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Simple Summary: Endometrial carcinomas (ECs), the most frequent type of uterine body cancer, are
highly heterogeneous with overlapping clinical, pathological, and molecular features. This study aimed to
gain insights into these cancers’ chromosomal and genomic aberration patterns as well as their gene and
miRNA expression profiles, all of which are both pathogenetically and clinically important disease features.
We found that chromosome 1 was the most frequently rearranged chromosome, mostly leading to gain of
1q, that the genes PTEN, PDGFRA, PIK3CA, and KIT were the most frequent pathogenic variants, and that
some other genes and miRNAs of known importance in carcinogenesis and the immune response showed
consistent deregulation. This study confirms that a high degree of genetic heterogeneity characterizes EC
tumors but highlights the nonrandom involvement of some loci.

Abstract: Endometrial carcinomas (ECs) are histologically classified as endometrioid and nonen-
dometrioid tumors, with each subgroup displaying different molecular profiles and clinical outcomes.
Considerable biological and clinical heterogeneity exists within this scheme, however, reflecting its
imperfection. We aimed to gather additional data that might help clarify the tumors’ pathogenesis
and contribute toward a more meaningful classification scheme. In total, 33 ECs were examined for
the presence of chromosomal aberrations, genomic imbalances, pathogenic variants, microsatellite
instability, and expression profiles at both gene and miRNA levels. Chromosome 1 was the most
frequently rearranged chromosome, showing a gain of all or part of the long arm. Pathogenic variants
were found for PTEN (53%), PDGFRA (37%), PIK3CA (34%), and KIT (31%). High microsatellite
instability was identified in 15 ECs. Comparing tumors and controls, we identified 23 differentially
expressed genes of known importance in carcinogenesis, 15 genes involved in innate and adaptative
immune responses, and altered expression of 7 miRNAs. miR-32-5p was the most upregulated. Our
series showed a high degree of heterogeneity. Tumors were well-separated from controls, but there
was no clear-cut separation between endometrioid and nonendometrioid ECs. Whether this means
that the current phenotypic classification is of little relevance or if one still has not detected which
genomic parameters to enter into correlation analyses remains unknown.

Keywords: endometrial carcinoma; karyotype; chromosome 1; mutation analysis; microsatellite
instability; gene expression; cancer pathways; cancer immune profile; miRNA
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1. Introduction

Endometrial cancer is the sixth most common cancer in women and the second most
commonly diagnosed cancer of female genital organs [1]. In 2020, around 417,000 new
cases were detected, and 97,000 women died worldwide from the disease [1,2]. The most
frequent uterine cancers are endometrial carcinomas (ECs), which account for 90% of
uterine malignancies in post-menopausal women [3].

ECs arise from the lining of the uterus and are usually divided into two types: en-
dometrioid, which is estrogen-associated and makes up 80% of all endometrial cancers, and
hormone-independent nonendometrioid ECs (20%) [4], which can be further subdivided as
serous carcinomas, clear-cell carcinomas, and carcinosarcomas. According to the World
Health Organization (WHO) [3], endometrioid ECs can be low-grade (grades 1 and 2)
tumors that are generally associated with a good prognosis or high-grade carcinomas
carrying an intermediate prognosis [5]. Across and within the boundaries of these classifi-
cations, ECs display considerable heterogeneity, with overlapping clinical, pathological,
and molecular features [6–8].

In recent years, the increasing integration of molecular and morphological tumor data
has led to a better stratification of EC patients based on a deeper understanding of the
carcinogenic process [9]. The Cancer Genome Atlas (TCGA) consortium performed an inte-
grated genomic characterization of both types of ECs, identifying four molecular subgroups
among endometrioid ECs: (1) ECs with POLE exonuclease domain mutations; (2) ECs with
microsatellite instability (MSI); (3) ECs with low or few copy number alterations (CNAs);
and (4) ECs with high CNA and TP53 mutations [10,11]. These molecular features were
included in the subclassification of endometrioid ECs suggested by the most recent (2020)
edition of the WHO classification of female genital tract tumors [3]. Notably, karyotypic
information is not part of the TGCA approach to EC, although cytogenetic data on more
than 100 such tumors exist in the relevant literature [12].

In this paper, we report newly generated data on the karyotypic features, genomic
imbalances, pathogenic variants, microsatellite instability, and expression profiles at the
gene and miRNA level for 33 ECs from which clinical and pathological information was
also available.

