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Conservation of eelgrass relies on transplants and evaluation of success depends on nondestructive measurements of average
leaf biomass in shoots among other variables. Allometric proxies offer a convenient way to assessments. Identifying surrogates
via log transformation and linear regression can set biased results. Views conceive this approach to be meaningful, asserting
that curvature in geometrical space explains bias. Inappropriateness of correction factor of retransformation bias could also
explain inconsistencies. Accounting for nonlinearity of the log transformed response relied on a generalized allometric model.
Scaling parameters depend continuously on the descriptor. Joining correction factor is conceived as the partial sum of series
expansion of mean retransformed residuals leading to highest reproducibility strength. Fits of particular characterizations of the
generalized curvature model conveyed outstanding reproducibility of average eelgrass leaf biomass in shoots. Although nonlinear
heteroscedastic regression resulted also to be suitable, only log transformation approaches can unmask a size related differentiation
in growth form of the leaf. Generally, whenever structure of regression error is undetermined, choosing a suitable form of
retransformation correction factor becomes elusive. Compared to customary nonparametric characterizations of this correction
factor, present form proved more efficient. We expect that offered generalized allometric model along with proposed correction
factor form provides a suitable analytical arrangement for the general settings of allometric examination.

1. Introduction

The model of relative growth of Huxley [1] is formally stated
by means of a scaling relationship of the form

𝑤 = 𝛽𝑎𝛼, (1)

where 𝑤 and 𝑎 are measurable traits and the parameter 𝛼 is
designated as the allometric exponent, while 𝛽 is identified as
the normalization constant.Thismodel, also termed equation
of simple allometry, has been extensively used in research

problems in biology [1–5], physics [6], economics [7], earth
sciences [8], resource management, and conservation [9, 10],
among other fields.

Eelgrass provides nursery for waterfowl and fish species.
By trapping sediment and stumping wave energy, this
seagrass promotes shoreline stabilization. Eelgrass services
also include nutrient recycling, water filtration, and carbon
dioxide removal. Current anthropogenic influences threaten
eelgrass permanence. Conservation efforts rely on plot trans-
planting in a fundamental way. Monitoring effectiveness
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depends on measurements of standing stock and produc-
tivity through time. This makes the assessment of average
leaf biomass in shoots a necessary input. But traditional
estimation of eelgrass leaf biomass units relies on destructive
methods.This could alter shoot density in a developing trans-
plant. Thus evaluation renders indirect assessment methods
necessary [10, 11]. Results show that an allometric scaling of
the form of (1) for eelgrass leaf biomass 𝑤 and associated
area 𝑎 is consistent [11]. Derived projections of individual leaf
biomass convey useful surrogates for mean leaf biomass in
shoots. Moreover, estimates of the parameters 𝛼 and 𝛽 are
invariant within a given geographical region [10–12]. Hence,
estimates fitted at site can endow suitable projections of leaf
biomass values currently observed in other places of the
region. This bears the referred allometric projections of a
convenient nondestructive feature ([11, 13]).

Simplicity of (1) makes allometric projection of eel-
grass leaf biomass units convenient. But there are caveats
on dependability. For instance, even though 𝛼 and 𝛽 are
invariant, environmental influences can induce a relative
extent of variability on local estimates ([12, 14]). Besides, the
response in the power function-like scaling of (1) is very
sensitive to variation of parameter estimates. Then, accuracy
of derived proxies is subject of error propagation of estimates.
In addition, there are factors of biological scaling which
can influence precision of estimates (e.g., [10, 11, 13, 15]).
Packard [16] questioned results of Mascaro et al. [17] on
allometric examination, and Mascaro et al. [18] responded to
criticism. Going over this exchange highlights the relevance
of procedural factors in determining precision of parameter
estimates of allometric scaling. It also offers a convenient
framework for the aims of the present research.

An important factor influencing precision of estimates
of allometric parameters is analysis method. A widespread
approach is the traditional analysis method of allometry
(TAMA hereafter). It relies on a log transformation of data in
arithmetical scale in order to contemplate a linear regression
model in geometrical scale. Then, the fitted line is back-
transformed to yield a two-parameter power function in the
original scale. But embracing this procedure fuels a vivid
unresolved debate. Views assert that this protocol can lead
to biased results (e.g., [16, 19–29]). And other practitioners
consistently wed to the idea that logarithmic transformations
are necessary (e.g., [18, 30–39]). An alternative to the TAMA
approach is using nonlinear regression methods in the direct
scale of the data [16]. Echavarria-Heras et al. [11] concluded
that producing allometric projections of average leaf biomass
in eelgrass shoots must rely on this protocol. Yet a direct
nonlinear regression approach in allometry is also not unfail-
ing. For instance, inadequate identification of the inherent
error structure can lead to significant bias [18]. Besides, Lai
et al. [30] found that estimates of allometric parameters
fitted by nonlinear regression can exhibit a high sensitivity
to the largest values of the covariate. Therefore, evaluation
of analysis method suitability in acquiring consistent eelgrass
leaf biomass proxies needs revision.

The adoption of methods of curvature in geometrical
space could offer a way to overcome inadequacy of the
TAMA procedure ([27, 40–42]). In particular, it is pertinent

to examine if taking curvature into account leads to improved
accuracy of eelgrass leaf biomass proxies. But, according
to Mascaro et al [18], curvature could manifest because of
methodological factors of data gathering. Thus, an exam-
ination of the effect of curvature in eelgrass leaf biomass
allometry must also take into account a possible participation
of data quality effects. Mascaro et al. [18] reminds on three
ways of handling curvilinearity in geometrical space. One
is by separating data to contemplate different local linear
models to account for heterogeneity of effects of the covariate
[43–45]. A second one is by fitting a polynomial model [46–
49]. A third approach endorses direct nonlinear regression
assuming a heteroscedastic error structure as contemplated
byMascaro et al. [17]. Either approach above bears complexity
beyond the linear model in geometrical space that associates
with the customary bivariate power function of allometry.
This suggested putting forward a generalized allometric
model intended to deal with curvature in geometrical space.
This paradigm incorporates parameters that change as con-
tinuous functions of the log transformed covariate ([27, 39,
46]). As we explain further on, the curvature arrangements
recommended by Mascaro et al. [18] can be all derived
from the offered formalization.Moreover, a nonzero intercept
power function that Packard [50] recommends to handle
curvilinearity in geometrical space also derives from the
presented generalized scaling model.

But any scheme addressing curvature in geometrical
space depends on a factor for correction of bias of retrans-
formation of the regression error. In the general settings, if𝜖 stands for the regression error, then the said correction
factor, through denoted using the symbol 𝛿(𝜖), is given by
the mean of the exponentiated error random variable; that
is, 𝛿(𝜖) = 𝐸(𝑒∈) [51–53]. Furthermore, the TAMA approach
relies on the essential assumption that 𝜖 is additive, normally
distributed, and homoscedastic [33]. When this happens,𝛿(𝜖) takes its lognormal-mean form [51–53]. But if 𝜖 fails
to be normally distributed, there are two possibilities. If the
distribution of 𝜖 is known, we could derive a closed form for𝛿(𝜖). In turn, if the error distribution is not identified a priori,
a widespread approach is taking 𝛿(𝜖) in the nonparametric
form given by the smearing estimator of bias of Duan [54].
Still, there are provisions on this. A smearing estimate form
can fail to compensate the downward retransformation bias
of logged data ([53, 55, 56]). Thus, in a circumstance where𝜖 is unspecified, characterizing 𝛿(𝜖) seems elusive. Here, we
put forward an arrangement for 𝛿(𝜖) aimed to get around this
circumstance. Zeng and Tang [57] proposed a nonparametric
alternate to the smearing form. It matches the first three
terms’ partial sum of a power series expression of 𝐸(𝑒∈),
assuming 𝐸(𝜖) = 0. Form suggested here corresponds to
a generalization of this construct. It does not abide the
restriction 𝐸(𝜖) = 0 and matches an 𝑛 −terms partial
sum approximation of the exponential series representation
of 𝐸(𝑒∈). The partial sum that maximizes reproducibility
strength of retransformed mean response sets criterion to
choose 𝑛.

Present results show that a consideration of curvature in
geometrical space, as well as a suitable characterization of the
correction factor of retransformation bias, offers consistent
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allometric proxies of observed mean leaf biomass in eelgrass
shoots. Hence, contrary to views asserting direct nonlinear
regression as mandatory in allometric examination, our find-
ings validate a parallel reliability of log transformation based
methods. This is well in line with claims of Mascaro et al.
[18] and many others about blaming the use of logarithms of
incongruent results in allometric analysis. Moreover, keeping
the analysis in geometrical space unraveled heterogeneity
in the inherent leaf biomass scaling pattern. This could not
be achieved by clinging to direct nonlinear regression in
arithmetic space as the only valid approach of allometric
examination. Offered analytical arrangement is expected to
be applicable in the general settings of allometry.

2. Materials and Methods

2.1. Data. For the aims of the present research, we relied on
an extensive eelgrass data set collected in San Quintin Bay,
a coastal lagoon on the Pacific side of the Baja California
Peninsula, México (30∘30’ N – 116∘00W), and through a 13
months’ long sampling period covering a whole-year cycle.
Data composes measurements of length (mm), width (mm),
and dry weight 𝑤 (g) of a total of 10412 individual eelgrass
leaves taken from 20 randomly thrown 400cm2 quadrats
every monthly visit to the site. A sampling visit will be further
referred to as “sampling time” in the text. The length times
width proxy [11] provided estimations of leaf area 𝑎 (mm2). In
order to test for methodological influences of data gathering,
we processed raw data set according to a mean plus or minus
two standard deviations outlier’s removal procedure [58].
Appendix A presents results of an exploratory analysis of
data.

2.2. Models. As above specified symbols, 𝑤 and 𝑎 stand for
the biomass of an individual eelgrass leaf and its respective
area one to one. Echavarŕıa-Heras et al. [11] assert that these
variables can be related through the bivariate allometric
model of (1). One procedure to acquire estimates for the
parameters 𝛼 and 𝛽 is fitting directly in arithmetical scale a
nonlinear homoscedastic regression model. Besides, we can
use a TAMA approach, that is, fitting the linear regression
model

V = ln𝛽 + 𝛼𝑢 + 𝜖, (2)

where V = ln𝑤, 𝑢 = ln 𝑎, and 𝜖 is a random error term
assumed to be normally distributed with zero mean and
variance 𝜎2, that is, 𝜖 ∼ 𝑁(0, 𝜎2).

We conceive curvature in geometrical space as a cir-
cumstance where fitting results of regression model of (2)
are inconsistent. Dealing with this situation amounts for
considering complexity beyond incorporated by (1). One
possible approach to address curvature is assuming that
scaling parameters 𝛼 and 𝛽 in (2) depend continuously on the
covariate ([27, 39, 46]).This is consistent with the generalized
allometric model,

𝑤 = 𝛽 (𝑎) 𝑎𝛼(𝑎), (3)

with 𝛽(𝑎) and 𝛼(𝑎) intended to be continuous and differen-
tiable functions defined on 𝑅+ and with 𝛽(𝑎) being positive.

