney 
(MW) test and the Akaike Information Criterion (AIC). The Shapiro-Wilk test is used to check for the normal 
distribution of the errors.

Comparison of ‘null-’ and ‘full-interaction’ surfaces permits the identification of synergistic or antagonistic 
effects for each point on the n-dimensional surfaces.

In addition we slightly extend our original ansatz to cover baseline responses different from zero, meaning 
that we replace the 3-parameter- by the 4-parameter Hill-equation as the basic dose-response curve. This is 
equivalent to moving from a logistic to the more general Riccati ODE. Consequently an n-component mixture 
is described by an n-dimensional Riccati-type PDE.

Verification and checking the boundary conditions, as well as performing the nonlinear fits und their statisti-
cal evaluation, is done by using Mathematica  1238.
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In the next section we recapitulate our ’null-interaction’ model, slightly extended to cover baseline effects, 
and outline the ’full interaction’ formalism for binary and n-component mixtures. To facilitate the comparison 
with other approaches we translate our expressions of the two- and three-dimensional response surfaces into the 
notations used in the literature, followed by a short discussion of those response surface models that are used 
in the literature examples of the “Results” section. There we discuss three examples from different areas of life 
science. Our conclusions are given in the last section.

Theoretical models
Logistic functions and the Hill response surface. In35 we have discussed the close relation between 
Hill’s equation and the solution of the logistic ODE. Based thereon we proposed a null-interaction response 
surface model as a solution of the corresponding n-dimensional logistic PDE. While  in35 we tacitly assumed that 
the baseline response was zero, this restriction will be removed in the present work. This means that we refer to 
the 4-parameter- instead of the 3-parameter Hill equation and solve Riccati-type ODEs and  PDEs39 instead of 
logistic ones.

Denoting position and slope at the inflection point by x50 and α , the logistic function a(x) with minimum- 
and maximum effects amin and amax is

with �x = x − x50 . Hill’s equation

and a(x) are intimatey connected. Actually, x is the natural logarithm of a dose with −∞ ≤ x ≤ ∞ , whereas the 
dose itself (i.e., ex ) is ≥ 0 . Hence, we can identify the effects E0 , Emax and the shape parameter α with amin , amax 
and α , and the doses C and EC50 with ex and ex50 of Eq. (1), meaning that Hill’s 3- or 4-parameter equation is the 
solution of a logistic or Riccati ODE.

The Riccati-type PDE for the response surface of a binary mixture, characterized by slope γ (x, y) , minimum- 
and maximum-effect functions umin(x, y) and umax(x, y) , is given by

where ux = ∂u(x, y)/∂x and uy = ∂u(x, y)/∂y denote the partial derivatives of u. Completely analogous  to35, a 
solution of Eq. (3) is the ’null-interaction’ surface

with the ansatz

While formally umin(x, y) is permitted to be a function of the a.i.s, for physical reasons umin is constant, as 
the baseline response, i.e., the response in the absence of a drug, is independent of any a.i.. Similar to the GCA 
approach, in the “null-interaction” model the maximum effect achievable by a mixture is that of its most potent 
component.

The ’full‑interaction’ response surface. Although one may doubt whether a perturbed response surface 
should be required to be a solution of a PDE at all, we stay within the framework of solving the basic PDE and 
thereby remove some arbitrariness in the descriptions of co-operative effects. Our approach starts from the ’null-
interaction’ surface uHill(x, y) and systematically accounts for deviations from this reference.

We use the fact that uHill as given by Eq. (4) with the definitions of γ , umax and umin is not the only possible 
solution of Eq. (3). Modifications of these functions can be shown to be also solutions, if they do not violate the 
co-domain 0 ≤ u(x, y) ≤ 1 of the response function and if the ’null interaction’ function u(x, y) is obtained in 
the limit of vanishing perturbations. However, whether the perturbed surface has to satisfy all the boundary 
conditions imposed on the reference surface, needs to be discussed. While the surfaces must be asymptotically 
correct for vanishing and infinitely high doses, sham-compliance might not be essential for the perturbations.

Two types of parameters are introduced: perturbations of the pure compound Hill parameters allow for 
individual changes of slopes, maximum effects and inflection points. For binary and ternary mixtures additional 
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terms describe drug-drug- and three-drug-interactions, respectively. An extension to n-component mixtures 
is straightforward.

The basic idea of this approach is to maintain the functional form of the ’zero interaction’ surface and to 
augment it by formally similar functions. In addition to the unperturbed expressions these contain nth roots 
of products of n doses when they are used to describe n-component mixtures. This guaranties that the ’full 
interaction’ surface is a valid solution of the PDE. In order to keep the theory simple we do not consider other 
possible types of interactions, namely cross-terms between and among the perturbation- and interaction-terms 
mentioned above.