2. Materials and Methods
2.1. Tumor Material

The material consisted of 33 ECs, of which 24 were endometrioid, and 9 were nonen-
dometrioid. The nine nonendometrioid ECs included three serous, one clear cell, three
of mixed histology (endometrioid-serous, endometrioid-clear cell, and endometrioid-
unclassified), and two tumors classified as “adenocarcinoma not otherwise specified
(NOS)”. All were surgically removed at the Norwegian Radium Hospital between 2013 and
2017. An overview of the clinical and pathological data is given in Table 1. Six commercially
available normal controls were included in the series. Four of them were total RNAs from
the normal uterus of single donors (AMS Biotechnology, Abingdon, United Kingdom).
The fifth was a total RNA consisting of a pool of uterine RNA from five donors (AMS
Biotechnology). The sixth was from normal endometrium from a single donor (OriGene,
Rockville, MD, USA).

The study was approved by the Regional Committee for Medical and Health Research
Ethics (REK, project number 2011/2071; http://helseforskning.etikkom.no; accessed on
15 May 2021).

http://helseforskning.etikkom.no
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Table 1. Clinicopathological characteristics of the material (n = 33).

Characteristics Distribution

Post-operative histology

Endometrioid G1 (n = 8)
Endometrioid G2 (n = 11)
Endometrioid G3 (n = 5)

Clear Cell (n = 1)
Serous (n = 3)
Mixed (n = 3)

Adenocarcinoma NOS (n = 2)

FIGO Stage 2009

IA (n = 13)
IB (n = 9)
II (n = 2)

IIIA (n = 2)
IIIB (n = 1)

IIIC1 (n = 2)
IVB (n = 3)

Post-operative treatment
none (n = 20)

Platinum based chemotherapy (n = 12)
Chemotherapy + radiation therapy (n = 1)

Recurrence yes (n = 10)
no (n = 23)

Site of recurrence

vagina (n = 3)
distant (n = 2)

multiple sites (n = 4)
isolated nodal pelvic (n = 1)

Age at diagnosis average years 70 (range 54 to 94)

Deaths n = 9

OS average months 44.5
FIGO, International Federation of Gynecology and Obstetrics; G, grade; NOS, not otherwise specified; OS,
overall survival.

2.2. G-Banding and Karyotyping

Fresh tissue from a representative area of the tumors was mechanically and enzymati-
cally disaggregated with collagenase II (Worthington, Freehold, NJ, USA). The cells were
cultured and harvested using standard techniques [13]. Chromosome preparations were
G-banded with Wright’s stain (Sigma-Aldrich, St Louis, MO, USA). Metaphases were ana-
lyzed, and karyograms were prepared using the CytoVision computer-assisted karyotyping
system (Leica Biosystems, Newcastle, UK). The karyotypes were written according to the
International System for Human Cytogenomic Nomenclature [14].

2.3. DNA and RNA Extraction

Fresh-frozen material from a representative area of the tumors was used to extract
DNA and RNA. DNA was extracted using the Maxwell 16 extractor (Promega, Madison,
WI, USA) and purified using a Maxwell 16 Cell DNA Purification kit (Promega) according to
the manufacturer’s recommendations. RNA was extracted using a miRNeasy kit (QIAGEN,
Hilden, Germany). The concentrations were measured using a QIAxel microfluidic UV/VIS
spectrophotometer (QIAGEN) and a Quantus fluorometer (Promega). RNA quality was
assessed with an Agilent RNA 6000 Nano total kit on an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA).

2.4. Genomic Imbalances

A whole-genome investigation was performed by means of array comparative ge-
nomic hybridization (aCGH) using the CytoSure Consortium Cancer + Single Nucleotide
Polymorphism (SNP) arrays (Oxford Gene Technology, Oxford, UK) according to the manu-



Cancers 2022, 14, 3536 4 of 16

facturers’ recommendations. Data were analyzed using Agilent Feature Extraction Software
(Agilent Technologies; version 10.7.3.1) and CytoSure Interpret Software (version 4.9.40,
Oxford Gene Technology). The genomic imbalances were identified using the Circular
Binary Segmentation (CBS) algorithm and adding a custom-made aberration filter defining
copy number alteration (CNA) as a region with a minimum of five probes gained/lost [15].
Only genomic imbalances larger than 5 Mb were scored. Annotations are based on human
reference sequence GRCh37/hg19 [16].

2.5. Pathogenic Variants

All tumors were investigated using next-generation sequencing (NGS) with the Ion
Torrent S5 platform and an Ion Ampliseq Cancer Hotspot Panel v2 Chef-Ready kit according
to the company’s protocols (ThermoFisher Scientific, Waltham, MA, USA). Amplified
libraries were quantified using a Quantus fluorometer and a High-Sensitivity Quantus
Assay kit (Promega).