Certainly a log transformation V = ln𝑤, 𝑢 = ln 𝑎 of (3)
establishes the regression model

V = V𝐶 (𝑎, 𝑢) + 𝜖, (4)

where

V𝐶 (𝑎, 𝑢) = ln𝛽 (𝑎 (𝑢)) + 𝛼 (𝑎 (𝑢)) 𝑢, (5)

where 𝜖, a residual error term, is conceived as a random
variable that in the general settings is 𝜓-distributed with
mean 𝜇 and variance set by a function 𝜎2(𝑢) of the covariate𝑢, that is, 𝜖 ∼ 𝜓(𝜇, 𝜎2(𝑢)).

Setting 𝛽(𝑎(𝑢)) = 𝛽 and 𝛼(𝑎(𝑢)) = 𝛼 with 𝛼 and𝛽 constants reduces (4) to the regression model of (2). In
Appendix B, we explain that (3) accommodates all curvature
paradigms suggested by Mascaro et al. [18]. These include a
biphasic and a polynomial model in geometrical space, as
well as the nonlinear heteroscedastic model referred to by
Mascaro et al. [17] in direct arithmetical space. Moreover, as
shown in Appendix B, the three-parameter power function
chosen as an alternate standard for curvature [59] also derives
from (3).

2.2.1. Biphasic Model in Geometrical Space. In order to
characterize themodel of (3) in a biphasicmode, we let𝛽(𝑎) =𝛽𝐵(𝑎) and 𝛼(𝑎) = 𝛼𝐵(𝑎), such that

𝛼𝐵 (𝑎) = 2∑
1

𝜗𝑖 (𝑢 (𝑎)) 𝛼𝑖
𝛽𝐵 (𝑎) = exp( 2∑

1

𝜗𝑖 (𝑢 (𝑎)) ln𝛽𝑖)
(6)

including parameters 𝛽𝑖 and 𝛼𝑖 and the function 𝜗𝑖(𝑢(𝑎))
given by

𝜗𝑖 (𝑢 (𝑎)) = {{{
(2 − 𝑖) (1 − 𝐻 (𝑢 − 𝑢𝑏)) for 𝑖 = 1
(𝑖 − 1)𝐻 (𝑢 − 𝑢𝑏) for 𝑖 = 2, (7)

for 𝑖 = 1, 2. 𝐻(𝑢 − 𝑢𝑏) is a Heaviside function 𝐻(𝑧) [60],
evaluated at 𝑧 = 𝑢 − 𝑢𝑏 and correspondingly 𝑢𝑏 = ln 𝑎𝑏, with𝑎𝑚𝑖𝑛 ≤ 𝑎𝑏 ≤ 𝑎𝑚𝑎𝑥 being a point separating growth phases𝑢 ≤ 𝑢𝑏 and 𝑢 > 𝑢𝑏. Then, denoting by means of V𝐵(𝑎, 𝑢)
the resulting form of V𝐶(𝑎, 𝑢) from (4), we get the biphasic
regression model

V = V𝐵 (𝑎, 𝑢) + 𝜖, (8)

where 𝜖 is a random error term as defined in (4) and

V𝐵 (𝑎, 𝑢) = 2∑
1

𝜗𝑖 (𝑢 (𝑎)) 𝑓𝑖 (𝑢 (𝑎)) (9)

with

𝑓𝑖 (𝑢 (𝑎)) = ln 𝛽𝑖 + 𝛼𝑖𝑢 (𝑎) , (10)

where 𝛽𝑖 and 𝛼𝑖 for 𝑖 = 1, 2 parameters are to be estimated
from data.
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2.2.2. Polynomial Model in Geometrical Space. Similarly,
assume that 𝛼(𝑎) = 𝛼𝑃(𝑎) and 𝛽(𝑎) = 𝛽𝑃(𝑎), with

𝛼𝑃 (𝑎) = 𝑛∑
0

𝛼𝑘𝑢 (𝑎)𝑘

𝛽𝑃 (𝑎) = 𝑒∑𝑛0 𝛽𝑘𝑢(𝑎)𝑘 .
(11)

𝛼𝑘 and 𝛽𝑘 for 1 ≤ 𝑘 ≤ 𝑚 are coefficients; one can acquire a
polynomial representation V𝑃(𝑎, 𝑢) for the generalized mean
response function in geometrical space V𝐶(𝑎, 𝑢).This way the
polynomial form of regression (4) becomes

V = V𝑃 (𝑎, 𝑢) + 𝜖, (12)

where 𝜖 is a random error term as defined in (4), with

V𝑃 (𝑎, 𝑢) = 𝑚∑
0

𝑝𝑘𝑢 (𝑎)𝑘, (13)

and 𝑝𝑘, for 𝑘 = 0, 2, . . . , 𝑚 parameters.

2.2.3. Nonlinear Heteroscedastic Model in Arithmetical Space.
As we explain ahead, direct algebraic manipulation of (3)
leads to the consideration of the nonlinear heteroscedastic
regression model addressed by Mascaro et al. [17]; namely,

𝑤 = 𝛽𝜃𝑎𝛼𝜃 + 𝑎𝜃𝜖, (14)

with 𝛼𝜃, 𝛽𝜃, and 𝜃 being parameters and 𝜖 being a zero mean
normally distributed error term with 𝑎 covariate dependent
variance 𝜎2(𝑎) = 𝜎2𝑎2𝜃, that is, 𝜖 ∼ 𝑁(0, 𝜎2𝑎2𝜃).

A nonlinear homoscedastic form derives from (14) by
setting 𝜃 = 0; that is,

𝑤 = 𝛽𝑜𝑎𝛼𝑜 + 𝜖, (15)

And, again 𝜖 is an additive error term assumed to be normally
distributed with zero mean and variance 𝜎2, that is, 𝜖 ∼𝑁(0, 𝜎2).

Appendix A deals with exploratory analysis of data
Appendix B presents notation convention and also explains
how all addressed paradigms derive from the generalized
model of (3). Appendix C explains the addressed forms
of correction factor for bias of retransformation of the
regression error. Fitting results of the geometrical space
based models appear in Appendix D. Those corresponding
to the nonlinear heteroscedastic and homoscedastic models
pertain to Appendix E. Agreement between observed and
projected values is commonly evaluated by analyzing values
of Lin’s Concordance Correlation Coefficient (CCC) [61].
This correspondence index is commonly denoted by means
of the symbol 𝜌. Agreement will be defined as poor whenever𝜌 < 0.90, moderate for 0.90 ≤ 𝜌 < 0.95, good for 0.95 ≤𝜌 < 0.99, or excellent for 𝜌 ≥ 0.99 [62]. Besides CCC
values, we assessed reproducibility by comparing goodness-
of-fit statistics, such as the coefficient of determination (CD),
standard error of estimate (SEE), mean prediction error
(MPE), total relative error (TRE), average systematic error
(ASE), and mean percent standard error (MPSE) ([63–65]).
For statistical tasks, we relied on the R package release 3.5.

3. Results

Exploratory analysis in Appendix A identifies maximum,
minimum, and sample mean values for observed leaf area
values 𝑎 and associated dry weights 𝑤. We also explain
distribution of variables in terms of quantiles of probability
0.1, 0.25, 0.50, 0.75, and 0.90, for both crude and processed
data. Statistical exploration extends to log transformed values
of these variables. We present Q-Q plots (quantile-quantile)
for comparison of distribution patterns, as well as boxplots
for the 13 months’ long sampling scheme for both crude and
processed data. We can learn that, from month 2 to month
6, a reduction in the values of weight and area occurred; this
perhaps is explained by an increase in temperature during the
period. We can be also aware that a similar variation pattern
over time is shown in both raw and processed data sets.

3.1. Fitting Results of Geometrical Space Models. In order
to validate curvature in geometrical space, we compared
the linear model derived from (1) as well as biphasic and
polynomial alternates derived from the generalized model
of (3). Appendix B explains formal matters. Tables 1 and
2 summarize notation convention. Equations numbered
beyond (15) belong to the appendices. Appendix D explains
corresponding regression protocols.

Fitting results of the TAMA arrangement of (2) appear
in Appendix D. Figure 1 shows the spread about TAMA’s
linear mean response function 𝐸𝑇(V | 𝑢). We can visually
ascertain that deviations from the linear mean response
function 𝐸𝑇(V | 𝑢) suggest curvature (red dots). Thus, data
processing removed inconsistent replicates but shown spread
still deviates from a linear mean response. This suggests that
curvature in geometrical space could not be explained by
methodological factors related to data gathering.

Fitting results of the biphasic protocol of (8) are summa-
rized in AppendixD. Figure 2 displays the spread about mean
response function 𝐸𝐵(V | 𝑢) in geometrical space. Compared
with Figure 1, we can ascertain that the biphasic fit provides
a consistent account of different variation patterns among
smaller and larger leaves. We can visually ascertain that fit
produced consistent results. This confirms a judgement that
identified curvature might be due to intrinsic factors of leaf
growth rather than methodological influences related to data
gathering.

Appendix D presents fitting results of the polynomial
model (𝑚 = 6). Figure 3 displays dispersion about the
polynomial mean response function in geometrical space𝐸𝑃(V | 𝑢). A polynomial representation also exhibits higher
consistency than the TAMA arrangement. Recalling the
biphasic scheme, the polynomial suggests a smooth transition
between two growing phases.

3.2. Model Selection in Geometrical Space. Assessment of
models fitted on geometrical space relied on goodness-of-fit
statistics, that is, the coefficient of determination, standard
error of estimate, mean prediction error, total relative error,
average systematic error, and mean percent standard error
([63–65]). Besides, we took into account concordance cor-
relation coefficient [61] and Akaike’s information index [66].
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Table 1: Summary of notation convention of the bivariate scaling model of (1) and its generalization to account for curvature as given by (3).
GS stands for geometrical space, AS stands for arithmetical space, and CF means correction factor of retransformation bias.

