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Abstract

Background: In the recently published meta-analysis of multiple sclerosis genome-wide association studies De Jager et al.
identified three single nucleotide polymorphisms associated to MS: rs17824933 (CD6), rs1800693 (TNFRSF1A) and
rs17445836 (61.5 kb from IRF8). To refine our understanding of these associations we sought to replicate these findings in a
large more extensive independent sample set of 11 populations of European origin.

Principal Findings: We calculated individual and combined associations using a meta-analysis method by Kazeem and Farral (2005).
We confirmed the association of rs1800693 in TNFRSF1A (p 4.1961027, OR 1.12, 7,665 cases, 8,051 controls) and rs17445836 near
IRF8 (p 5.35610210, OR 0.84, 6,895 cases, 7,580 controls and 596 case-parent trios) The SNP rs17824933 in CD6 also showed
nominally significant evidence for association (p 2.1961025, OR 1.11, 8,047 cases, 9,174 controls, 604 case-parent trios).

Conclusions: Variants in TNFRSF1A and in the vicinity of IRF8 were confirmed to be associated in these independent cohorts,
which supports the role of these loci in etiology of multiple sclerosis. The variant in CD6 reached genome-wide significance
after combining the data with the original meta-analysis. Fine mapping is required to identify the predisposing variants in
the loci and future functional studies will refine their molecular role in MS pathogenesis.
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Introduction

Multiple sclerosis (MS) is a complex neurological autoimmune

disease with few known predisposing factors. Both genetic and

environmental components have been predicted to play a role in MS

etiology and the role of the HLA-locus, HLA-DBR1 in particular, is

well recognized [1,2]. Recently, genome-wide association and

candidate gene studies have revealed significant associations to MS

outside the HLA-locus in IL2RA [2], IL7R [2], CD58 [3], CLEC16A

[4], TYK2 [5], STAT3 [6], IL12A, MPHOSPH9/CDJ2AP1, EVI5 [2],

KIF21B [2,7], TMEM39A [2,7], CYP27B1 [8], CD226 [4], CD40 [8],

CBLB [9] and RGS1 [10], but with modest odds ratios suggesting the

involvement of other loci.

In a recently published meta-analysis of six genome-wide analysis

(GWA) study sets of 2,624 MS cases and 7,220 controls from four

populations of European origin (United States, United Kingdom,

Netherlands and Switzerland), De Jager et al. identified three single

nucleotide polymorphisms (SNPs) associated with MS with signifi-

cance exceeding the genome-wide significance level of p,561028:

rs1800693 in TNFRSF1A, rs17445836 61.5 kb from IRF8 and

rs17824933 in CD6 [11]. De Jager et al. replicated these findings in

2,215 cases and 2,116 controls from UK and US. Recently, there

have been reports showing significant genetic differences in allele

frequencies between populations even within Europe [12,13,14]

which has led to speculation of allelic heterogeneity. We set out to

replicate the association of these SNPs to MS in a more extensive

sample set with varying European origins.

Results

We investigated the top three SNP associations by De Jager

et al. (rs1800693 in TNFRSF1A, rs17445836 61.5 kb from IRF8
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and rs17824933 in CD6) in an independent sample set of 11

populations of varying European origins, comprising a total of

8,439 cases, 9,280 controls and 608 case-parent trios (Table 1).

Cases and controls were selected from the same populations to

minimize population stratification. We performed meta-analysis

using a method by Kazeem and Farrall (2005) [15] and observed

nominal association (p,0.05) with multiple sclerosis for

rs17824933 in CD6 in four of the eleven cohorts (Figure 1a), for

rs1800693 in TNFRSF1A in four out of nine available cohorts

(Figure 1b) and for rs17445836 near IRF8 in five out of nine

available cohorts (Figure 1c) (see materials and methods for

details).

In all except three cohorts (Denmark, Italy and Norway for the

CD6 rs17824933 C allele) allele frequency differences between

cases and controls had a trend towards the same direction as seen

in the original meta-analysis [11] (Figure 1).Most of the individual

cohorts had limited estimated power (varying between 25–82%,

alpha 0.05) to observe the association by themselves (Table S1).

Nevertheless, the estimated power for a combined analysis was

.99% (alpha 0.05) to detect association to variants with the same

effect sizes as observed in the original meta-analysis (rs1800693

OR 1.2, rs17445836 OR 0.80, rs17824933 OR 1.18).