All the detected pathogenic variants were then searched for in the COSMIC database
(Catalogue of Somatic Mutations in Cancer, at http://cancer.sanger.ac.uk/cosmic; accessed
on 15 January 2022; version 92). Pathogenic variant analysis was performed of the five
most common hotspots of the DNA polymerase epsilon, the catalytic subunit (POLE) gene,
namely positions c.857C > G, c.1231G > T, c.890 C > T, c.1366G > C, and c.1376C > T in exons
9, 12, and 13, respectively, using M13-linked PCR primers designed to flank and amplify
targeted sequences (Table 2) and a BigDye Direct Cycle Sequencing kit (ThermoFisher
Scientific) according to company’s recommendations. The thermal cycling for POLE (exons
9 and 13) included an initial step at 95 ◦C for 10 min, followed by 35 cycles at 96 ◦C for 3 sec,
58 ◦C for 15 sec, 30 sec at 68 ◦C, and a final step at 72 ◦C for 2 min. The thermal cycling
for exon 12 of POLE included an initial step at 95 ◦C for 10 min, followed by 35 cycles
at 96 ◦C for 3 sec, 62 ◦C for 15 sec, 30 sec at 68 ◦C, and a final step at 72 ◦C for 2 min.
Sequencing was performed using an Applied Biosystems SeqStudio Genetic Analyzer
system (ThermoFisher Scientific). The basic local alignment search tool (BLAST; https:
//blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 15 January 2022) and BLAT-like alignment
tool (BLAT; https://genome-euro.ucsc.edu/cgi-bin/hgBlat; accessed on 15 January 2022)
programs were used for the computer analysis of sequence data.

Table 2. Primers used for PCR reactions.

Name Sequence Gene Position on GRch37/hg19 Assembly

M13-POLEint9FW 5′-TGTAAAACGACGGCCAGTAGTCTTAGGGTCCTTCTCCCA-3′ POLE chr12 − 132676775 132676795
M13-POLEint10R 5′-CAGGAAACAGCTATGACCTGTGTGGATTCCCACTCGAAA-3′ POLE chr12 + 132676361 132676381

M13-POLEint12FW3 5′-TGTAAAACGACGGCCAGTGGGGTTCCCGGGCTGCATGTTA-3′ POLE chr12 − 132673744 132673765
M13-POLEint13REV3 5′-CAGGAAACAGCTATGACCCTCCGTGGCCATCTGGATGCGT-3′ POLE chr12 + 132673513 132673534

M13-POLEint13F 5′-TGTAAAACGACGGCCAGTACACACGTGTTTTGTCCTGTG-3′ POLE chr12 − 132673397 132673417
M13-POLEint14R 5′-CAGGAAACAGCTATGACCCAGGGCCAGAGAATTCCCAA-3′ POLE chr12 + 132672996 132673015

2.6. Microsatellite Instability (MSI) Status

The tumors’ MSI status was investigated using an Applied Biosystems TrueMark
MSI Assay (ThermoFisher Scientific) using 13 markers according to the manufacturer’s
instructions. Negative and positive controls were used to evaluate the efficiency of the am-
plification step. Fragment analysis was performed using an Applied Biosystems SeqStudio
Genetic Analyzer. The data were analyzed using the Applied Biosystem TrueMark MSI
Analysis Software (ThermoFisher Scientific).

The samples were considered MS stable (MSS), MSI low (MSI-L), or MSI high (MSI-H)
if none, one, or >30% of examined markers showed instability.

2.7. Messenger RNA (mRNA) and MicroRNA (miRNA) Expression Profile

Gene transcripts (mRNAs) and miRNA expression analyses were performed on 33 ECs
and 6 normal tissue samples with the help of the nCounter SPRINT NanoString platform
(NanoString Technologies, Inc., Seattle, WA, USA) using nCounter PanCancer Pathway,

http://cancer.sanger.ac.uk/cosmic
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://genome-euro.ucsc.edu/cgi-bin/hgBlat
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PanCancer Immune Profiling, and the nCounter Human v3 miRNA Expression Assay kit.
For gene expression, 25 ng of total RNA from each sample was hybridized with the code set
at 65 ◦C for 16 h and kept at 4 ◦C before preparing the cartridges. For miRNA expression,
100 ng of total RNA from each sample underwent preparation involving multiplexed
annealing of specific tags onto the 3′ end of each mature miRNA, followed by ligation
and enzymatic purification. miRNAs were hybridized with a code set for 12 h at 65 ◦C,
and then the hybridized products were prepared for cartridge loading on an nCounter
PrepStation. NanoString assays were performed in accordance with the manufacturer’s
protocols “MAN-10023-11” and “MAN-C0009-07” (NanoString technologies).