Perturbations and interactions in binary mixtures. Co-operative effects in a mixture will lead to 
changes of the surface parameters. These include both perturbations δamax , δbmax , δx50 , δy50 , δα and δβ of the 
Hill-parameters, and drug-drug interaction terms of the form p× e

�x+�y
2  , (p = δxy, δαβ , δab = δamaxbmax) . 

As mentioned above we explicitly exclude terms like p = δxα, δyb, δαx50 , etc. The baseline effect umin is 
assumed to be not affected by co-operative effects. Then the full-interaction response surface, solving Eq. (3), is

where we replaced γ by γ + δγ , umax by umax + δumax and introduced the definitions

while umin , umax and γ are defined by Eqs. (5)–(7). As discussed before, the binary interaction terms are square 
roots of products of two doses, 

√
e�xe�y = e

�x+�y
2  , and appear both in the denominators and the numerators of 

Eqs. (8)–(11). This ansatz can be verified by substituting Eqs. (8)–(11) into Eq. (3). In order to avoid mixing of 
different types of parameters and thus to facilitate the interpretation of co-operative effects we add the interaction 
parameter δxy only to the numerator of Eq. (8). While in the pure-compound limit all interaction terms vanish 
automatically, the perturbation parameters have to be explicitly set to zero. Otherwise we would get

and for infinitely high doses

To exclude physically impossible responses, δumax can vary only under the restriction that umax + δumax ≤ 1.

The ‘full‑interaction’ response surface for mixtures of n components. An extension of our for-
malism to mixtures of n agents Ai is straightforward. The corresponding Riccati-type PDE is

where �x = (x1, . . . , xn) , uxi = ∂u(�x)/∂xi and �Xi = �xi − δxi50 . Its solution describes an n-dimensional full-
interaction response surface. In addition to the ’null-interaction’ terms it contains contributions from the per-
turbed Hill- and drug-drug interaction parameters up to n-compound interactions. Here again it is essential that 
n-tuple interactions are described by nth roots of products of n doses, multiplied by their respective parameters.

with
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Formally umin(�x) can be defined analoguously to umax(�x) , however, for physical reasons umin(�x) will be con-
stant. If all δi-terms vanish, the “null-interaction” surface results, and in addition

While the number of perturbation parameters increases linearly with the number n of mixture components, 

the number of possible interaction terms grows as 
∑n

k=2

(

n
k

)

 , the reason being that building k-tuples of interac-

tion terms, i.e., binary (k = 2) , ternary (k = 3) , quarternary (k = 4) etc., out of n compounds scales as 
(

n
k

)

 . This 

means that the number of possible parameters increases from 9 for binary to 21 for ternary and to 45 for quar-
ternary mixtures!

Other approaches would need even more parameters. For example, to describe a quarternary mixture by 
 MuSyC33, 2n(n+ 1)− 3n− 1 = 67 parameters are required.

Here we see a great advantage of our ansatz over approaches with a fixed number of parameters. The func-
tional form chosen for the ’full interaction’ surface guaranties that uRicc remains a valid solution of the basic 
Riccati PDE, Eq. (14), irrespective of the number of model parameters used. Hence, the number of parameters 
selected for a final model in an actual investigation depends only on its fit-statistics.

Comparison of response surface models
In our previous article on Hill-type response  surfaces35 we made a detailed comparison of different approaches 
describing synergy. Therefore we recapitulate here mainly the response surface models based on Loewe-additivity 
and their predecessors. We start with a translation of our theory to the nomenclature used in the literature.

Nomenclature of literature expressions. When we discussed the close connection of the logistic ODE 
with Hill’s equation, we found that the exponential functions ex and ex50 correspond to doses in Hill’s equation. 
Consequently expressions like e�x−δx50 in uRicc denote doses da scaled by their median effect da50 and modified 
by a perturbation δa50 . With the definitions ma = da/(da50δa50) = e�x−δx50 and mb = db/(db50δb50) = e�y−δy50 
the ‘full-interaction’ Hill response surface of a binary mixture is given by

with

with the modifications δα , δβ , δa , δb , δma , δmb of the individual Hill parameters and the interaction terms 
δab, δmab and δαβ.

For ternary mixtures of a, b and c we get (with mi = di/(di50δi50)

where in a self-explaining notation (setting umin = const.)

uRicc satisfies u((n−m)× d, (1− n)× d,m× d) = a(d) with 0 ≤ n+m ≤ 1.
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Empirical response surface models. The CA model of mutually exclusive action for two noninteracting 
isoactive drugs A and B, acting according to Hill dose-response functions with slopes γa and γb , is given by

Greco derived a model for two-agent combined action by adding an interaction term, parameterized by a fac-
tor α . Assuming that the Hill-type dose-response curves of A and B differ only in the slope parameters, he  gets18

Although analytical expressions for u can be obtained from Eqs. (26) and (27) only under the restrictions 
of either a fixed maximum effect amax = bmax and identical slope parameters γa = γb or of different maximum 
effects and identical slopes of unity γa = γb = 1 , they are the starting points for several response surface models, 
e.g., the GCA  expression8 from Eq. (26). It permits different maximum effects but is limited to γ = 1.