Typical bivariate Eq. Generalized for curvature Eq.
Basic form 𝑤 = 𝛽𝑎𝛼 (1) 𝑤 = 𝛽 (𝑎) 𝑎𝛼(𝑎) (3)
Regression equation in GS V = ln𝛽 + 𝛼𝑢 + 𝜖 (2), (D.1) V = V𝐶(𝑎, 𝑢) + 𝜖 (4)
Mean response GS 𝐸𝑇 (V | 𝑢) = ln𝛽 + ln𝛼 (B.4) 𝐸𝐶 (V | 𝑢) = ln𝛽 (𝑎) + 𝛼 (𝑎) 𝑢 (𝑎) (B.1)
Back transformation AS 𝑤 = 𝑒𝐸𝑇(V|𝑢)𝑒𝜖 (B.5) 𝑤 = 𝑒𝐸𝐶(V|𝑢)𝑒𝜖 (B.2)

Mean response AS 𝐸𝑇𝛿 (𝑤 | 𝑎) = 𝛽𝑎𝛼𝛿 (𝜖)𝛿 (𝜖) = 𝐸 (𝑒𝜖) (B.6) 𝐸𝐶𝛿 (𝑤 | 𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎)𝛿(𝜖)𝛿 (𝜖) = 𝐸 (𝑒𝜖) (B.3)

CF Baskerville
𝐸𝑇𝐵 (𝑤 | 𝑎) = 𝛽𝑎𝛼 𝛿𝐵(𝜖)𝛿𝐵(𝜖) = 𝑒𝜎2/2 (B.6), (C.1) 𝐸𝐶𝐵 (𝑤 | 𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎) 𝛿𝐵(𝜖) (B.3), (C.1)

CF Duan
𝐸𝑇𝐷 (𝑤 | 𝑎) = 𝛽𝑎𝛼𝛿𝐷 (𝜖)

𝛿𝐷 (𝜖) = ∑𝑚1 𝑒𝜖𝑗𝑚
(B.6), (C.2) 𝐸𝐶 (𝑤 | 𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎)𝛿𝐷 (𝜖) (B.3), (C.2)

CF Zeng and Tang
𝐸𝑇𝑍𝑇 (𝑤 | 𝑎) = 𝛽𝑎𝛼𝛿𝑍𝑇 (𝜖)

𝛿𝑍𝑇 (𝜖) = 1 + 𝜎22
(B.6), (C.3) 𝐸𝐶𝑍𝑇 (𝑤 | 𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎)𝛿𝑍𝑇 (𝜖) (B.3), (C.3)

CF n-partial sum
𝐸𝑇𝑛 (𝑤 | 𝑎) = 𝛽𝑎𝛼𝛿𝑛 (𝜖)

𝛿𝑛 (𝜖) = 𝑛∑
0

𝐸(𝜖𝑘)𝑘!
(B.6), (C.4) 𝐸𝐶𝑛 (𝑤 | 𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎)𝛿𝑛 (𝜖) (B.3),

(C.4)

Table 2: Notation convention for curvature models in geometrical space. We include the biphasic and polynomial characterizations of the
generalized allometric model of (3).GS stands for geometrical space, AS stands for arithmetical space, and CF means correction factor of
retransformation bias of the regression error.

Biphasic model Eq. Polynomial model Eq.
Basic form 𝑤 = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎) (B.11) 𝑤 = 𝛽𝑃 (𝑎) 𝑎𝛼𝑃(𝑎) (B.27)

Regression equation V = V𝐵 (𝑎, 𝑢) + 𝜖 (8), (D.4) V = V𝑃 (𝑎, 𝑢) + 𝜖 (B.32),
(D.8)

Mean response GS 𝐸𝐵 (V | 𝑢) = 2∑
1

𝜗𝑖 (𝑢 (𝑎)) 𝑓𝑖 (𝑢 (𝑎)) (B.18) 𝐸𝑃 (V | 𝑢) = 𝑚∑
0

𝑝𝑘𝑢(𝑎)𝑘 (B.33)

Back transformation AS 𝑤 = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎)𝑒𝜖 (B.21) 𝑤 = 𝛽𝑃(𝑎)𝑎𝛼𝑃(𝑎)𝑒𝜖 (B.34)

Mean response AS 𝐸𝐵𝛿(𝑤 | 𝑎) = 𝛽𝐵(𝑎)𝑎𝛼𝐵(𝑎)𝛿(𝜖)𝛿 (𝜖) = 𝐸 (𝑒𝜖) (B.22) 𝐸𝑃(𝑤 | 𝑎) = 𝛽𝑃(𝑎)𝑎𝛼𝑃(𝑎)𝛿(𝜖)𝛿 (𝜖) = 𝐸 (𝑒𝜖) (B.35)

CF Baskerville 𝐸𝐵𝐵 (𝑤 | 𝑎) = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎) 𝛿𝐵(𝜖) (B.22), (C.1) 𝐸𝑃𝐵(𝑤 | 𝑎) = 𝛽𝑃(𝑎)𝑎𝛼𝑃(𝑎)𝛿𝐵(𝜖) (B.35),
(C.1)

CF Duan 𝐸𝐵𝐷 (𝑤 | 𝑎) = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎)𝛿𝐷 (𝜖) (B.22), (C.2) 𝐸𝑃𝐷(𝑤 | 𝑎) = 𝛽𝑃(𝑎)𝑎𝛼𝑃(𝑎)𝛿𝐷(𝜖) (B.35),
(C.2)

CF Zeng and Tang 𝐸𝐵𝑍𝑇 (𝑤 | 𝑎) =𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎)𝛿𝑍𝑇 (𝜖) (B.22), (C.3) 𝐸𝑃𝑍𝑇(𝑤 | 𝑎) = 𝛽𝑃(𝑎)𝑎𝛼𝑃(𝑎)𝛿𝑍𝑇(𝜖) (B.35),
(C.3)

CF n-partial sum 𝐸𝐵𝑛 (𝑤 | 𝑎) = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎)𝛿𝑛 (𝜖) (B.22), (C.4) 𝐸𝑃𝑛 (𝑤 | 𝑎) = 𝛽𝑃 (𝑎) 𝑎𝛼𝑃(𝑎)𝛿𝑛 (𝜖) (B.35),
(C.4)

Table 3 presents results. Goodness-of-fit statistics and 𝜌 and
AIC values disfavored the TAMA protocol. On the contrary,
comparison indices favored the biphasic model. Moreover,
differences among indices but TRE and ASE for this scheme
and the polynomial (𝑚 = 6) are slight. Particularly, the
highest AIC is associated with the TAMA protocol (AIC =15069.9,�AIC = 2491.9). Therefore, this model bears the
less support.The biphasic choice delivered the smallest AIC’s
value (AIC = 12578.0,�AIC = 0). Nevertheless, difference
in AIC is just barely relative to the 𝑚 = 6 polynomial model,
since this choice conveyed (AIC = 12615.0 and �AIC = 37).
Thus, model confrontation shows that the TAMA protocol

is unsuited, thus backing the assertion that whatever model
aims to be consistent with the present data, it ought to be
nonlinear in geometrical space.

3.3. Retransformation Results. The TAMA protocol was not
supported by the model selection criteria. Anyway, for com-
parison, corresponding retransformation results are included
in Appendix D. Related with the TAMA protocol, fitting
results of the biphasic model display a relatively improved
distribution of residuals about the zero line. Nevertheless,
normal Q-Q plot still shows heavier tails than those expected
for a normal distribution. And, again both test statistics and
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Table 3: Assessment of geometrical space fitted models. Comparison took into account goodness-of-fit statistics, that is, the coefficient
of determination (R2) standard error of estimate (SEE), mean prediction error (MPE), total relative error (TRE), average systematic error
(ASE), and mean percent standard error (MPSE) ([63–65]). Besides, we considered concordance correlation coefficient (𝜌) [61] and Akaike’s
information index (AIC) [66].

Method AIC 𝜌 R2 SEE TRE ASE MPE MPSE
TAMA 15069.9 0.9505 0.9045 0.5135 -0.0286 -0.2462 -0.1879 5.7877
Biphasic 12578.0 0.9614 0.9256 0.4530 0.0037 0.0286 -0.1658 5.1446
Polynomial 12615.0 0.9614 0.9241 0.4576 0.8497 1.2008 -0.1675 5.3187
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Figure 1: Spread about the TAMA’s linear mean response function𝐸𝑇(V | 𝑢). Deviations about 𝐸𝑇(V | 𝑢) shown by red dots suggest
curvature.

p values of an Anderson-Darling test [67] provide evidence
against normality of residuals.This justifies choosing the non-
parametric forms 𝛿𝐷(𝜖), 𝛿𝑍𝑇(𝜖), or 𝛿𝑛(𝜖) for compensation of
downward bias induced by retransformation of the regression
error ([11, 52, 53]). Table 4 displays comparison statistics for
the reproducibility strength of the biphasic mean response𝐸𝐵𝛿(𝑤 | 𝑎) as shaped by the different forms of 𝛿(𝜖).

We can learn that agreement between the biphasic mean
response and leaf biomass data is best for 𝛿𝑛(𝜖). Figure 4
shows spread of processed leaf biomass values about the
biphasic mean response function 𝐸𝐵𝛿(𝑤 | 𝑎) as shaped by the
considered forms of 𝛿(𝜖).We can observe that both 𝛿𝐷(𝜖) and𝛿𝑍𝑇(𝜖) overcompensate the bias correction by 𝛿𝑛(𝜖). More-
over results show that as opposed to the TAMA a biphasic
protocol along with the 𝛿𝑛(𝜖) form offers consistent proxies
of individual leaf biomass. But it is worth mentioning that
in spite of the fact that model selection favored the biphasic
scheme, examination of the polynomial model output reveals
similar predictive strength to the biphasic alternate.

3.4. Assessing Curvature by Direct Nonlinear Regression.
As suggested by Mascaro et al. [18], effects of curvature
in geometrical space can be analyzed by means of the
direct nonlinear heteroscedastic regression model of (14). In
Appendix B, we explain that such a protocol also derives

from the generalized bivariate allometricmodel of (3). Table 5
presents pertinent notation convention. For comparison, we
also present results for the associated homoscedastic case.

Fitting results of the heteroscedastic and homoscedastic
models appear in Appendix E.We can learn that estimates for
the normalization constant and scaling exponent parameters
are very similar. Certainly, corresponding 95% confidence
intervals display some overlap. As a result, we can expect
similar reproducibility features for both models. Table 6
presents comparison statistics.

We can be aware that model assessment backs the
heteroscedastic model. But selection here is mainly on
qualitative grounds. It actually concerns the ability of the
heteroscedastic model to identify an expected dependence
of variance in the covariate. Certainly, the reproducibility
strengths of both paradigms are equivalent. Indeed, Figure 5
shows that mean response curves 𝐸𝜃(𝑤 | 𝑎) and 𝐸𝑜(𝑤 | 𝑎)
differ just barely.

Results show that as it occurred for models fitted in
geometrical space, data cleaning failed to correct a heavy
tails problem for the nonlinear fits. This can be ascertained
from the normal Q-Q plot of residuals. This strengthens
our point on the consideration of a different error structure
from the one assumed here. Exploring the effects of error
structure in the fitting of models for curvature addressed here
will be a matter of further research. Interestingly, both the
homoscedastic and heteroscedastic models seem to induce
the same reproducibility strengths.