The nCounter PanCancer Pathway Panel consists of 770 genes from 13 cancer-associated
canonical pathways (https://www.nanostring.com/products/ncounter-assays-panels/
oncology/ncounter-pancancer-pathways-panel/; accessed on 30 September 2021). The
PanCancer Immune Profiling Panel consists of 770 genes associated with adaptive and in-
nate immune responses from different cell types (https://www.nanostring.com/products/
ncounter-assays-panels/oncology/pancancer-immune-profiling/; accessed on 30 Septem-
ber 2021). The NanoString nCounter miRNA Expression Assay kit measures the expression
of 830 human miRNAs (https://www.nanostring.com/wp-content/uploads/2021/01/
MAN-C0009-07_miRNA_Expression_Assay_User_Manual.pdf; accessed on 30 September
2021). Housekeeping genes (n = 40) as well as endogenous miRNAs (n = 5) are incorporated
in the NanoString code sets and were used for analysis along with positive and negative
controls. The raw data were processed using the NanoString nSolver 4.0 Software (NanoS-
tring) for quality control (QC) checks before analysis. The software provides QC flags to
assess the quality of the data for imaging, binding density, linearity of positive controls,
and limit of detection. The definition and implementation of this QC are summarized in
nSolver documentation (MAN-C0019-08).

2.8. Statistical Analysis of mRNA and miRNA Expression Data

All statistical analyses were performed using the software R (R Core Team, Vienna,
Austria) for statistical computing (version 4.1.0) [17]. Fold changes for all genes/miRNAs
were computed as ratios of the mean among cases over the mean among controls. Given
the small number of controls, a Shapiro–Wilks test [18] was used to assess the normality
of the measurements within the groups. For the purpose of performing differential gene
expression analysis (DGEA) of genes/miRNAs showing a p-value in the Shapiro–Wilks test
above 5%, a t-test for independent samples was used to compare the means between tumors
and controls; otherwise, the Mann–Whitney U test was used. Two-sided tests were used
to determine the significance of the results. Given the large number of such comparisons,
p-value adjustment for multiple testing was carried out using the Benjamin–Hochberg
(B–H) method [19], which controls the false discovery rate (FDR).

The genes/miRNAs that, after the B–H correction, were found to be significant at
the 5% level in discriminating tumors from controls were examined further. Principal
component analysis (PCA) [20] was performed to capture the covariance structure of
the data and reduce their dimension. To achieve dimensional reduction, only principal
components (PCs) whose cumulated proportion of variance exceeded 80% of the total
were included in the downstream analyses. For interpretation of the data covariance
structure, the PCA loadings (i.e., the vectors defining the directions detected by the PCs)
of the first and second PCs were examined: the genes/miRNAs showing the 5% largest
(smaller) loading values in the first two PCs jointly were collected as those mostly implied
in over- (under-)expression. Moreover, the PCA scores (i.e., the projections of the data
on the directions detected by the PCs) of the first and second PCs were also examined to
determine whether a grouping structure could be observed.

First, a scatterplot of the scores of the first two PCs with different colors for tumors and
controls was inspected to look for differences between the two groups. Finally, hierarchical
clustering [21] with Euclidean distance and Ward’s minimum variance linkage [22] was
performed on the scores of the selected relevant PCs. The best-suited number of clusters

https://www.nanostring.com/products/ncounter-assays-panels/oncology/ncounter-pancancer-pathways-panel/
https://www.nanostring.com/products/ncounter-assays-panels/oncology/ncounter-pancancer-pathways-panel/
https://www.nanostring.com/products/ncounter-assays-panels/oncology/pancancer-immune-profiling/
https://www.nanostring.com/products/ncounter-assays-panels/oncology/pancancer-immune-profiling/
https://www.nanostring.com/wp-content/uploads/2021/01/MAN-C0009-07_miRNA_Expression_Assay_User_Manual.pdf
https://www.nanostring.com/wp-content/uploads/2021/01/MAN-C0009-07_miRNA_Expression_Assay_User_Manual.pdf
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was selected for each panel by inspection of the cluster dendrogram. Survival analysis was
performed using the Kaplan–Meier method [23].

3. Results
3.1. G-Banding Analysis

All 33 ECs showed abnormal karyotypes, which was why the series was selected.
Structural chromosomal rearrangements were more common than numerical aberrations.
In total, 22 tumors showed a simple karyotype, meaning they displayed ≤ 5 chromosome
abnormalities, whereas 11 had a complex one, meaning > 5 abnormalities or an incomplete
karyotypic description. Chromosome 1 was the most commonly rearranged chromosome,
being involved in 26 structural abnormalities from 23 tumors. The cytogenetic analysis
revealed four distinct subgroups of ECs based on karyotypic features (Table 3): (A) tumors
with an isochromosome for the long arm of chromosome 1, i(1)(q10), as the sole aberration
(n = 5; 15%); (B) tumors showing partial duplication of the long arm of chromosome 1,
dup(1)(q21q32), as the sole abnormality (n = 3; 11%); (C) tumors showing i(1)(q10) together
with other abnormalities (n = 15; 45%); and (D) tumors showing no involvement/gain
of/from 1q as part of the abnormal karyotype (n = 10; 30%).