The combined analysis confirmed independent associations

with two of the SNPs with odds ratios comparable to those

observed in the original meta-analysis: rs1800693 in TNFRSF1A

(p 4.1961027, OR 1.12, 95% CI 1.07–1.18) and rs17445836 near

IRF8 (p 5.34610210, OR 0.84, 95% CI 0.80–0.89) (Figure 1b and

c, respectively). Nominally significant association for rs17824933

in CD6 was also observed (p 2.1961025, OR 1.11, 95% CI 1.06–

1.17) (Figure 1a). Combining the replication data with the original

meta-analysis data from De Jager et al. did not significantly change

the observed odds ratios (Figure 1). We noticed an unequal

distribution of minor allele frequencies across European popula-

tions as might be expected [12,13,14] in the rs17445836 and

rs17824933 SNPs (Figure 1). However, the Breslow-Day test

confirmed that there was no major heterogeneity in the odds

ratios, although the allele frequency differences were significant

between several populations when controls from different

populations were compared in a pair-wise manner with a standard

association tests (Table S2).

Discussion

We conclude that the SNPs rs1800693 (TNFRSF1A) and

rs17445836 (IRF8) are convincingly associated to MS in this

independent replication set. This supports the role of these genes

in MS etiology. The rs17824933 (CD6) showed nominally

significant association in the analysis combining the replication

cohorts, although the association in most of the individual cohorts

was not significant. It is possible that the lack of association in

some cohorts is due to true population heterogeneity, but the

individual cohorts in our study do not have enough power to draw

any definite conclusions. Especially, since the cohorts showing an

opposite trend have little power by themselves. None of these three

genes (CD6, TNFRSF1A or IRF8) had shown association above the

replication inclusion threshold in the IMSGC [2] or Gene MSA

[16] original publications (p,1024), but by combining the data in

a meta-analysis the full advantage of these cohorts could be used to

mine more MS susceptibility affecting genes [11].

Rare mutations in previously validated MS susceptibility genes

have been implicated in rare monogenic disorders. For example,

mutations in IL2RA [17] and IL7R [18] cause immunodeficiency

and mutation in TYK2 [19] and STAT3 [20] have been reported to

cause hyper-IgE syndrome. Similarly, mutations in TNFRSF1A

can cause TRAPS, a disease of the immune system characterized

by periodic fevers [21]. It is interesting, that both TRAPS and

relapsing-remitting form of multiple sclerosis are characterized by

periodic activations of autoimmunity. A recent study in a small

German cohort reported that 24% (6/25) of patients with clinically

isolated syndrome (CIS) or MS with TRAPS-like symptoms were

carrying an amino-acid changing allele R92Q of the SNP

rs4149584 in TNFRSF1A [22]. In addition, they reported that

the frequency of the R92Q allele was 4.66% in a general MS

Table 1. Summary of all independent replication sample sets.

Sets N trios N ctrl N MS % PPMS
Sex ratios F:M
MS, ctrl EDSS

disease
duration Genotyping platform

Belgium 0 1,021 776 13.7 1.8:1, 1.1:1 4.8 14 TaqManH (Applied Biosystems)

Denmark 0 1,090 634 7.6 2.0:1, 1.6:1 4.1 12 SequenomH iPLEXH Gold

Finland 0 1,077 792 9.4 2.4:1, 1.4:1 4.5 21 SequenomH,TaqManH*

France 608 0 0 12.0 2.4:1, 1.0:1 3.4 9.1 TaqManH (Applied Biosystems)

Germany 0 911 930 ,1% n.a. n.a. 7 SequenomH iPLEXH Gold

Italy 0 629 828 11.1 2.0:1, 1.0:1 3.2 32 TaqManH (Applied Biosystems)

Norway 0 1,027 662 17.7 2.6:1, 2.0:1 4.6 16 SequenomH,TaqManH*

Spain 0 501 501 19.9 1.8:1, 1.1:1 4.2 14 TaqManH (Applied Biosystems)