Hence, uGCA is a special cases of uHill . The same holds true for Chou and Talalay’s mutually exclusive  model2. 
It was derived from the the median effect principle, assuming both a constant umax and γ

Their mutually non-exclusive  model2 is an ad hoc extension of Eq. (29)

Minto19 proposed a model that solved the problem of the different denominators in Eq. (26) by expanding 
umax and γ in polynomials in a parameter � .  Fidler20 extended Minto’s approach by adding an interaction term. 
Their model is

where α indicates the type of interaction. Minto’s model corresponds to α = 0 , α > 0 means synergism and 
α < 0 antagonism. f (s,w,�p) resembles a generalized Ŵ-distribution, and umax(�p) and γ (�p) are functions of 
the potency fraction �p and f (s,w,�p) . �p ranges from 0 (drug A only) to 1 (drug B only). The key difference 
between our full-interaction uRicc model with individual perturbation- and interaction terms and Fidler’s ansatz 
is the function f (s,w,�p) , modifying γ and umax and thus accouunting for deviations from null-interaction. By 
truncating their polynomial ansatz for umax and γ after the linear terms in �p , we have

Thus by making γ (�p) and umax(�p) symmetric with respect to ma and mb , uMinto becomes identical to 
uHill . However, inclusion of higher powers of �p leads to violations of the boundary conditions and the sham 
compliance requirement. The flexible interaction model for three agents is somewhat lengthy and is described 
in appendix 1  of20.

Results and discussion
In order to validate a theoretical synergy model it is necessary to test it using data sets with a sufficiently large 
number of experimental data. The paucity of data may lead to difficulties when trying to fit a multi-parameter 
function to few experimental mixture data. The fit problem becomes even worse for mixtures of more than two 
compounds and becomes really challenging for n > 3 . Fortunately, as shown in the examples below, very often 
the number of fit parameters can be reduced considerably without affecting the quality of the model.

Another problem concerns the error bars of the experiments. Often they are large or unknown. Let us assume 
that the experimental uncertainty of a dose-response curve from in vivo data is approximately 5 % , then the 
uncertainty of measuring a synergistic effect amounts to 15% , as 3 sets of measurements are required, those of 
the pure components and of the mixture. Hence, when claiming synergy one needs effects greater than ≈ 15% 
to be on the safe side.

We choose three examples of increasing complexity that provide adequate numbers of mixture data, start-
ing with the Yonetani and  Theorell40 data already used by  Chou31, followed by two examples of  Short41 and 
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 Schlezinger42 from our previous  publication35. The datasets analysed during the current study are available 
from Table 9  of31, listed in Table 241 below, and from the Supplemental Material  of43(doi:10.1289/ehp.0901312), 
respectively.

They serve to check whether our approach is flexible enough to cover a large variety of experimental responses 
and whether - and to what extent - the number of model parameters can be reduced without loosing accuracy in 
reproducing the response surface. The quality criteria used are the nonparametric MW, the AIC, the root-mean 
square error (RMSE) of the fit and the Shapiro-Wilk goodness-of-fit test for the normal distribution of the errors.

In the following sections we denote the null-interaction reference surface by uHill , the full-interaction surfaces 
by uRicc , and the difference uRicc − uHill is assumed to be the synergy surface.

The general procedure is as follows: In a first step the null-interaction reference surface uHill is generated, 
based on the Hill parameters of the pure compounds. Subsequently the experimental data are fitted to the full-
interaction response surface uRicc under the constraints that the individual maximum effects amax + δa etc. do 
not exceed 100%.

This is an iterative process. The nonlinear fit normally starts with the full model, subsequently removing 
those parameters whose coefficients are negligible and only marginally affecting the fit-statistics. The final form 
of uRicc with a possibly much smaller number of parameters than the full-interaction model is chosen based on 
the respective fit-statistics.

Here we use the AIC ( AIC = 2n− 2 ln L ) which provides a balanced score between goodness of fit (maximum 
value L of the likelihood function) and simplicity (number of parameters n) of the models under considera-
tion. The nonparametric MW test is used to check that both experimental and modeled data describe the same 
distribution.

The resulting synergy surface, uRicc − uHill , is visualized by contour plots covering the dose-ranges of the 
mixture partners. Maxima and minima of this surface correspond to dose-combinations leading to peak syn-
ergism or antagonism.

The origin of the deviations from the null-interaction surface, i.e., the answer to the question which type of 
interaction causes the observed effect, can be found by looking at the magnitude of the individual perturbation/
interaction terms.