3.5. Model Assessment in Arithmetical Space. The model
selection assay in geometrical space summarized in Table 3
favored the biphasic protocol. Correspondingly, statistics in
Table 6 support the nonlinear heteroscedastic model. Results
of Table 4 endure 𝛿𝑛(𝜖) as required for largest reproducibility
of retransformation output. Table 7 allows assessment of these
models. We can learn that half the number of comparison
indices coincide (𝜌, R2, SEE, and MPE). In addition, the
biphasic model is favored by AIC, ASE, and MPSE. This sets
criterion for selection of curvature in geometric space as a
consistent paradigm for the present data. Accordingly, the
biphasic model bears adequate.

3.6. Implications for Allometric Proxies of Mean Leaf Biomass
in Eelgrass Shoots. We in turn consider allometric proxies
for average leaf biomass in eelgrass shoots. In getting these
surrogates, we aggregate allometric projections of individ-
ual leaf biomass conforming a shoot. For comparison, we
consider individual leaf biomass surrogates produced by the
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Figure 2: Spread about the biphasic mean response function 𝐸𝐵(V | 𝑢). Compared with the plot in Figure 1, we observe that the biphasic
choice offers a better account of variability of the log transformed response than the TAMA alternate.
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Figure 3: Spread about the polynomial mean response function 𝐸𝑃(V | 𝑢). Compared with the plot in Figure 1, we can be aware that, as
opposite to the TAMA protocol, the polynomial scheme offers a consistent account of curvature.

Table 4: Comparison of reproducibility strength statistic for the biphasic mean response 𝐸𝐵𝛿(𝑤 | 𝑎) as calculated by different forms of the
correction factor for bias of retransformation of the regression error 𝜖. The 𝜌(𝛿(𝜖)) symbol stands for the concordance correlation value
associated with 𝛿(𝜖).
CF 𝜌(𝛿 (𝜖)) R2 SEE TRE ASE MPE MPSE
𝛿𝐷(𝜖) 0.9664 0.9256 0.0049 -9.2196 4.48e-13 0.8133 31.2839𝛿𝑍𝑇(𝜖) 0.9687 0.9319 0.0047 -7.5530 1.8359 0.7780 31.4388𝛿𝑛(𝜖) 0.9727 0.9464 0.0042 1.9516 12.3058 0.6903 33.9525
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Table 5: Notation convention for the nonlinear heteroscedastic and homoscedastic models of (14) and (15), respectively.

Nonlinear model Heteroscedastic Eq. Homoscedastic Eq.

Regression equation
𝑤 = 𝛽𝜃 𝑎𝛼𝜃 + 𝑎𝜃𝜖𝜖 = 𝑁 (0, 𝑎2𝜃𝜎2) (14), (E.1) 𝑤 = 𝛽𝑜 𝑎𝛼𝑜 + 𝜖𝜖 ∼ 𝑁 (0, 𝜎2) (15), (E.5)

Mean response function 𝐸𝜃 (𝑤 | 𝑎) = 𝛽𝜃𝑎𝛼𝜃 (B.45) 𝐸𝑜 (𝑤 | 𝑎) = 𝛽𝑜 𝑎𝛼𝑜 (B.46)

Table 6: Assessment of models fitted in arithmetical space. This includes the nonlinear homoscedastic and heteroscedastic protocols.

Method AIC 𝜌 R2 SEE TRE ASE MPE MPSE
Heteroscedastic -92761.13 0.972 0.9467 0.0041 0.0311 26.1073 0.6882 50.2781
Homoscedastic -81386.51 0.972 0.9467 0.0041 0.2954 28.4527 0.6881 51.7400

Table 7: Assessment of models in arithmetical space. This includes the nonlinear heteroscedastic and biphasic protocols.

Method AIC 𝜌 R2 SEE TRE ASE MPE MPSE
Heteroscedastic -92761.13 0.972 0.946 0.004 0.031 26.107 0.690 50.278
Biphasic -96879.30 0.972 0.946 0.004 1.951 12.305 0.690 33.952

different projection methods. Table 8 compares resulting
reproducibility strengths.

Results in [11] stablished that proxies derived from the
TAMA protocol are inconsistent with observed values. This
endorsed nonlinear regression in the direct scale as a require-
ment for reliability of allometric projections of mean leaf
biomass in eelgrass shoots. But Table 8 shows that a curvature
model fitted in geometrical space can offer proxies entailing
similar predictive power to a nonlinear regression protocol.
Plots in Figure 6 allow getting a glimpse of this assertion.

4. Discussion

The customary bivariate allometric model of (1) offers non-
destructive surrogates for average leaf biomass in eelgrass
shoots [11]. But there are methodological factors that could
influence dependability. Views assert that parameter identifi-
cation based on logarithmic transformations leads to biased
projections [20–29]. But other practitioners clung to this
approach as meaningful and necessary in allometric exami-
nation [30–39]. This going over suggests that surpassing this
controversy amounts to considering curvature in geometrical
space. For that aim, we proposed the generalized model
of (3). Approaches such as direct nonlinear heteroscedastic
regression, as well as biphasic and polynomial protocols
in geometrical space [18], became logical resultants from
this construct. For present data model selection validated
maintenance of the analysis in geometrical space. Never-
theless, at an empirical level, addressed protocols produced
allometric projections of individual leaf biomass of corre-
spondent precision. This was also verified for concomitant
projections of average leaf biomass in shoots. But, from
a qualitative standpoint, the nonlinear regression protocol
mainly contributed by identifying expected dependence of
the variance on covariate. Moreover. Figure 7(a) depicts
manifest differences in mean response trends between the
polynomial fit and the nonlinear heteroscedastic model.
Nonetheless, those in Figure 7(b) corresponding to this and
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Figure 4: Spread about the biphasic mean response function𝐸𝐵𝛿(𝑤 | 𝑎) in arithmetical space. Black lines relate to 𝛿𝐷(𝜖), green
to 𝛿𝑍𝑇(𝜖), and red ones to 𝛿𝑛(𝜖).

the biphasic models differ but only barely. Then, a nonlinear
regression scheme at best shaped a reasonable approximation
of the mean response function resultant from curvature
methods.

Differences in patterns of the biphasic and polynomial
mean response functions relative to the nonlinear protocol
exhibit that clinging to this last paradigm could impair
detection of the true allometric relationship. Moreover, rely-
ing on direct nonlinear regression impairs identification of
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Table 8: Comparison of reproducibility strengths of proxies of average leaf biomass in shoots resulting from the biphasic polynomial or
nonlinear heteroscedastic protocols.

Method 𝜌 R2 SEE TRE ASE MPE MPSE
Biphasic 0.997 0.994 8.729e-04 2.408 2.229 3.486 5.080
Polynomial (m=6) 0.996 0.992 0.001 -2.456 -1.033 4.807 5.366
Heteroscedastic 0.997 0.994 7.722e-04 0.983 -0.726 3.084 5.645
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Figure 5: Spread about the mean response, curves 𝐸𝜃(𝑤 | 𝑎)
and 𝐸𝑜(𝑤 | 𝑎) associated with the nonlinear heteroscedastic and
homoscedastic regression models of (14) and (15) one to one. The
mean response 𝐸𝜃(𝑤 | 𝑎) is shown in black lines and those
corresponding to 𝐸𝑜(𝑤 | 𝑎) in red.

heterogeneity in the log transformed response as covariate
changes. This further stresses on limitations of this device
as a tool for allometric examination ([18, 30]). Oppositely,
output of the selected biphasic model shown in Figure 2
suggests differentiation of growth patterns among smaller
and larger leaves. Besides, the polynomial mean response
in Figure 3 suggests a gradual transition between different
growth phases. Thus, as opposed to direct nonlinear regres-
sion, a consideration of curvature in geometrical space could
elucidate an inherent leaf growth pattern. This strengthens
a judgement that the log transformation step, essential to
traditional allometric examination, cannot be thrown away
without losing relevant information ([33, 37]).

Mascaro et al. [18] conceived curvature in geometrical
space as related to methodological factors of data gathering.
But present examination corroborated consistency of curva-
ture models for processed data. This suggests that manifes-
tation of curvature is rather explained by intrinsic factors in
leaf growth. Additionally, data processing failed to amend the
heavy tails problem detected on Q-Q plots. This indicates
departure of residuals from an assumed error structure. As
a result, numerical values of the addressed correction factor
forms turned out to be different, thus conveying ambiguity

in selection of suitable mean response of models fitted in
geometrical space. This could entail the only advantage
of nonlinear regression method over log-transformation-
curvature paradigms. But, also for this analysis method, an
inadequate postulation of inherent error structure can lead
to significant bias [18]. It seems then reasonable considering
that a suitable characterization of error structure could lead to
robustness of built allometric proxies, even when they derive
from crude data. Steering to an error structure different from
what is assumed here is a worthwhile subject of further
research.

When dealing with similar data we suggest taking into
account recommendations that come up from this exami-
nation. First, it is highly advisable to perform a preliminary
examination of the spread around the straight line in geo-
metrical space resulting from the model of (1). If further
statistical exploration confirms that linearity and assumed
error structure are consistent with data, Huxley’s bivariate
allometric model could suit. Otherwise, the arrangement
of curvature, error structure, and correction factor form
such as proposed here could be called into account for the
analysis. The use of data cleaning procedures in order to
achieve a better fit is controversial [11]. Instead of performing
data processing a posteriori, it is highly advisable to rely on
standardized data gathering procedures. This will prevent
proliferation of inconsistent replicates that could exacerbate
a heavy tails problem on Q-Q plots.

5. Conclusion

Failure to perform both a preliminary exploration of spread
of log transformed allometric data and a sound evaluation
of model adequacy could impair detecting a possible man-
ifestation of curvature. As a consequence, the output of a
traditional analysis method could set biased predictions of
observed values. This circumstance could result in dismissal
of a log transformation step in the analysis, giving way to
contemplation of direct nonlinear regression as the only
protocol to acquire reliable parameter estimates [11]. Results
of this examination suggest that consideration of curvature
in geometrical space as set by the model of (3) could offer
dependable allometric proxies of average leaf biomass in
eelgrass shoots.

From a general perspective, complexity as encompassed
by the model of (3) can stand for curvature as conceived in
allometric examination. Particularly, biphasic or polynomial
protocols in geometrical space, as well as a direct nonlinear
heteroscedastic regression model, derive as particular char-
acterizations of this paradigm.Moreover all statistical models
for accurate estimates of relative growth contemplated by
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Figure 6: Average leaf biomass in shoots calculated from observed-processed data compared with their allometric projections. Projection
lines resulting from the biphasic and polynomial models relied on the 𝛿𝑛(𝜖) form.

Bervian et, al., [68] can be also accomodated by the present
generalization of the model of simple allometry of Huxley.
But empirical convenience on its own does not validate
adoption of this paradigm as a general tool. Certainly, the
Weierstrass approximation theorem [69] backs a polynomial
regression model as a reasonable identification device for
the generalized allometric model expressed in geometrical
space. But suitability of retransformation results will sensibly
depend on correction factor form. And a mean function
resulting from a polynomial fitted in geometrical space will
not enable characterization of functions 𝛼(𝑎) and 𝛽(𝑎) one
to one. Furthermore, complexity of (3) could pose significant
difficulties while attempting its identification through direct
nonlinear regression methods. Needless to say, biological

interpretation of the scaling functions 𝛼(𝑎) and 𝛽(𝑎) is
also pending. A quest for efficient tools of nondestructive
assessment of plant biomass units justifies addressing these
examinations in a further research.