Table 3. Overview of the karyotypes for ECs.

Sample Karyotype Subgroup *

1 46,XX,dup(1)(q21q32)[15]/46,XX[1] B
2 48,XX,+i(1)(q10),+?10[10]/46,XX[8] C
3 47,XX,+i(1)(q10),t(8;16)(p21;p13)[cp11] C
4 48~49,XX,+i(1)(q10),+2,inc[cp4]/46,XX[17] C
5 49~50,XX,+X,+i(1)(q(10),+10[cp4]/46,XX[2] C
6 47,XX,+i(1)(q10)[3] A
7 53-55,XX,+del(1)(p31),+i(1)(q10),+3,+6,+7,+8,+8,+9,−13,−15,+2mar[cp10] C
8 47,XX,+der(1;10)(q10;q10)[9]/46,XX[1] C
9 41~42,der(19)t(1;19)(q21;q13),inc[cp2]/46,XX[6] C
10 46,XX,add(3)(q21)[cp2]/46,XX[23] D
11 47,XX,+i(1)(q10)[7]/46,XX[3] A
12 46,XX,del(16)(q12)[11]/46,XX[4] D
13 46,XX,dup(1)(q23q32)[cp8]/46,XX[2] B
14 50~100,+i(1)(q10),+7,inc[cp9]/46,XX[1] C
15 48,XX,+9,+10,der(15)t(1;15)(q11;p13)[8]/46,XX[2] C
16 46~47,XX,+i(1)(q10)[cp6]/46,XX[4] A
17 45,XX,t(12;14)(q15;q24),-22[6]/43~45,idem,+r,inc[cp2]/46,XX[2] D
18 42~46,XX,+7,-21[cp7]/91~93,idemx2[cp3]/46,XX[4] D
19 47,XX,+X[11] D
20 47,XX,+1,der(1;13)(q10;q10),+8[10] C
21 47,XX,+add(1)(p11)[5]/46,XX[5] A
22 47,XX,+10,del(16)(q13)[3]/46,XX[8] D
23 46,XX,r(13)[10] D
24 41~70,i(1)(q10),+mar,inc[cp7]/46,XX[1] C
25 46,XX,t(2;12)(q37;q?13)[3]/46,XX[9] D
26 46,XX,?t(4;6)(q?28;p22),add(11)(q22)[6]/46,XX[5] D
27 52,XX,i(1)(q10),+3,+8,+8,+10,+10[10] C
28 38~75,inv(1)(p13p36),add(2)(q33),add(7)(q32),inc[cp7]/46,XX[5] D
29 36~74,dup(1)(q21q23),der(?)t(1;?)(p13;?),der(?)t(1;?)(q12;?),add(11)(q23),inc[cp7/46,XX[4] B
30 44~46,XX,der(1)t(1;1)(p36;q21~q23)[cp7]/46,XX[3] A
31 44~46,add(1)(p13),+i(1)(q10),del(3)(q13),inc[cp13] C
32 48~49,XX,+del(1)(p22),+12,inc[cp6] C
33 45~47,XX,der(3)t(1;3)(q11;p25)[cp3]/46,XX[7] C

* (A) tumors with an isochromosome for the long arm of chromosome 1, i(1)(q10), as the sole aberration (n = 5);
(B) tumors showing partial duplication of the long arm of chromosome 1, dup(1)(q21q32), as the sole abnor-
mality (n = 3); (C) tumors showing i(1)(q10) together with other abnormalities (n = 15); (D) tumors showing no
involvement/gain of/from 1q as part of the abnormal karyotype (n = 10).
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3.2. Genomic Imbalances

CNAs were identified in all the 33 ECs investigated. The average number of copy aber-
ration (ANCA) index, calculated by dividing the sum of observed copy number imbalances
by the number of cases, was 26.6 [24]. The most frequent gain was of or from 1q (19 out of
33 tumors; 57%) (Figure 1A; Table S1). This imbalance was seen in 17 out of 24 endometri-
oid ECs, with minimal overlapping regions found at 1q21.1, 1q23.3, and 1q25.3 in 70% of
the tumors, 1q21.2q23.2, 1q24.1q25.2, and 1q31.1q32.13 in 66% (16 out of 24 tumors), and
gain of 1q32.2q44 in 15 out of 24 tumors (62%) (Figure 1B). Amplifications (≥4 copies) were
scored at 8p11.22 (n = 3). Common losses were identified on 15q11.1q11.2 and 16q21q23.1
(six tumors each or 18% of the cases), on 8p23.1, 14q32.33, 16q21, and 16q22.3 in five ECs
each (15%), and on 1p36.32p36.21, 10q26.13, 16q12.2q13, and 16q24.1q24.3 in four ECs each
(12%) (Figure 1A). In four out of nine nonendometrioid samples, loss from 1p (p36.32p36.21)
and 16q (q23.3q22.1) were identified (44%) (Figure 1C).
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3.3. Pathogenic Variants