Alcohol dehydrogenase inhibitors o‑phenanthroline and adenosine diphosphate ribose. We 
use experimental liver AdH inhibitor data of Yonetani and  Thorell40 as an introductory example. They used a 
graphical method to examine the interaction of two competitive inhibitors at an enzyme and to obtain their 
kinetic constants. Fitting the 25 data points to a zero-interaction uHill results in an adjusted r2 of 0.9929 and an 
RMSE of 5.67% . Inclusion of one interaction term, δab , simplifies Eq. (19) considerably (Eq. 34) and leads to 
r2 = 0.9994 and to a reduction of the RMSE to 1.82%, and if we additionally permit δmab and δαβ to contribute, 
we get an r2 = 0.9999 and an error of 0.82% , while the full model reveals an error of 0.69%.

On contour plots of synergy surfaces based on the three models (Fig. 1) we see that synergistic effects increase 
with increasing doses and exceed 25% . The differences between the one- (Eq. (34)), three- and the 9-parameter 
full Riccati surfaces (Eq. (19)) are rather small, indicating that one interaction parameter only, δab , is sufficient to 
account for the main synergistic effect. According to its AIC the best model is the 3-interaction-parameter model 
b) of Fig. 1 with an AIC of − 228.5, as compared to − 177.1 for a) and − 223.8 for c), corroborated by the MW 
test providing p-values of 0.96, 0.99, and 0.96 for the one-, three-, and 9-parameter models. This demonstrates 
the flexibility of the ansatz, showing that the number of parameters for an optimum fit may require much less 
parameters than the maximum possible one.

Mixtures of anesthetics. Anesthetic  mixtures41 have been analyzed in great detail  by20  and19 to test their 
flexible interaction models. For the present purpose the data for midazolam, propofol, and alfentanil, ranging 
from 0 (no hypnosis) to 1 (full hypnosis), were fitted to Hill dose-response curves and used to predict binary- 
and ternary mixture effects. The results are summarized in Table 1.

It turns out that in this example the perturbation parameters are unimportant for the binary mixtures whereas 
all interaction parameters are needed. Hence, the number of parameters is reduced from 9 to 3 and Eq. (19) 
becomes Eq. (35)

with

While the RMSEs of fits are approximately 5% for the pure compounds, those for mixture predictions using 
uHill are of the order of 40%. However, using uRicc leads to a reduction of the RMSEs by factors of ≈ 10 , and a 
comparison of the p-values from the MW tests for the null- and the full-interaction models reveals that the Hill 
surfaces do not adequately describe the binary and ternary response surfaces.

(34)uRicc =
umax + δumax

1+ (ma +mb)
−γ ; δumax =

δab
√
mamb

ma +mb +
√
mamb

;δγ = 0

(35)uRicc =
umax + δumax

1+
(

ma + δmab
√
mamb +mb

)−(γ+δγ )

(36)δumax =
δab

√
mamb

ma +mb +
√
mamb

and δγ =
δαβ

√
mamb

ma +mb +
√
mamb
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Comparing the AICs of the best Fidler/Kern response surface models (Table 1  of20) with our results (Table 1), 
we find only marginal differences for the two-drug models midazolam/propofol and midazolam/alfentanil, 
but for propofol/alfentanil and for the three-drug case AIC differences of −7.59(= −42.68+ 35.09) and 
−14.31(= −121.06+ 106.75) show strong to very strong evidence in favour of the Riccati models. Especially 
large are changes due to slope-interaction δαβ . The resulting synergy surfaces (Fig. 2) show regions with syner-
gistic effects exceeding 60%.

For the ternary mixture all perturbation terms disappear in the final model, while all two- and two of the three-
compound interactions ( δαβµ and δmabc ) are important. This means that δi = δαi = 0 and δmi = 1 ∀i ∈ a, b, c 
in Eq. (25), and the number of parameters is reduced from 21 to 11. It is interesting to note that coefficients of 
the binary interaction terms are almost transferable to their analogs in the ternary mixture. Similar findings were 
reported  by20. In Table 2 we compare experimental data with results from fits using uHill (parameter sets from 
the pure compounds) and from two full-interaction models uRicc , based on Eqs. (8) and (23), respectively. For all 
’full-interaction’ models the null hypothesis that the errors are distributed according to the Normal Distribution 
is not rejected at the 5% level based on the Shapiro-Wilk test.

Peak synergies of increasing magnitude, marked with green dots in Fig. 2, are observed for the binary mixtures 
of propofol/alfentanil (37% at doses of 0.575 and 0.0298 mg/kg), midazolam/propofol (65% at doses of 0.0292 
and 0.667 mg/kg) and midazolam/alfentanil (66% at doses of 0.0474 and 0.03776 mg/kg). The synergistic effect 
of the ternary mixture (68%) is comparable to the best binary one. Again this is in line with the observation 
of refs.19  and20 , who find the same ranking of synergistic effects, although lower in magnitude (16%, 35%, and 
44%19 as compared to 20%, 41% and 45%20), and note that no synergy beyond that expexted from the paired 
interactions was found.