Appendix

A. Data Exploratory Analysis

This appendix presents an exploratory analysis of raw and
processed data sets contemplated in this examination.

Table 9 describes the distribution pattern, in terms of
quantiles, for a sample of 10412 measurements of eelgrass leaf
weights and related areas taken over 13 months conforming
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Figure 7: Trends of mean response functions calculated from the
retransformed outputs of polynomial (a) and biphasic models (b)
involving the 𝛿𝑛(𝜖) form of 𝛿(𝜖). We can observe a differentiation
in trends relative to that of a power function fitted in directly by
means of the nonlinear heteroscedastic protocol of (14). Although
relative deviations manifest for the biphasic model, differences in
mean response patterns aremore clearly depicted for the polynomial
choice.

the present raw data. The first four columns in the uppermost
row label the minimum followed by quantiles of probability
0.1, 0.25, and 0.50. Correspondingly, the fifth column in the
first row presents the sample mean followed by quantiles of
probability 0.75 and 0.90 before the maximum. Second row
presents leaf dryweight values (𝑤) and third row shows corre-
sponding areas 𝑎.Third and fourth rows present transformed
ln𝑤 and ln 𝑎 values one to one. Similarly, Table 10 shows
the variation pattern of the 10023 observations resulting after
applying to raw data amean plus orminus two standard devi-
ations outlier’s removal procedure [58] designed to remove
replicates considered significantly discrepant from the mean

response function of a simple allometric model for a leaf dry
weight response in terms of a leaf area covariate.

Comparing quantile values for the leaf dryweight (𝑤) and
corresponding area (𝑎) variables reported in Tables 9 and 10
for crude and processed data respectively, we can ascertain
that in spite of removing a large number of discrepant
observations by data cleaning, both original and remnant
sets show an equivalent distribution pattern. This similarity
in distribution before and after data processing of the data
can be better perceived in the Q-Q (quantile-quantile) graphs
observed in Figure 8 for raw (a) and processed data (b),
respectively.

Q-Q plots in Figure 8 compare the distributions (regard-
less what they are) of the leaf area 𝑎 and associated dry weight𝑤 variables. The linear relationship observed between the
quantiles of both variables underlines that both variables have
similar distributions, although with different parameters.
This similarity between distributions of both variables is
observed for both sets of observations. The great similarity
of the fitted straight lines for both sets of observations in
Table 11 confirms that the referred distribution pattern does
not change after data processing.

Figures 9 and 10 display boxplots for the 13 months’ long
sampling scheme. We can learn that, for raw data, from
month 2 tomonth 6, a reduction in the values of both leaf dry
weight and linked area occurred.This is perhaps explained by
an increase in temperature during those months. Processed
data exhibits similar dynamics through time for these vari-
ables. Moreover, the overall variation patterns of raw and
processed data, throughout the 13 months of sampling, are
similar

B. Derivation of Regression Protocols

In this appendix, we first present notation convention for
statistics related to the generalized bivariate model of (3). We
then explain how the different regression protocols addressed
in this examination derive from this paradigm. We also
include notation convention for related statics.

B.1. Generalized Bivariate Allometric Model. A transforma-
tion V = ln𝑤 and 𝑢(𝑎) = ln 𝑎 of (3) establishes the
generalized regression model in geometrical space given by
(4). The term V𝐶(𝑎, 𝑢) stands for the corresponding mean
response function. Using the customary notation convention,
we represent V𝐶(𝑎, 𝑢) through symbol 𝐸𝐶(V | 𝑢); that is,

𝐸𝐶 (V | 𝑢) = ln𝛽 (𝑎) + 𝛼 (𝑎) 𝑢 (𝑎) . (B.1)

Furthermore, back-transformation 𝑤 = 𝑒V of (4) leads to the
result

𝑤 = 𝑒𝐸𝐶(V|𝑢)𝑒𝜖. (B.2)

Thus, 𝑒𝜖 is understood as a multiplicative error term. Denot-
ing by the symbol 𝐸𝐶𝛿(𝑤 | 𝑎) the corresponding mean
response function in arithmetical space, from (B.1) and (B.2),
we have

𝐸𝐶𝛿 (𝑤 | 𝑎) (𝑤 | 𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎)𝛿 (𝜖) (B.3)
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Figure 8: Q-Q plots (quantile-quantile) comparing distribution pattern of observations of eelgrass leaf area 𝑎 and associated dry weight 𝑤
for raw (a) and processed data (b).
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Figure 9: Boxplots for values of eelgrass leaf dry weight 𝑤 (a) and linked area 𝑎 (b) classified by month, as indicated in the horizontal axis.
The data is from a sample of 10412 observations, before applying data processing.
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Figure 10: Boxplots for values of eelgrass leaf dry weight 𝑤 (a) and linked area 𝑎 (b) classified by month, as indicated in the horizontal axis.
The data is from a sample of 10023 observations, remaining after applying an outlier removal procedure.
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Table 9: Values of minimum, maximum, sample mean, and quantiles for measurements of eelgrass dry weight (𝑤[gr]) and area (𝑎[mm2])
(and their logarithms) of a sample of 10412 leaves before applying a data-cleaning procedure aimed to eliminate outliers.

Min 0.10 0.25 0.50 Mean 0.75 0.90 Max
𝑤[gr] 0.00001 0.00042 0.00154 0.00564 0.01293 0.01477 0.035443 0.38058𝑎[mm2] 2.00 32.50 127.5 355.2 690.5 836.0 1859.00 7868.0
ln𝑤 -11.513 -7.7753 -6.4760 -5.1779 -5.4001 -4.2152 -3.33983 -0.9661
ln 𝑎 0.6931 3.48124 4.8481 5.8728 5.6729 6.7286 7.527794 8.9706

Table 10: Values of minimum, maximum, sample mean, and quantiles for measurements of eelgrass dry weight (𝑤[gr]) and area (𝑎[mm2])
(and their logarithms) of a sample of 10023 leaves remaining after applying a data-cleaning procedure aimed to eliminate outliers.

Min 0.10 0.25 0.50 Mean 0.75 0.90 Max
𝑤[gr] 0.00001 0.00041 0.00144 0.00529 0.01211 0.01373 0.03381 0.15096𝑎[mm2] 2.00 30.00 124.00 352.50 672.83 828.00 1835.80 6240.00
ln𝑤 -11.5129 -7.7994 -6.5431 -5.2419 -5.4593 -4.2878 -3.3868 -1.8907
ln 𝑎 .6931 3.4012 4.8203 5.8651 5.6518 6.7190 7.5152 8.7387

Table 11: Parameter estimates of straight lines fitted on raw (10412) and processed data (10023) and shown in the Q-Q plots of Figure 8.

Estimate Standard Error
Raw data
Intercept 141.22 3.88
slope 42493.46 163.29
Processed data
Intercept 111.20 2.50
Slope 46360.00 114.90

with 𝛿(𝜖) = 𝐸(𝑒𝜖) interpreted as a correction factor of bias of
retransformation of the regression error 𝜖.
B.2. Traditional Analysis Method of Allometry (TAMA). The
bivariate allometric model of (1) derives from the model of
(3) setting the scaling parameters constant; that is, 𝛽(𝑎) = 𝛽
and 𝛼(𝑎) = 𝛼. The resultant regression model in geometrical
space is given by (2). Corresponding mean response function
will be denoted here bymeans of the symbol𝐸𝑇(V | 𝑢). Hence,
from (2) we have

𝐸𝑇 (V | 𝑢) = ln 𝛽 + 𝛼𝑢. (B.4)

Retransformation 𝑤 = 𝑒V of (2) leads to the result
𝑤 = 𝑒𝐸𝑇(V|𝑢)𝑒𝜖. (B.5)

And linked mean response function in arithmetical space
denoted through 𝐸𝑇𝛿(𝑤 | 𝑎) becomes

𝐸𝑇𝛿 (𝑤 | 𝑎) = 𝛽𝑎𝛼𝛿 (𝜖) (B.6)

B.3. Biphasic Model in Geometrical Space. Here, we explain
the result of (8), as well as the notation convention for related
statistics. In order to characterize a biphasic form of the
model of (3), we introduce fixed values 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥, so that
the covariate 𝑎 takes values in a range 𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥.
We then conceive 𝑎𝑏 as a fixed value of 𝑎 satisfying 𝑎𝑚𝑖𝑛 ≤𝑎𝑏 ≤ 𝑎𝑚𝑎𝑥. And recalling the transformation V = ln𝑤 and

𝑢(𝑎) = ln 𝑎, we take 𝑢𝑏 = ln 𝑎𝑏 as a breaking point for
transition between two different phases of the variation of
V. Moreover, in the model of (3), we let 𝛽(𝑎) = 𝛽𝐵(𝑎) and𝛼(𝑎) = 𝛼𝐵(𝑎) given by

𝛼𝐵 (𝑎) = 2∑
1

𝜗𝑖 (𝑢 (𝑎)) 𝛼𝑖 (B.7)

𝛽𝐵 (𝑎) = exp( 2∑
1

𝜗𝑖 (𝑢 (𝑎)) ln𝛽𝑖) , (B.8)

𝜗𝑖 (𝑢 (𝑎)) = {{{
(2 − 𝑖) (1 − 𝐻 (𝑢 − 𝑢𝑏)) for 𝑖 = 1
(𝑖 − 1)𝐻 (𝑢 − 𝑢𝑏) for 𝑖 = 2 (B.9)

where𝐻(𝑥) is the Heaviside [60] function defined through

𝐻(𝑥) = {{{
0 𝑥 < 0
1 𝑥 ≥ 0. (B.10)

Then, the biphasic form of (3) is formally represented by

𝑤 = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎). (B.11)

Denoting by V𝐵(𝑎, 𝑢) the resulting form of V𝐶(𝑎, 𝑢), (5) yields
V𝐵 (𝑎, 𝑢) = ln𝛽𝐵 (𝑎) + 𝛼𝐵 (𝑎) 𝑢 (𝑎) . (B.12)
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Then, (B.7), (B.8), and (B.12) imply that

V𝐵 (𝑎, 𝑢) = 2∑
1

𝜗𝑖 (𝑢 (𝑎)) 𝑓𝑖 (𝑢 (𝑎)) , (B.13)

where

𝑓𝑖 (𝑢 (𝑎)) = ln 𝛽𝑖 + 𝛼𝑖𝑢 (𝑎) . (B.14)

This explains (8). Since 𝑤 as given by (3) is assumed to be a
continuous function of 𝑎, this property ought to be satisfied
by the biphasic model; that is, we require to set a condition,𝑓1(𝑢𝑏) = 𝑓2(𝑢𝑏). This leads to the equation

ln
𝛽1𝛽2 = (𝛼2 − 𝛼1) 𝑢𝑏. (B.15)

Moreover, V𝐵(𝑎, 𝑢) as given by (8) can be equivalently repre-
sented by

V𝐵 (𝑎, 𝑢) = {{{
ln𝛽1 + 𝛼1𝑢 𝑢 ≤ 𝑢𝑏
ln𝛽2 + 𝛼2𝑢 𝑢 > 𝑢𝑏, (B.16)

with the continuity condition of (B.15).
Correspondingly, the regression model of (4) in its

biphasic form becomes

V = V𝐵 (𝑎, 𝑢) + 𝜖. (B.17)

As we explained in (4), 𝜖 is a residual error term conceived
as a random variable distributed according to an unknown
distribution 𝜓 having mean 𝜇 and variance set by a function𝜎2(𝑢) of the covariate 𝑢; that is, 𝜖 ∼ 𝜓(𝜇, 𝜎2(𝑢)).