Fifty genes were investigated for presence of pathogenic variants using the Ion Torrent
platform. All ECs but one (case 1) gave informative results; however, tumors 19 and 24
did not show any pathogenic variants (Figure 2; Table S2). Activating mutations in PTEN
were seen in 17 ECs (53% of the total number of informative cases), followed by mutations
in PDGFRA (n = 12, 37%), PIK3CA (n = 11, 34%), KIT (n = 10, 31%), CTNNB1 (n = 6, 19%),
FGFR2 and KRAS (both n = 5, 16%), TP53, and FBXW7 (both n = 3, 9%), APC, ATM, and
MET (n = 2, 7%), and IDH1 (n = 1, 3%).
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Figure 2. Overview of the pathogenic variants identified in ECs. Case 1 *, colored in grey, was
not informative.

None of the samples showed mutations in the POLE gene in any of the five investigated
hotspots/loci.

3.4. Microsatellite Instability (MSI)

MSI-H was identified in 15 ECs (45% of the samples) and MSI-L in 3 (9%), whereas
the remaining 15 samples were MSS (45.5%). The majority of MSI-H cases (n = 12) showed
more than five unstable markers (Table 4).

Table 4. Overview of the MSI findings.

Sample Overall Call Markers Unstable Markers Stable

1 MSS 0 13
2 MSI-Low 1 12
3 MSI-High 5 8
4 MSI-High 10 3
5 MSI-High 6 7
6 MSI-High 5 8
7 MSI-Low 2 11
8 MSI-High 5 8
9 MSI-Low 1 12
10 MSS 0 13
11 MSI-High 12 1
12 MSI-High 6 7
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Table 4. Cont.

Sample Overall Call Markers Unstable Markers Stable

13 MSI-High 4 9
14 MSS 0 13
15 MSS 0 13
16 MSS 0 13
17 MSI-High 7 6
18 MSI-High 10 3
19 MSI-High 7 6
20 MSI-High 4 9
21 MSI-High 7 6
22 MSI-High 6 7
23 MSS 0 13
24 MSS 0 13
25 MSS 0 13
26 MSS 0 13
27 MSS 0 13
28 MSS 0 13
29 MSS 0 13
30 MSI-High 7 6
31 MSS 0 13
32 MSS 0 13
33 MSS 0 13

3.5. Gene Expression Profile—PCA, DGEA, and Hierarchical Clustering

DGEA with multiple testing corrections via the B–H method, PCA, and subsequent
hierarchical clustering provided an overview of the most relevant gene expression profiles
for each panel, i.e., PanCancer Pathway, Immune Profiling, and miRNA (Figure 3). In all
panels used, the controls clustered separately from the tumors. A total of 478 genes were
found differentially expressed after the B–H correction for comparing ECs and normal
tissues when the PanCancer Pathway set was used. After running a PCA on the B–H-
adjusted (p < 0.05 and p-adj < 0.05) significantly upregulated genes in ECs (compared with
controls), 10 genes were found to be in the top-5% upregulated, whereas 13 genes were
found in the top-5% downregulated in the PC loadings. The genes found significantly
upregulated belonged to the apoptosis pathway (PIKMYT; fivefold change), the DNA repair
pathway (BRCA1, POLR2H, POLR2D, FANCG; threefold change), the MAPK/PI3K pathway,
and the transcriptional regulation pathway (NF1, DAXX, and MEN1; two-\fold change).
The FUB1 and MSH2 genes, which were found to be upregulated, are classified as cancer
drivers in the NanoString platform and in the latest studies [25,26]. The downregulated
genes are known to be involved/participate in the MAPK/PI3K pathway (HGF, PLA2G4A,
PDGFRA, FGF2, GADD45G, ITGA8, FGF7, and RASGRP2), in the transcriptional regulation
pathway (ZBTB16, NGFR, RUNX1T1), in the RAS pathway (SHC2, HGF, FGF7, RASGRP2),
and in apoptosis (GADD45G). The most downregulated genes were HGF and GADD45G
(Figure S1A).