Table 1.  Fit characteristics and parameters of anesthetics and their mixtures. a D50(mg/kg) , fraction of dose 
causing hypnosis in 50% of the population. bSlope of the dose-response curve. cNull-interaction model, Eq. (4). 
dFull interaction model, Eq. (35). eBetween maximum effects δab , slopes δαβ and inflection points δmab ( δabc , 
δαβγ , δmabc for ternary mixture) fCalculated effect-difference between full- and null-interaction models, [%]. 
gGoodness of fit according to the Akaike Information Criterion. hRMSE = root-mean-square error with respect 
to exptl. data. ip-values from the Wilcoxon-Mann-Whitney test. j,k,lPropofol, Midazolam, Alfentanil.

Drug

Minto19,  Fidler20 Hillc Riccatid Interaction termse
peak f

synergyD50 a α b AICg RMSEh MW i RMSE AIC MW δab δαβ δmab

Midazolam 0.144 4.8 0.054 0.053

Propofol 1.078 11.1 0.035 0.035

Alfentanil 0.093 5.7 0.069 0.069

Midazolam + Propofol − 58.97 0.387 0.13 0.043 − 60.54 0.65 0.14 − 12.89 1.11 65

Midazolam + Alfentanil − 36.33 0.477 0.21 0.051 − 37.64 0.97 − 0.08 1.28 1.68 66

Propofol + Alfentanil − 35.09 0.228 0.37 0.053 − 42.68 0.63 0.35 − 12.34 0.38 37

Ternary mixture j,k,l − 106.75 0.461 0.09 0.046 − 121.06 0.79 0.00 2.46 − 1.16 68

       j,k 0.13 − 12.84 1.11

       j,l − 0.09 1.56 1.69

       k,l 0.23 − 11.78 0.40

Figure 1.  Contour plots of ADH inhibitor synergy surfaces uRicc − uHill (in %) using different parameter sets 
for uRicc . The uRicc surfaces contain (a) δab-only, (b) all interaction parameters δab , δmab and δαβ , and (c) the 
full-parameter set.
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Figure 3 shows iso-effect surfaces for the ternary mixture at the 25% , 50% and 75% effect levels for both 
models and their difference, the iso-synergy surfaces. As expected, the null-interaction model leads to planar 
iso-surfaces, similar to straight-line isoboles for binary mixtures, while they are curved in the full-interaction 
case. The maximum of the iso-synergy surfaces (68%) is observed at low doses of midazolam (0.032 mg/kg) and 
alfentanil(0.0116 mg/kg), combined with medium high doses of propofol(0.48 mg/kg).

Dioxin‑like chemicals. In42 Aryl hydrogen receptor (AhR) ligands were used to compare the toxic equiva-
lence factor approach and the GCA ansatz to predict the effect of mixtures of full agonists (TCDD, TCDF) 
with agonists (PCB126), partial agonists (PCB105, Galangin) or antagonists (DIM). From their Supplemental 
 Material43 Hill curves with variable γ were derived and used to predict uHill . It turned out that the differences 
in Emax - and EC50-values between uGCA (Eq. (28)) and uHill are much smaller than the experimental error bars 

Table 2.  Anesthetic mixtures: Exptl. data vs. ’full’- and ’null’-interaction models. aData  from41, 0 = no 
hypnosis, 1 = full hypnosis. bFull-interaction model uRicc , Eqs. (8) and (23), interaction parameters from 
Table 1. c Hill’s equation for pure compounds, null-interaction model uHill , Eq. (4), else.

Midazolam
[mg/kg]

Propofol
[mg/kg]

Alfentanil
[mg/kg]

exptl.a
Effect

Fit results, based on parameters from:

Riccatib
3-dim

Riccatib
2-dim.

Hillc
No interaction

0.1 0 0 0.2 0.1 0.1

0.125 0 0 0.3 0.3 0.3

0.15 0 0 0.5 0.5 0.5

0.175 0 0 0.8 0.7 0.7

0.2 0 0 0.8 0.8 0.8

0 0.7 0 0.1 0 0.