The form of the generalized mean response 𝐸𝐶(V | 𝑢) for
the biphasicmodel is denoted through𝐸𝐵(V | 𝑢) and becomes

𝐸𝐵 (V | 𝑢) = 2∑
1

𝜗𝑖 (𝑢 (𝑎)) 𝑓𝑖 (𝑢 (𝑎)) . (B.18)

It follows from (B.16) that the expression for 𝐸𝐵(V | 𝑢) can be
equivalently represented by

𝐸𝐵 (V | 𝑢) = {{{
ln𝛽1 + 𝛼1𝑢 𝑢 ≤ 𝑢𝑏
ln𝛽2 + 𝛼2𝑢 𝑢 > 𝑢𝑏. (B.19)

Back-transformation 𝑤 = 𝑒V of (B.17) leads to the result
𝑤 = 𝑒𝐸𝐵(V|𝑢)𝑒𝜖, (B.20)

which can be written in the form

𝑤 = 𝛽𝐵 (𝑎) 𝑎𝛼𝐵(𝑎)𝑒𝜖. (B.21)

Then, themean response function in arithmetical space𝐸(𝑤 |𝑎) becomes

𝐸𝐵𝛿 (𝑤 | 𝑎) = 𝛽𝑏 (𝑎) 𝑎𝛼𝑏(𝑎)𝛿 (𝜖) . (B.22)

B.4. Polynomial Model in Geometrical Space. In this section,
we explain how (12) can be derived from the generalized
structure of model of (3).We also set the notation convention
for related statistics. For these aims, we begin by considering
polynomials 𝜙𝛽(𝑎) and 𝜙𝛼(𝑎) given by

𝜙𝛽 (𝑎) = 𝑛∑
0

𝛽𝑘𝑢 (𝑎)𝑘 (B.23)

𝜙𝛼 (𝑎) = 𝑛∑
0

𝛼𝑘𝑢 (𝑎)𝑘 , (B.24)

where, for 1 ≤ 𝑘 ≤ 𝑚, 𝛼𝑘 and 𝛽𝑘 stand for coefficients. Now,
let 𝛼(𝑎) = 𝛼𝑃(𝑎) and 𝛽(𝑎) = 𝛽𝑃(𝑎), where𝛼𝑃 (𝑎) = 𝜙𝛼 (𝑎) (B.25)

𝛽𝑃 (𝑎) = 𝑒𝜙𝛽(𝑎). (B.26)
This way, we obtain a representation of the model of (3) in the
form

𝑤 = 𝛽𝑃 (𝑎) 𝑎𝛼𝑃(𝑎). (B.27)
Now, denoting by means of V𝑃(𝑎, 𝑢) the associated form of
V𝐶(𝑎, 𝑢), according to (5), we have

V𝑃 (𝑎, 𝑢) = ln𝛽𝑃 (𝑎) + 𝛼𝑃 (𝑎) 𝑢 (𝑎) . (B.28)
From (B.23) through (B.28), we obtain

V𝑃 (𝑎, 𝑢) = 𝑛∑
0

𝛽𝑘𝑢 (𝑎)𝑘 + 𝑛∑
0

𝛼𝑘𝑢 (𝑎)𝑘+1 . (B.29)

Rearranging, we ascertain that V𝐵(𝑢, 𝑎) takes on the polyno-
mial form

V𝑃 (𝑎, 𝑢) = 𝑚∑
0

𝑝𝑘𝑢 (𝑎)𝑘 (B.30)

where𝑚 = 𝑛 + 1, and
𝑝0 = 𝛽0,
𝑝𝑘 = 𝛽𝑘 + 𝛼(𝑘−1) for 1 ≤ 𝑘 ≤ 𝑚 − 1,
𝑝𝑚 = 𝛼𝑚.

(B.31)

This explains the result of (12). Correspondingly, a polyno-
mial characterization of the regression model of (4) takes the
form

V = V𝑃 (𝑎, 𝑢) + 𝜖, (B.32)
with 𝜖 being a residual error as described in (4). The form of
the generalized mean response 𝐸𝑐(V | 𝑢) for the polynomial
characterization is denoted through 𝐸𝑃(V | 𝑢). It becomes

𝐸𝑃 (V | 𝑢) = 𝑚∑
0

𝑝𝑘𝑢 (𝑎)𝑘 . (B.33)

Back-transformation 𝑤 = 𝑒V of (B.32) leads to
𝑤 = 𝑒𝐸𝑃(V|𝑢)𝑒𝜖. (B.34)

And the mean response function in arithmetical space𝐸𝑃𝛿(𝑤 | 𝑎) becomes

𝐸𝑃𝛿 (𝑤 | 𝑎) = 𝛽𝑃 (𝑎) 𝑎𝛼𝑃(𝑎)𝛿 (𝜖) (B.35)
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B.5. Nonlinear Regression Models. In this section, we explain
how the nonlinear heteroscedastic model of (14) can be also
associated with (3). We also explain the notation convention
for related statistics. For these aims, we begin by noticing that
V𝐶(𝑎, 𝑢) in (5) can be also written in the form

V𝐶 (𝑎, 𝑢) = ln𝛽 + 𝛼𝑢 + 𝜆 (𝑎) (B.36)

where 𝑢 = ln 𝑎 and
𝜆 (𝑎) = ln(𝛽 (𝑎)𝛽 ) + (𝛼 (𝑎) − 𝛼) ln 𝑎. (B.37)

Now, if 𝛽(𝑎) and 𝛼(𝑎) are as defined in (3), then (B.36) turns
out to be nonlinear in geometrical space. Moreover, since
from (B.36) we have

𝑒V𝐶(𝑎,𝑢) = 𝛽𝑎𝛼𝑒𝜆(𝑎) (B.38)

noticing that, from (4), 𝑒V𝐶(𝑎,𝑢) = 𝛽(𝑎)𝑎𝛼(𝑎), then solving for𝑒𝜆(𝑎) above yields
𝑒𝜆(𝑎) = 𝛽 (𝑎) 𝑎𝛼(𝑎)𝛽𝑎𝛼 . (B.39)

Then, we have that the generalized curvature model of (3) can
be also written in the form

𝑤 = 𝛽𝑎𝛼𝑒𝜆(𝑎) (B.40)

Thus, defining

𝜀 (𝑎) = 𝛽𝑎𝛼−𝜃 (𝑒𝜆(𝑎) − 1) , (B.41)

(B.39) implies

𝑤 = 𝛽𝜃𝑎𝛼𝜃 + 𝑎𝜃𝜀 (𝑎) , (B.42)

which suggests the nonlinear heteroscedastic regression
model of (14). That is,

𝑤 = 𝛽𝜃𝑎𝛼𝜃 + 𝑎𝜃𝜖, (B.43)

which can be considered as a tool to analyze curvature in
geometrical space. Particularly, by setting 𝜃 = 0, we can
consider the homoscedastic model

𝑤 = 𝛽0𝑎𝛼0 + 𝜖, (B.44)

where in (B.43) and (B.44) the error term 𝜖 is assumed to be
normally distributed random variable having zero mean and
homogeneous variance; that is, 𝜖 ∼ 𝑁(0, 𝜎2).

It turns out that the mean response function 𝐸𝜃(𝑤 | 𝑎)
associated with the heteroscedastic model becomes

𝐸𝜃 (𝑤 | 𝑎) = 𝛽𝜃𝑎𝛼𝜃 . (B.45)

Similarly, the mean response function 𝐸0(𝑤 | 𝑎) associated
with the homoscedastic model becomes

𝐸0 (𝑤 | 𝑎) = 𝛽0𝑎𝛼0 . (B.46)

Finally, by setting 𝛼(𝑎) = 𝛼 and 𝛽(𝑎) = 𝛽 + 𝑐/𝑎𝛼 in (3), a log
transformation V = ln𝑤 and 𝑢 = ln 𝑎 leads to the nonlinear
regression model in geometrical space:

V = ln (𝛽 + 𝑐𝑒−𝛼𝑢) + 𝛼𝑢 + 𝜖 (B.47)

with the error term assumed to be normally distributed
with zero mean and constant variance 𝜎2. Then, back-
transformation 𝑤 = 𝑒V of (B.47) to arithmetical space yields

𝑤 = (𝛽𝑎𝛼 + c) 𝑒𝜖. (B.48)

The mean response function in arithmetical space becomes

𝐸 (𝑤 | 𝑎) = (𝛽𝑎𝛼 + c) 𝛿 (𝜖) (B.49)

Packard [59] asserts that, commonly, any data set on arith-
metical scale that is consistently described by a three-
parameter power function will track a curved path when
transformed to the logarithmic scale. Equations (B.45)
through (B.47) provide a formal set-up accommodating such
a statement.

C. Forms of the Correction Factor of Bias of
Retransformation of the Regression Error

In this appendix, we explain the different characterizations
of 𝛿(𝜖), defined as a correction factor for bias of retrans-
formation of the regression error 𝜖 introduced by (B.3) for𝐸𝐶𝛿(𝑤 | 𝑎).