In total, 199 genes were differentially expressed comparing EC samples and controls
using the Immune Profiling Panel; of these, 5 were significantly upregulated and 10 sig-
nificantly downregulated (Figure S1B). GPI was the most commonly upregulated gene
(threefold change), followed by CASP3, TYK2, EWSR1, and TBK1 (fold change between 1.6
and 2.1). Among the downregulated genes, CCL19, NCAM1, AKT3, ABCB1, CFD, MASP1,
C7, CCL21, CCL14, and CXCL12 were the most commonly involved (fold change between
0.02 and 0.48).
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Figure 3. Heatmap of expression profiles raw data for cancer pathways (A), immune profile (B), and
miRNAs (C). Samples are arranged in columns and the genes, and miRNAs expression levels are
arranged in rows. The blue shades indicate reduced expression, and the red shades indicate increased
expression. Numbers in bold highlight control samples.
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A total of 75 miRNAs were found differentially expressed between ECs and con-
trols. Four miRNAs were significantly upregulated (miR-107, miR-148-3p, miR-93-5p, and
miR-32-5p) with fold changes between 2.45 and 15.12, whereas three were significantly
downregulated (miR1247-5p, miR-875-3p, and miR-455-3p) with a fold change between
0.18 and 0.51 (Figure S1C).

3.6. Statistical Correlation

The nonparametric Mann–Whitney U test for statistical analysis was used to com-
pare the four cytogenetic subgroups with FIGO stage, post-operative treatment, response,
recurrence, death, and OS. No significant correlation was observed.

4. Discussion

ECs are heterogeneous both among tumors and within each tumor. Furthermore, it is
well-known that even benign endometrial tumors such as atypical endometrial hyperplasia
can share molecular alterations with tumors that are already malignant [27–29], features
that have an important impact on diagnostic/therapeutic decisions [7]. Besides this false-
positive type of similarity, precise diagnoses are made difficult by the fact that many ECs
lack specific molecular profiles [9,30].

Incorporating molecular parameters identified by the TCGA [10] into clinical practice
has been useful when it comes to assessing prognostic parameters in grade 3 endometri-
oid ECs; however, many challenges remain. Applying the new classification based on
TCGA findings to our series of ECs, we could identify only two molecular subgroups
of the four found in the original study [10]: one characterized by high CNAs (n = 28;
>five genomic imbalances) and the other by MSI-H (n = 15). Interestingly, all but two
tumors (cases 11 and 13) of the MSI-H subset also showed CNA-H, i.e., the two groups
overlapped. Five tumors could not be classified according to the TGCA or the WHO criteria.
Similar difficulties in EC classification are well-known and characterized also the series
examined by Kandotch et al. [10]. Additionally, the latest studies suggested the importance
of including TCGA molecular subgroups to assess the prognosis of ECs in association with
clinical–pathological factors [31–33].

Cytogenetic data on ECs show that hyperdiploid karyotypes with numerical aberra-
tions and/or simple structural rearrangements characterize two-thirds of tumors, whereas
the remaining one-third have complex karyotypes with several numerical and structural
chromosome abnormalities [12,34]. Our series is in line with previously published data
inasmuch as chromosome 1 was found to be the most commonly rearranged chromosome:
45% of the tumors showed i(1)(q10), often together with other abnormalities. Only a small
group of samples (n = 8) showed the involvement of chromosome 1 as the sole karyotypic
abnormality. This finding was confirmed by aCGH data showing recurrent gains of or
from 1q. According to the Mitelman database, 1q rearrangements are often seen as the
sole change in carcinoma of the uterine corpus (34 cases out of 115 cases scientifically
reported) [12]. Milatovic et al. [35] and Micci et al. [24] suggested that the 1q aberration
was primary in a subset of these tumors that subsequently accumulated additional chro-
mosomal aberrations during clonal evolution. In view of this hypothesis, we investigated
whether the four cytogenetic subgroups recognized in this study correlated with the disease
parameters tumor histology, FIGO stage, post-operative treatment, response, recurrence,
death, and overall survival (OS, calculated by the date of histological diagnosis until the
death or last update). No significant chromosomal–clinical correlation could be identified.

Intra-tumor heterogeneity, seen as the presence of multiple clones, was not identified
in this series. This cytogenetic uniformity strongly supports the notion that ECs are of
monoclonal origin. The fact that material for all analyses—be it at the chromosomal, DNA,
or RNA level—were from the same small sample is also unique to this study, as is indeed the
very fact that all these three fundamental organizational levels were genetically examined.
At the same time, some intrinsic limitations are equally obvious, not least the limited
size of the cohort. It would be of value in the future to enlarge the number of examined
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tumors, both endometrioid and nonendometrioid ECs. In particular, having more tumors
of the serous, clear cell, and mucinous subtypes available for analysis would probably be
informative with regard to assessing the heterogeneity of these subgroups. Due to the fact
that only small amounts of tumor material were available, it was not possible to run tests
in duplicate or triplicate.