0 1 0 0.3 0.3 0.3

0 1.3 0 0.9 0.9 0.9

0 1.6 0 1 1 1

0 1.9 0 1 1 1

0 2.2 0 1 1 1

0 2.5 0 1 1 1

0 0 0.05 0 0.1 0

0 0 0.075 0.3 0.2 0.2

0 0 0.1 0.5 0.6 0.6

0 0 0.125 0.9 0.8 0.8

0 0 0.15 1 1 0.9

0.03 0.21 0 0.2 0.2 0.2 0.0

0.04 0.29 0 0.4 0.4 0.4 0.0

0.05 0.36 0 0.5 0.6 0.6 0.0

0.065 0.46 0 0.8 0.8 0.3 0.3

0.085 0.6 0 1 0.9 0.8 0.7

0.1 0.71 0 1 1 0.9 0.9

0.13 0.92 0 1 1 1 1.0

0.17 1.2 0 1 1 1 1.0

0 0.25 0.025 0.1 0.1 0.0 0.0

0 0.31 0.031 0.3 0.2 0.2 0.0

0 0.4 0.04 0.4 0.5 0.6 0.1

0 0.5 0.049 0.8 0.7 0.8 0.5

0 0.63 0.061 0.9 0.9 0.9 0.9

0.035 0 0.025 0.4 0.4 0.0 0.0

0.044 0 0.031 0.7 0.7 0.2 0.1

0.056 0 0.04 0.9 0.9 0.6 0.3

0.07 0 0.049 0.9 0.9 0.8 0.5

0.085 0 0.061 1 1 0.9 0.8

0.023 0.17 0.016 0.3 0.3 0.

0.03 0.21 0.021 0.6 0.6 0.

0.037 0.26 0.026 0.8 0.8 0.1

0.047 0.33 0.032 0.9 0.9 0.5

0.059 0.42 0.041 1 1 0.8
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(c.f. Table 3). As uGCA is a special case of uHill , these differences result from fixing γ in GCA (γ = 1) and γ  = 1 
in the Hill ansatz.

In Table 4 the variation of the quality of fits with the number and type of fit parameters is shown, starting 
from the null model (parameter set 0 in Table  4) and ending with the full model (Eq. (19), parameter set 5). As 
the GCA expression is a special case of uHill , and as the introduction of variable slopes for the pure compounds 
has only very minor effects (c.f. Table 3), the results referring to set 0 are equivalent to those from  ref42.

We note that the choice of parameters affects the quality of the TCDF+PCB126 surface only marginally as it is 
already satisfactorily described by the null-model. Actually, the simplest interaction model with perturbations of 
the slope-parameters only turns of to be the best model with an AIC of − 157.5. Two mixtures, TCDD+PCB126 
(AIC = − 126.6) and TCCD+DIM (AIC = − 177.3) are described fairly well by perturbation parameters only 
(parameter set 1), while inclusion of the interaction terms improves the model only slightly (AICs = − 130.8 
and − 181.8 for sets 5 and 4, respectively). The situation is different for the TCDD+Galagin mixture, where 
interaction terms (AIC = − 128.8, set 2), augmented by slope perturbations (AIC = − 130.3, set 3) constitute the 
best models. It is interesting to note that the largest deviations from ’null-interaction’ are found for the agonist/
antagonist mixture TCCD+DIM.

The superiority of the respective optimum Riccati models over the null-model is demonstrated by comparison 
of the p-values from nonparametric MW tests. We find 0.84 vs. 0.90 for the combination TCDF+PCB126, 0.35 vs. 
0.94 for TCDDA+PCB105, 0.83 vs. 0.98 for TCDBB+galangin, and 0.39 vs. 0.89 for TCDDC+DIM, respectively. 
This comparison reveals also, that the null-model is able to describe the pair of full agonists, TCDF+PCB126, and 
the combination of a full agonist with a partial agonist of low efficacy, TCDBB+galangin. It is less appropriate 
for the description of the combinations of a full and a partial agonist, TCDD+PCB105, and a full agonist with a 
nearly complete competitive antagonist, TCDD+DIM.

Comparing our data with the MW statistics of Ref.42 we find p values for the rejection of their GCA model of 
0.86, 0.63, 0.79, and 0.65. While they agree with our results for the pairs TCDF+PCB126 and TCDBB+galangin, 
they seem to be rather high for the remaining ones.

Table 3.  AhR agonist parameters from GCA- and Hill-models. Parameters are slopes γ , maximum effects 
Emax and EC50 values of the agents. b2,3,7,8-tetrachlorodibenzofuran; c2,3,3’,4,4’-petachlorobiphenyl; d
2,3,7,8-tetrachlorodibenz-p-dioxin; e3,3’-diindolylmethane.