If 𝜖 is normally distributed with zero mean and constant
variance 𝜎2, that is 𝜖 ∼ 𝑁(0, 𝜎2), resulting form of 𝛿(𝜖),
denoted here by means of the symbol 𝛿𝐵(𝜖), is given by

𝛿𝐵 (𝜖) = 𝑒𝜎2/2. (C.1)

𝛿𝐵(𝜖) will be referred to as the Baskerville [51] form of 𝛿(𝜖).
In case of a nonnormally distributed residual error term 𝜖,

Newman [52] asserts that 𝛿(𝜖) must take the form provided
by Duan’s smearing estimate of bias [54]. Here, this form is
correspondingly represented by means of the symbol 𝛿𝐷(𝜖),
and it is calculated by means of

𝛿𝐷 (𝜖) = ∑𝑚1 𝑒𝜖𝑗𝑚 , (C.2)

with 𝜖𝑗 standing for the 𝑗 − 𝑡ℎ residual of the contem-
plated regression model. Nonetheless, this form of 𝛿(𝜖)
could produce bias overcompensation ([53, 55]). Moreover,𝛿𝐷(𝜖) corresponds to the sample mean of retransformed
residuals. Therefore, whenever outliers occur, the actual
central tendency of retransformed residuals data could not be
represented by 𝛿𝐷(𝜖). Under such a circumstance, a suitable
form of the correction factor 𝛿(𝜖) seems indefinite. Moreover,
Zeng and Tang [57] suggest a distribution-free form of 𝛿(𝜖)
represented here by means of 𝛿𝑍𝑇(𝜖) and given by

𝛿𝑍𝑇 (𝜖) = 1 + 𝜎22 . (C.3)

Wenotice that𝛿𝑍𝑇(𝜖) is actually an approximation to 𝛿(𝜖) as it
corresponds to a three terms’ partial sum of the power series
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expression of 𝛿(𝜖) assuming 𝐸(𝜖) = 0. By the same token,
we can consider an alternative approximation for 𝛿(𝜖); this
is represented through the symbol 𝛿𝑛(𝜖) and given by an 𝑛-
terms partial sum of the series representation of 𝐸(𝑒𝜖); that
is,

𝛿𝑛 (𝜖) = 𝑛∑
0

𝐸 (𝜖𝑘)
𝑘! . (C.4)

The value of 𝑛 leading to the highest concordance correlation
coefficient value between 𝐸𝐶𝛿(𝑤 | 𝑎) projections and
observed values sets the explicit form of 𝛿𝑛(𝜖) in (C.4).

D. Fitting Results of Regresion Models in
Geometrical Space

This appendix presents fitting results of the geometrical space
protocols derived from the generalized model of (3). This
includes TAMA and biphasic and polynomial schemes.

D.1. Fitting Results of the TAMA Protocol. Since we are
dealing with bivariate data (𝑤𝑖, 𝑎𝑖), in arithmetical scale,
according to the TAMA protocol, we have to consider pairs
(V𝑖, 𝑢𝑖), where V𝑖 = ln𝑤𝑖 and 𝑢𝑖 = ln 𝑎𝑖 for 𝑖 = 1, 2, . . . .𝑛.
Moreover, the linear regression model of (2) becomes

V𝑖 = ln𝛽 + 𝛼𝑢𝑖 + 𝜀𝑖, (D.1)

where the error term 𝜀𝑖 is assumed to be normally distributed
with zeromean and constant variance𝜎2 . Hence, the response
V𝑖 has normal distribution𝑁(𝜇𝑖 , 𝜎2)with constant variance𝜎2
and amean𝜇𝑖(𝛼, 𝛽, 𝑢𝑖) expressed as a function of the covariate𝑢𝑖; namely,

𝜇𝑖 (𝛼, 𝛽, 𝑢𝑖) = ln 𝛽 + 𝛼𝑢𝑖. (D.2)

Identification method contemplated here relies on finding
parameter estimates that maximize the log-likelihood func-
tion 𝑙(𝛽, 𝛼, 𝜎).This is given by

𝑙 (𝛽, 𝛼, 𝜎) = −𝑛2 log (2𝜋) − 𝑛∑
1

log (𝜎)

− 12
𝑛∑
1

(V𝑖 − ln𝛽 − 𝛼𝑢𝑖𝜎 )2 .
(D.3)

Fitting results of the linear model of (D.1) through (D.3) to
raw data appear in Table 12.

Figure 11(a) displays a biased distribution of residuals
around the zero line. The normal Q-Q plot in Figure 11(b)
can be considered as a visual test of goodness of fit. In this
case, this provides primary evidence against normality of
residuals. Indeed, we can learn of a heavy-tails pattern in
this plot. Moreover, an Anderson-Darling [67] goodness-of-
fit test resulted in a test statistic of 246.7 and in a p value of<2.2e-16, which confirms lack of normality of residuals.

Figure 12 shows spread about TAMA’s mean response𝐸𝑇𝛿(𝑤 | 𝑎) as produced by different forms of the correction
factor 𝛿(𝜖). Plot suggests moderate bias about 𝐸𝑇𝛿(𝑤 | 𝑎) for

leaves of small-to-medium-sized leaves. Nevertheless, devia-
tions between projected and processed data are notorious for
larger area values. Thus, spread in Figure 12 suggests that the
TAMA protocol is unsuited for the analysis of present data.

D.2. Fitting Results of the Biphasic Model. As before, for data
pairs (V𝑖, 𝑢𝑖), with V𝑖 = ln𝑤𝑖 and 𝑢𝑖 = ln 𝑎𝑖, for 𝑖 = 1, 2, . . . .𝑛,
(B.13) and (B.17) yield the regression model

V𝑖 = (𝜗1 (𝑢𝑖) ln 𝛽1 + 𝜗2 (𝑢𝑖) ln𝛽2)
+ (𝜗1 (𝑢𝑖) 𝛼1 + 𝜗2 (𝑢𝑖) 𝛼2) 𝑢𝑖 + 𝜀𝑖, (D.4)

with the additive errors 𝜀1, 𝜀2, . . . , 𝜀𝑛 assumed to be normally
distributed with zero mean and constant variance 𝜎2. More-
over, the response V𝑖 has normal distribution 𝑁(𝜇𝑖, 𝜎2) with
constant variance 𝜎2 and a mean 𝜇𝑖(𝛼, 𝛽, 𝑢𝑖) expressed as a
function of the covariate 𝑢𝑖; namely,

𝜗𝑘 (𝑢𝑖) = {{{
(2 − 𝑘) (1 − 𝐻 (𝑢𝑖 − 𝑢𝑏)) 𝑘 = 1
(𝑘 − 1)𝐻 (𝑢𝑖 − 𝑢𝑏) 𝑘 = 2, (D.5)

and, hence, the response V𝑖 as given by (D.4) is normally
distributed having mean 𝜇𝑖(𝑢𝑖, 𝜋) with 𝜋 standing for the
parameter vector (𝛽1, 𝛽2, 𝛼1, 𝛼2, 𝑢𝑏) and given by

𝜇𝑖 (𝑢𝑖, 𝜋) = (ln𝛽1 + 𝐻 (𝑢𝑖 − 𝑢𝑏) ln(𝛽2𝛽1))
+ (𝛼1 + 𝐻 (𝑢𝑖 − 𝑢𝑏) (𝛼2 − 𝛼1)) 𝑢𝑖

(D.6)

and variance 𝜎2. Therefore, the associated log-likelihood
function 𝑙(𝛽1, 𝛽2, 𝛼1, 𝛼2, 𝑢𝑏, 𝜎) becomes

𝑙 (𝛽1, 𝛽2, 𝛼1, 𝛼2, 𝑢𝑏, 𝜎)
= −𝑛2 log (2𝜋) − 𝑛∑

1

log (𝜎)

− 12
𝑛∑
1

(𝑤𝑖 − 𝜇𝑖 (𝑢𝑖, 𝛽1, 𝛽2, 𝛼1, 𝛼2, 𝑢𝑏)𝜎 )2 .
(D.7)

Table 13 Presents fitting results of the biphasic regression
model of (D.4) through (D.7). It is worth mentioning that
in this case we are performing a nonlinear fit in geometrical
space.

Comparing the behavior of the residuals of the TAMA
and biphasic models from Figure 13, we can learn of a relative
stabilization of variability of the residues. Nevertheless, the
biphasic normal Q-Q plot still shows heavier tails than those
expected for a normal distribution. This amounts to primary
evidence against normality of the residuals. An Anderson-
Darling goodness-of-fit test [67] that resulted in a test statistic
of 254.5 and a p value <2.2e-16 confirms a lack of normality
for the involved residuals. Nevertheless, compared with the
TAMAfit, the normalQ-Qplot for the biphasicmodel reveals
a larger regionwhere data track a normal distribution pattern.
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Figure 11: Residuals and normal probability plots ((a) and (b), resp.) resulting from fitting the linear regression model of the TAMAprotocol
(cf. (D.1) through (D.3)). A biased distribution of residuals around the zero line is depicted. Also, the normal Q-Q plot shows heavier tails
than those expected for a normal distribution.
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Figure 12: Spread about the mean response function 𝐸𝑇𝛿(𝑤 | 𝑎) obtained by retransforming the linear model of the TAMA protocol and
using the addressed forms of the correction factor 𝛿(𝜖) (Table 1). Black lines associated with 𝐸𝑇𝐷(𝑤 | 𝑎) green lines go with 𝐸𝑇𝑍𝑇(𝑤 | 𝑎), and
red ones go with 𝐸𝑇𝑛(𝑤 | 𝑎) and in yellow we show those for 𝐸𝑇𝐵(𝑤 | 𝑎). We can learn of a biased spread of observed values about the mean
response functions 𝐸𝑇𝛿(𝑤 | 𝑎) even after data processing.

D.3. Fitting Results of the Polynomial Model. We now explain
the statistical analysis involved in the identification of the
polynomial model of (B.27). Again, for data pairs (V𝑖, 𝑢𝑖), with
V𝑖 = ln𝑤𝑖 and 𝑢𝑖 = ln 𝑎𝑖, for 𝑖 = 1, 2, . . . .𝑛, from (B.29) and
(B.30), we get the regression model

V𝑖 = 𝑚∑
0

𝑝𝑘𝑢𝑖𝑘 + 𝜀𝑖, (D.8)

where the additive errors 𝜀1, 𝜀2, . . . , 𝜀𝑛 are independent and
identically distributed, with distribution 𝑁(0, 𝜎2). Hence,
the response V𝑖 above is normally distributed having
mean 𝜇𝑖(𝑢𝑖, 𝜋) with 𝜋 standing for the parameter vector(𝑝0, 𝑝1, . . . , 𝑝𝑚); namely,

𝜇𝑖 (𝑢𝑖, 𝜋) = 𝑚∑
0

𝑝𝑘𝑢𝑖𝑘. (D.9)
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Figure 13: Residuals and normal probability plots ((a) and (b) one to one) for the fitting of the biphasic regression model to processed data.
Compared with the TAMA fit, distribution of residuals about the zero line improved. Moreover, the Q-Q plot shows heavier tails than those
expected for a normal distribution.

Table 12: Fitting results of regression model of the TAMA protocol (cf. (D.1) through (D.3)). CI stands for confidence interval, RSE stands
for standard error of residuals, RMS means multiple R-squared, and ARS is adjusted R-squared.