Sweden 0 1,723 2,016 5.8 2.5:1, 2.0:1 3.3 n.a. SequenomH iPLEXH Gold

United Kingdom 0 714 656 14.4 2.8:1, 2.8:1 4.8 18 SequenomH iPLEXH Gold

United States 0 587 644 12.0 1.1:1, 1.1;1 4.1 15 SequenomH iPLEXH Gold

Total 608 9,280 8,439 2.1:1, 1.4:1

All sample sets for the replication are independent, cases had clinically definite MS by either the Poser or McDonald criteria and anonymous population samples from
respective populations were used as controls. The clinical parameters for MS patients describe the percentage of primary progressive MS (PPMS) of all cases, the mean
EDSS score and the mean disease duration. The original GWA meta-analysis sample sets by De Jager et al. that were used in the combined analysis of the original GWA
results and our independent replication have been described elsewhere [11,16].
*The Norwegian and Finnish samples were genotyped with the Applied Biosystems TaqManH platform for rs1800693 and SequenomH iPLEXH Gold for rs17624933 and
rs17445836.
doi:10.1371/journal.pone.0018813.t001

CD6, TNFRSF1A and IRF8 Associated to MS

PLoS ONE | www.plosone.org 2 April 2011 | Volume 6 | Issue 4 | e18813



CD6, TNFRSF1A and IRF8 Associated to MS

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18813



patient sample set (n 365) and 2.95% in a population sample (n

407) (p 0.112) [22].

TNFRSF1A codes for the precursor of TNF binding protein 1

and TNFR superfamily member 1A, a receptor that binds TNF-

alpha and -beta, is involved in inflammatory responses and

mediates apoptosis [23]. Experiments using knockout mice have

shown, that mice with no functional p55 (TNFR1/Tnfrsf1a/

CD120a) receptor were resistant to experimental autoimmune

encephalomyelitis (EAE), the rodent model of MS [24]. On the

other hand, clinical studies using lenercept, a recombinant TNF

receptor p55 immunoglobulin fusion protein (sTNFR-IgG p55)

that protects against EAE, reported increased exacerbation in a

phase I safety trial patients using lenercept compared to patients

using placebo [25].

CD6 is a T cell surface antigen involved in cell-cell adhesion

[26]. It shares a role with a previously identified MS associated

gene CD58 [3] in affecting the adhesion of the immune cells [27].

Interestingly, CD6 has been suggested to play a role in the

apoptosis-resistance and positive selection of immature thymocytes

during their maturation in thymus [28]. IRF8 is an interferon

sensitive response element (ISRE) binding transcription factor

expressed in cells of the immune system and responding to type 1

interferon stimulus [29]. It has been reported to regulate

macrophage differentiation [30], has a critical role in the

development of myeloid cells [31] and is likely involved in B-cell

lineage specification, commitment and differentiation [32]. Both

CD6 and IRF8 are involved in the development and maturation of

leukocytes, which seems to emphasize the assumed autoimmune

nature of MS.

TNFRSF1A, IRF8 and CD6 fit into the gradually emerging

picture of the MS etiology as they have functions in various

pathways involved in regulation of inflammatory responses in

adaptive immunity and development of the immune system

together with the previously identified MS associated genes HLA-

DRB1 [1], IL7R [2], IL2RA [2], CLEC16A [2,4] and CD58 [3],

TYK2 [5], STAT3 [6] [6], IL12A, MPHOSPH9/CDJ2AP1, KIF21B

[2,7], TMEM39A [2,7], CYP27B1 [8], CD226 [4], CD40 [8], CBLB

[9] and RGS1 [10]. Thus, detailed fine mapping of these three

genes together with other previously identified loci is needed to

identify the causative variants. Future functional characterization

of the identified variants will refine their role in MS pathogenesis

and will enable the search for potential pathways and targets for

future interventions.

Materials and Methods

Ethics Statement
All patient samples were collected with written informed

consent. The study has been approved by appropriate local ethics

committees: for Finnish sample collection and study design the

Helsinki University Hospital ethics committee of ophthalmology,

otorhinolaryngology, neurology and neurosurgery (permit no.

192/E9/02), for the Belgian cohort Commissie voor medische

ethiek/klinisch onderzoek, Faculteit Geneeskunde K.U.Leuven

(permit ML4733), for the Danish cohort The Danish Research

Ethics Committee (permit KF 01314 009). The ethics committee

approvals for all cohorts are listed in Table S3.

Samples and genotyping
All samples had clinically definite MS by either the Poser

criteria or McDonald criteria and anonymous population samples

from respective populations were used as controls. (Table 1) All

cohorts used in this independent replication were genotyped in

local centers using either Taqman (Applied Biosystems, CA,USA)

or SequenomH iPLEXH Gold platform (SEQUENOM, CA, US)

and manufacturer protocols, except for the Danish and Norwegian

samples that were genotyped in Finland for rs17445836 and

rs17824933 (SequenomH iPLEXH Gold) (Table 1). The original

meta-analysis sample sets from De Jager et al., that we used in the

combined analysis of the original GWA and our replication results

(Figure 1, last line), and their genotyping have been described

elsewhere [11,16].