Ligand

GCA, γ = 142 Hill, γ variable

Emax(%) EC50(M) Emax(%) EC50(M) γ

TCDFb 100 2.9× 10−11 100 3.2× 10−11 0.88

PCB126c 99 4.1× 10−10 100 4.5× 10−10 0.82

TCDDd 100 7.6× 10−12 100 6.3× 10−12 1.29

PCB105 61 1.4× 10−6 56 9.2× 10−7 1.45

TCDD 100 9.9× 10−12 100 8.5× 10−12 1.09

Galangin 30 4.1× 10−6 35 4.7× 10−6 0.79

TCDD 100 9.1× 10−12 100 6.5× 10−12 1.22

DIMe 8 6.6× 10−6 10 8.5× 10−6 1.62

(a)

Figure 2.  Synergy surfaces for binary mixtures of anesthetics, based on uRicc of Eq. (35), with parameters δab , 
δαβ and δmab from Table 1. Doses in [mg/kg]. Green dots denote dose combinations leading to peak synergistic 
effects.
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Table 4.  AhR agonist parameters for ’null’- and ’full’-interaction surfaces. aPerturbation of maximum effects 
δa,δb , inflection points δma,δmb and slopes δα,δβ , δma = eδx50 = 1 in Eq. (19) corresponds to δx50 = 0 , the 
same holds true for δmb. bInteraction between maximum effects δab , slopes δαβ and inflection points δmab. c-d
See legends g−h of Table 1. e-iSee legends b−e of Table 3.

Mixture Set

Perturbation termsa Interaction termsb

RMSEc AICdδa δb δma δmb δα δβ δab δαβ δmab

TCDFe  +  PCB126f

0 – – – – – – – – – 4.5

1” – – – – − 0.15 0.02 – – – 3.6 − 157.5

1’ – – 1.05 0.91 − 0.13 − 0.01 – – – 3.5 − 155.8

1 − 0.05 0.00 0.92 0.91 − 0.04 − 0.01 – – – 3.4 − 153.2

2 – – – – – – 0.01 − 0.37 0.18 3.8 − 151.1

3 – – – – –0.13 0.05 0.04 − 0.40 0.17 3.6 − 152.8

4 – – 1.08 0.94 − 0.11 0.03 0.02 − 0.32 0.157 3.5 − 149.9

5 − 0.05 0.00 0.93 0.93 − 0.01 0.02 0.06 − 0.36 − 0.01 3.4 − 146.8

TCDD g  +  PCB105h

0 – – – – – – – – – 8.0

1” – – – – − 0.28 − 0.66 – – – 6.6 − 112.3

1’ – – 1.29 0.91 − 0.13 − 0.62 – – – 6.1 − 112.8

1 0.0 − 0.10 1.22 0.61 − 0.10 0.09 – – – 5.0 − 126.6

2 – – – – – – − 0.41 − 0.53 0.40 5.6 − 124.4

3 – – – – 0.01 − 0.33 − 0.38 − 0.26 0.25 5.5 − 121.2

4 – – 1.07 0.85 0.07 − 0.40 − 0.35 0.00 0.16 5.4 − 118.0

5 − 0.05 0.00 0.93 0.93 − 0.01 0.02 0.06 − 0.36 − 0.01 4.5 − 130.8

TCDD + Galangin

0 – – – – – – – – – 7.1

1” – – – – − 0.08 − 0.19 – – – 7.0 − 108.0

1’ – – 0.91 0.46 0.13 − 0.14 – – – 5.9 − 119.8

1 0.0 − 0.06 1.13 0.57 0.03 2.52 – – – 5.5 − 121.9

2 – – – – – – − 0.45 7.3 2.30 5.5 − 128.8

3 – – – – 0.15 − 0.34 0.62 − 2.85 4.85 5.1 − 130.3

4 – – 0.92 0.11 − 0.04 − 0.46 − 0.18 8.12 − 0.18 4.9 − 129.7

5 0.0 − 0.02 0.50 − 0.43 − 0.04 − 0.35 − 0.10 8.73 − 0.41 4.9 − 125.7

TCDD +  DIMi

0 – – – – – – – – – 14.2

1” – – – – − 0.50 − 1.32 – – – 9.9 − 83.8

1’ – – 1.10 0.17 0.28 − 0.19 – – – 4.0 − 181.4

1 0.0 − 0.01 1.08 0.17 0.24 0.01 – – – 4.0 − 177.3

2 – – – – – – 0.02 − 2.47 − 1.83 5.5 − 129.4

3 – – – – 0.20 − 0.21 − 0.05 − 2.74 − 1.88 5.3 − 146.2

4 – – 0.92 0.11 − 0.09 − 0.94 0.16 1.54 − 0.66 3.8 − 181.8

5 0.0 − 0.05 1.00 0.10 0.28 0.78 0.31 − 0.85 − 0.58 3.7 − 178.5

Figure 3.  Iso-response surfaces for the ternary anesthetic mixture of propofol, midazolam and alfentanil at 
25%, 50%, and 75% effect levels. Doses in [mg/kg]. Shown for the null-interaction (a) and the ’full-interaction’ 
(b) models. Their difference uRicc − uHill (c) shows iso-synergy surfaces at 10%, 30% and 50% levels.
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Neglecting changes of maximum effects ( δa = δb = 0 ) worsens the quality of fits only slightly. This might 
be due to the fact that their respective fit-coefficients are already rather small. The exception is the mixture 
TCDD+PCB105 with δb = −0.1 . The statistics is hardly affected, too, when we also disregard changes in the 
inflection points. Here the exception is TCDD+DIM, whose RMSE becomes significantly worse. And finally, 
omission of all perturbation terms has a larger effect on the quality of fits than the omission of all interaction 
terms.