Statistics of residuals
Minimum 1Q Median 3Q Maximum
-4.7088 -0.2344 0.0281 0.2244 4.7169
Parameters Estimate Std. Error t value 𝑃𝑟(> |𝑡|) C.I. (95%)𝛼 1.028222 0.003335 308.27 <2e-16 (1.021684, 1.03476)
ln𝛽 -11.270569 0.019534 -576.94 <2e-16 (-11.308861, -11.23228)
RSE 𝜎 0.5131 on 10021 df
MRS 0.9046
ARS 0.9046
F-statistic 9.504e+04 on 1 and 10021 df
p-value < 2.2e-16

Table 13: Fitting results of the biphasic regression model of (D.4) through (D.7) to processed data. CI stands for confidence interval and RSE
for standard error of residuals.

Residual statistics
Minimum 1Q Median 3Q Maximum
-4.4406 -0.1948 0.0240 0.2072 4.4626
Parameters Estimate Std. Error t value Pr(>|𝑡|) CI (95%)
ln𝛽1 -9.190321 0.052812 -174.0 <2e-16 (-9.2938, -9.0868)
ln𝛽2 -11.9381 0.093895 -127.1 <2e-16 (-12.1221, -11.7541)𝑢𝑏 3.550709 0.032744 108.4 <2e-16 (3.4865, 3.6149)𝛼1 0.336339 0.020042 16.8 <2e-16 (0.2971, 0.3756)𝛼2 1.164558 0.004248 274.1 <2e-16 (1.1562, 1.1729)
RSE 𝜎 0.452947 on 10018 df

Therefore, the associated log-likelihood function 𝑙(𝑝0,𝑝1, . . . , 𝑝𝑚, 𝜎) becomes

𝑙 (𝑝0, 𝑝1, . . . 𝑝𝑚, 𝜎) = −𝑛2 log (2𝜋) − 𝑛∑
1

log (𝜎)
− 12
𝑛∑
1

(𝑤𝑖 − 𝜇𝑖 (𝑢𝑖, 𝜋)𝜎 )2 .
(D.10)

Fitting results of the polynomial regression model of (D.8)
through (D.10) are shown in Table 14.

Reviewing fitting results of the polynomial model, we
observe similar results to those we found earlier for the fit
of the biphasic model. Moreover, Figure 14 displays similar
patterns to those shown in Figure 13. Also for this fit,
an Anderson-Darling normality test [67] delivered a test
statistic 257.1 and a p value <2.2e-16 that yields remarkable
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Table 14: Fitting results of the polynomial regression model. CI stands for confidence interval, RSE stands for standard error of residuals,
RMS means multiple R-squared, and ARS is adjusted R-squared.

Residual statistics
Minimum 1Q Median 3Q Maximum
-4.4207 -0.1947 0.0248 0.2072 4.5703
Parameters Estimate Std. Error t value Pr(>|𝑡|) CI (95%)𝑝0 -11.080 0.4136 -26.783 <2e-16 (-11.889e+1, -10.267e+1)𝑝1 4.602 0.7411 6.209 5.54e-10 (3.1489, 6.0543)𝑝2 -3.2120 0.5027 -6.390 1.74e-10 (-4.1976, -2.2267)𝑝3 1.0620 0.1671 6.355 2.17e-10 (0.7344, 1.3894)𝑝4 -0.1678 0.02911 -5.765 8.43e-09 (-0.22483, -0.11072)𝑝5 0.01287 0.002549 5.047 4.57e-07 (0.0078689, 0.017863)𝑝6 - 3.854e-04 8.854e-05 -4.353 1.36e-05 (-0.00055897, -0.00021186)
RSE 𝜎 0.4538 on 10016 df
MRS 0.9254
ARS 0.9254
F-statistic 2.071e+4 on 6 and 10016 df
p-value < 2.2e-16
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Figure 14: Residuals and normal probability plots ((a) and (b) one to one) for the fitting of the polynomial regression model of (D.8) through
(D.10). Compared with TAMA results, distribution of residuals about the zero line improved. Normal Q-Q plot reveals a large plateau, where
residuals conform to a normal distribution, but anyhow heavier tails than expected for such a pattern remain.

evidence against normality of residuals. Again, comparing
with TAMA results, distribution of residuals about the zero
line improved.Moreover, the Q-Qplot shows a larger plateau,
where residuals agree to a normal distribution pattern.

E. Fitting Results of Direct Nonlinear
Regression Models

This appendix presents the exploration of curvature bymeans
of direct nonlinear regression methods. For that aim, we
present fitting results of the nonlinear heteroscedastic model
of (14). For comparison, we include fitting results of the
homoscedastic case of (15).

Since we deal with data pairs (𝑤𝑖, 𝑎𝑖) for the heteroscedas-
tic case, the regression equation to be considered turns out to
be

𝑤𝑖 = 𝛽𝜃𝑎𝑖𝛼𝜃 + 𝑎𝑖𝜃𝜖𝑖, (E.1)

where 𝜖𝑖 is a normally distributed zeromean random variable
with standard deviation 𝜎. Then the response 𝑤𝑖 is normally
distributed having mean function 𝜇𝑖(𝑎𝑖,𝛼𝜃, 𝛽𝜃) given by

𝜇𝑖 (𝑎𝑖,𝛼𝜃, 𝛽𝜃) = 𝛽𝜃𝑎𝑖𝛼𝜃 . (E.2)

And a variance set as a function 𝜎2𝑖 (𝑎𝑖) of covariate 𝑎𝑖 is,
namely,

𝜎2𝑖 (𝑎𝑖) = 𝜎2𝑎2𝜃𝑖 . (E.3)
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Table 15: Maximum likelihood estimates of parameters for the heteroscedastic and homoscedastic regression models ((E.1) and (E.5) one to
one). CI stands for confidence interval.

Heteroscedastic fit
Parameter Estimate Std. Error CI (95%)
𝛼𝜃 1.1298 0.003414 (1.1230, 1.1366)
𝛽𝜃 7.073e-06 1.804e-07 (6.7123e-06, 7.434e-06)
𝜃 0.4415 0.003378 (0.4347, 0.4483)
𝜎 1.951e-04 3.972e-06 (1.8716e-04, 2.0304e-04)

Homoscedastic fit
Parameter Estimate Std. Error CI (95%)
𝛼𝑜 1.1365 0.003560 (1.1293, 1.1437)
𝛽𝑜 6.724e-06 1.883e-07 (6.347e-06, 7.10e-06)
𝜎 0.004173 2.948e-05 (0.00411, 0.004229

Again, fitting this regression model relied on a likelihood
approach, that is, obtaining estimates for the parame-
ters 𝛼𝜃, 𝛽𝜃, 𝜃, and 𝜎, which result in maximizing the log-
likelihood function 𝑙(𝛽, 𝛼𝜃, 𝛽𝜃, 𝜎) expressed by

𝑙 (𝛽, 𝛼𝜃, 𝛽𝜃, 𝜎) = −𝑛2 log (2𝜋) − 𝑛∑
1

log (𝜎𝑎𝜃𝑖 )

− 12
𝑛∑
1

(𝑤𝑖 − 𝛽𝜃𝑎𝑖𝛼𝜃𝜎𝑎𝜃𝑖 )2 ,
(E.4)

and in turn the linked homoscedastic regression model is

𝑤𝑖 = 𝛽𝑜𝑎𝑖𝛼𝑜 + 𝜖𝑖 (E.5)

for 𝑖 = 1, 2, . . . , 𝑛 and with error terms, 𝜖1, 𝜖2, . . . , 𝜖𝑛, inde-
pendent and identically distributed normally with common
mean 𝜇 set to zero and having an invariant standard deviation𝜎. The response 𝑤𝑖 above is normally distributed with mean
function 𝜇𝑖(𝑎𝑖, 𝛼𝑜, 𝛽𝑜) given by

𝜇𝑖 (𝑎𝑖, 𝛼𝑜, 𝛽𝑜) = 𝛽𝑜𝑎𝑖𝛼𝑜 . (E.6)

Corresponding log-likelihood function 𝑙(𝛼𝑜, 𝛽𝑜, 𝜎) becomes

𝑙 (𝛼𝑜, 𝛽𝑜, 𝜎) = −𝑛2 log (2𝜋) − 𝑛∑
1

log (𝜎)

− 12
𝑛∑
1

(𝑤𝑖 − 𝛽𝑜𝑎𝑖𝛼𝑜𝜎 )2 .
(E.7)

It can be ascertained from Table 15 that estimates for the
parameters 𝛼𝑜 and 𝛽𝑜 for raw data are very similar to 𝛼𝜃, as
well as 𝛽𝜃, for the heteroscedastic regression model of (E.1)
and (E.4), respectively.

Confidence intervals in Table 15 show some overlap.
Therefore, it can be established that parameter estimates
differ but just barely. This statement is supported by the
estimated value of 𝜌, Lin’s concordance correlation coefficient
between projected and observed leaf biomass values. For
both regression models, homoscedastic and heteroscedastic,
the estimate was 𝜌 = 0.972. Likewise, plotting the mean
response curves 𝑤𝑖 = 𝛽𝜃𝑎𝑖𝛼𝜃 and 𝑤𝑖 = 𝛽𝑜𝑎𝑖𝛼𝑜 on a
dispersion diagram of weight and area values reveals that
curves corresponding to parameter estimates fitted consid-
ering heteroscedasticity or not are very similar (Figure 5).
Nevertheless, the heteroscedastic fit clearly identifies for the
variance a variation pattern that grows in a power function
as leaf area increases. Indeed, Figure 15 shows remarkable
differences in scatter patterns of dry weight residuals against
leaf area for the heteroscedastic and homoscedastic models
((a) and (b), resp.). This can be ascertained from values in
Table 6, unveiling that the heteroscedastic model is selected
by most agreement indices.

Nevertheless, normal Q-Q plots of residuals of the fits
of the heteroscedastic model shown in Figure 16 reveal
that in spite of data cleaning we can be aware of a severe
problem of heavy tails. This points to consideration of
a different error structure from the normal one assumed
here.
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Figure 15: Diagram of dispersion of leaf dry weight residuals compared to leaf area for the fits heteroscedastic and homoscedastic models of
(E.1) and (E.5), respectively. Region bounded by red lines determines (95%) confidence intervals for residuals.
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Figure 16: Residuals and normal probability plots ((a) and (b) one to one) for the fitting of the nonlinear heteroscedastic regression model of
(E.1). We can observe a slightly biased distribution of residuals around the zero line. Also, normal Q-Q plot in (b) displays heavier tails than
those expected for a normal distribution.
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[11] H. Echavarŕıa-Heras, C. Leal-Ramı́rez, E. Villa-Diharce, and N.
Cazarez-Castro, “On the suitability of an allometric proxy for
nondestructive estimation of average leaf dry weight in eelgrass
shoots I: sensitivity analysis and examination of the influences
of data quality, analysis method, and sample size on precision,”
Theoretical Biology and Medical Modelling, vol. 15, no. 4, 2018.

[12] E. Solana-Arellano, H. Echavarŕıa-Heras, C. Leal-Ramı́rez, and
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