Statistical analyses
We excluded from the analysis all samples with .1 missing

genotype and SNPs with ,90% success rate or Hardy-Weinberg

disequilibrium (HWE) p,0.001 per population. Using these

criteria we excluded rs17445836 (IRF8) from the Spanish and

German cohorts and rs1800693 (TNFRSF1A) from the Danish and

French cohorts.

We performed both an independent replication analysis and a

combined analysis using the original De Jager et al. GWA sample

set. The analyses were performed according to Kazeem and Farral

[15] and the calculations were done using R 2.9.0 (www.r-project.

org). The Hardy-Weinberg (dis)equilibrium analysis p values were

calculated using PLINK v1.06 (http://pngu.mgh.harvard.edu/

,purcell/plink/). The T (Transmitted alleles) and U (Under-

transmitted alleles) for the case-parent trios have been obtained

from PLINK v1.06 transmission disequilibrium test (TDT)

analysis.

Supporting Information

Table S1 Power calculations for all study sets. All

calculations were done using Researcher’s toolkit’s Statistical

Power Calculator’s two-tailed test with percentages by DSS

(http://www.dssresearch.com/toolkit/spcalc/power_p2.asp) alpha

= 5% for false positive probability, fixed MAFs calculated from the

ORs of the combined effects and allele frequencies from the original

study by De Jager et al. 2009. These results show that most of the

individual sample sets have only moderate power to detect the

association by themselves, but together have over 99% power to

Figure 1. Summary of results. The results for individual populations are presented here each population on its own line. For each population we
report the allele frequency in MS patients (F MS) and controls (F ctrl), Hardy-Weinberg (dis)equilibrium (HWE) p value, odds ratio (OR) and association
p value. The association analyses were performed according to Kazeem and Farral [15]. The reported HWE p value is reported for cases and controls
combined, but no significant deviation was observed within cases or controls when analyzed separately (data not shown). Figure 1a represents the
results for rs17824933 in CD6. The Replication -line is the combined result of all independent sample sets in the replication (8,047 cases, 9,174
controls, 604 case-parent trios) and ‘‘Combined with De Jager et al. GWA’’ set includes the De Jager et al. [11] GWA data set (2,624 cases, 7,220
controls). Figure 1b summaries the results for rs1800693 in TNFRSF1A. Genotyping was unsuccessful in two sample sets (Danish case – control set and
French case-parent trios) for rs1800693. Indipendent replication data set (‘‘Replication’’) included total of 7,665 cases and 8,051 controls and the
‘‘Combined with De Jager et al. GWA’’ set includes available genotypes from De Jager et al. [11] (1,829 cases, 2,591 controls). Figure 1c is a summary
of results for rs17445836 (61.5 kb from IRF8). The genotyping was unsuccessful in two sample sets (Spanish and German case – control sets). The
independent replication set (Replication) includes in total 6,895 cases, 7,580 controls and 596 case-parent trios and the ‘‘Combined with De Jager
et al. GWA’’ set includes available genotypes from De Jager et al. [11] (2,624 cases, 7,220 controls).
doi:10.1371/journal.pone.0018813.g001
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detect these variants with these effect sizes. The power for trios was

not estimated.

(DOC)

Table S2 Differences in rs17824933, rs1800693 and
rs17445836 minor allele frequencies between population
based controls. This table shows results for pair-wise

associations between controls from different populations. We

used the controls from populations on the left as cases and

controls from the population above as controls. For French

samples, healthy parents from case-parent trio samples were

used as population controls. Uncorrected p-values are shown,

but all values below p 0.000303 are significant (a= 0.05) after

Bonferroni correction. Table S2a has the results for rs17624933

in CD6, Table S2b describes the results for rs1800693 in

TNFRSF1A and Table S2c describes results for 17445836

61.5 kb from IRF8.

(DOC)

Table S3 Ethics committee approvals for all cohorts.
This study has been approved by appropriate local ethics

committees as listed in this table by sample set. For each cohort

we report the ethics committee or equivalent authority and the

approval number.

(DOC)
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