An analysis of the synergy surfaces (Fig. 4), based on the full interaction model (set 5), can locate their 
extrema and calculate the synergistic effect uRicc − uHill at the respective dose-combinations (da, db) . These are 
marked by red and green dots in Fig. 4. Having in mind that  in42 the authors observed an unexplained decline 
in reporter activity at the highest doses for some ligands, we restrict our regions of search to the experimentally 
observed dose ranges (dashed lines in Fig. 4). The differences between sets 1–5 of Table 4 in the prediction of 
maximum synergistic effects are shown in Table 5. In addition, the dose-combinations leading to the synergism-/
antagonism-extrema according to parameter set 5 are given.

Three types of interaction can be distinguished: 1. no interaction within the experimental errors 
(TCDF+PCB126 and TCDD+PCB105), 2. presence of (borderline) synergism and pronounced antagonism 
(TCDD+Galangin), where antagonism is found at the highest doses of both mixture partners and synergism 
on a narrow band connecting the dose-combinations (− 12,− 7) and (− 15,− 9.5) on the logarithmic scale of 
Fig. 4c, and 3. clear antagonism (TCDD+DIM). As shown in Table 5 and in Fig. 4a–d, synergistic effects are 
within the experimental errors for all mixtures. Antagonism is found to be borderline for TCDD+PCB105 
(− 14%), pronounced for TCDD+Galangin (− 27% ) and for TCDD+DIM (− 35% ). For TCDD+DIM the global 
minimum would be located at higher doses of DIM than applied in the experiments. The TCDD+Galangin 

Figure 4.  Synergy surfaces of binary AhR ligand mixtures (in %) , obtained as uRicc − uHill using the respective 
optimum parameter set from Table 4, according to the AIC criterion. Dashed lines denote maximum doses used 
in the experiments. The observed responses range from null-interaction within exptl. error (a) TCDF+PCB126 
(parameter set 1”) and (b) TCDD+PCB105 (parameter set 5) to simultaneous presence of synergism and 
antagonism (c) TCDD+Galangin (parameter set 3) and clear antagonism (d) TCDD+DIM (parameter set 4). 
Green an red dots refer to minima and maxima of the synergy surfaces.
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mixture is special, as the resulting effects depend strongly on the parameter sets used to fit the experimental data. 
All other mixtures show roughly the same pattern of synergism and antagonism irrespective of using smaller 
( �E1,0 −�E4,0 ) or larger ( �E5,0 ) parameter sets.

Conclusions
Our ansatz to describe synergistic effects rests on the assumption that the activity of both single drugs and 
drug-mixtures can be described by (n-dimensional) generalized Hill-type functions which are solutions of the 
underlying differential equations. While this simple concept is easily extended to mixtures of many components, 
it clearly restricts the range of applicability of our approach.

Based on the 4-parameter Hill equation for pure compounds analytical expressions for the null- and full-
interaction response surfaces of n-component mixtures have been derived by solving the respective Riccati-type 
PDEs. Co-operative effects are handled by introducing perturbation- and interaction parameters in a systematic 
way. The resulting full-interaction models are also solutions of the PDE and fulfill the necessary boundary condi-
tions. Synergistic or antagonistic effects are visualized and analyzed by (iso-)synergy surface plots.

Using examples from the literature we have illustrated how to identify those dose-combinations that cause 
maximum co-operative effects in a mixture. In one example from environmental science we found a binary 
mixture that exhibits both synergistic and antagonistic effects, depending on the dose-ratio of its ingredients.

Especially for n-component mixtures we see a main advantage of our approach over models with a fixed num-
ber of parameters, namely the flexibility of the n-dimensional Riccati response function in actual applications. 
Without loosing the requested property of being a valid solution of the PDE, the number of model parameters 
necessary to describe the experimental data can be minimized, solely based on the statistics of the nonlinear fits.

A major result of our investigations is the observation that parameter reduction is indeed possible without 
significant loss of accuracy. This facilitates the application of our ansatz to small sets of experimental data and 
simultaneously permits to focus on those parameters that are responsible for the observed co-operativity. Hence, 
an interpretation of deviations from the null-interaction surface is easily possible by looking at the magnitude 
of the perturbation- and/or interaction-coefficients of the model.

In the literature examples investigated the importance of the different types of model parameters varies. 
While modification of slopes and inflection points plays a major role and the introduction of interaction terms 
improves the statistics, changes of individual maximum effects seem to be of minor importance. However, these 
findings may change when the theory is applied to other examples.
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