At the molecular level, a high frequency of pathogenic variants was observed
in the genes PTEN (53%), PDGFRA (37%), PIK3CA (34%), KIT (31%), and CTNNB1
(19%). The mutation rates for our samples only slightly differed from those previously
found [10,36]. By way of example, PTEN was reported by the COSMIC database to show
variants in 43% of cases, PIK3CA in 28%, and CTNNB1 in 19% [36]. The differences
between our series and the reported frequencies could be explained by the use of “search
filters”. The COSMIC database applied “endometrium” and “all carcinoma” as filters,
meaning that entities such as carcinosarcomas become part of the final frequencies,
something that could have led to slightly different frequencies from what would be the
case if only ECs were examined. Perhaps interestingly, we did not find any pathogenic
variants of the POLE gene, although this has been reported at frequencies of 7–12% in
ECs [11,37,38]; this should correspond to 1–3 cases with pathogenic variants in our series.
Most likely, the fact that none of our samples had them is due to chance.

Microsatellite status is a strong prognostic marker in patients with colorectal cancer [39,40].
Lately, this biological feature has been used to define also a subgroup of endometrioid
ECs [10,41], and its prognostic value has been evaluated extensively [42,43]. Some studies
have shown better survival, others poor survival, whereas others again have found no
association at all [43–45]. In our series, MSI-H was found in 48% of ECs and present in
patients with OS of 48.64 months (approximately four years; data updated to the year 2021;
p-value = 0.85).

The transcriptomic/expression studies were approached using unsupervised cluster
and PCA analysis. The fact that all controls clustered separately from the tumor samples
speak of the reliability of the dataset. This notwithstanding, substantial heterogeneity
was observed among the tumors, and we found no meaningful sub-clustering based on
clinical–pathological–molecular parameters. The most significant upregulated mRNA
in the present cohort was the protein kinase membrane associated tyrosine/threonine 1
(PKMYT1), whereas hepatocyte growth factor (HGF) followed by growth arrest and DNA
damage-inducible gamma (GADD45G) were the most downregulated. These genes also
showed the largest fold-change value. PKMYT1 was the most upregulated gene in our study.
It maps to chromosome sub-band 16p13.3 and belongs to the Ser/Thr family of protein
kinases (WEE1) [46]. The gene encodes a cyclin-regulating kinase that inhibits phosphoryla-
tion of cyclin-dependent kinase 1 (Cdk1), a master regulator of the cell cycle. PIKMT1 might
be expected to act as a tumor suppressor by preventing Cdk1 activation. The abnormal ex-
pression of PKMYT1 has been associated with soft tissue sarcoma, prostate adenocarcinoma,
and squamous cell carcinoma of the cervix, among other neoplasms [36,47], although its
role in tumorigenesis still has not been thoroughly investigated. HGF maps to chromosomal
band 7q21.1 and regulates cell growth, motility, and morphogenesis in numerous cell and
tissue types [48]. Deregulation of growth factors is a well-known characteristic of many
neoplastic/cancerous cells [36,49–52]; it is likely to be a feature also of uterine carcinomas.
Activation of the HGF pathway can lead to increased cell survival, proliferation, and the
metastatic spreading of cancer cells [53]. It has been shown that aberrant activation of
the HGF pathway in tumor tissues can predict drug response [54]. Different preclinical
studies have shown that the inhibition of HGF activity is required to overcome therapeutic
resistance in amplified cancer cells, thus increasing cancer patients’ overall survival [55].

GADD45G, which maps to chromosome sub-band 9q22.2, is a member of a group of
genes whose increased transcription in response to stress shock can inhibit cell growth
and induce apoptosis in many solid cancers as well as hematopoietic malignancies [56].
The gene is an essential player in the oncogenesis of thyroid carcinoma, pancreatic ductal
carcinoma, and colon carcinoma [36,57,58] but is now, for the first time, shown to be
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deregulated also in ECs. Its role in the pathogenesis of these cancers should be further
investigated, preferably in larger cohorts.

The upregulated genes were involved in apoptosis, DNA repair, and transcriptional
regulation, whereas the downregulated genes were involved in MAPK/PI3K, Ras, tran-
scriptional regulation, and apoptosis pathways.

Expression analysis based on immune profiling demonstrated a significant change
for glucose-6-phosphate isomerase (GPI) (fold change 3.2). GPI maps to 19q13.11 and is a
member of the glucose phosphate isomerase family that plays a role in glycolysis and glu-
coneogenesis. It may function as a cytokine and angiogenic factor. The aberrant expression
of GPI has been involved in the development and progression of several cancers, such as
adrenal cortical carcinoma, lung adenocarcinoma, and malignant melanoma, possibly by
influencing immune cell infiltration [36,59,60].

miRNAs are small noncoding RNAs that regulate gene expression in a variety of
manners, including translational repression, mRNA cleavage, and deadenylation. They
can play a role in tumor development and/or progression by regulating the expression
pattern of oncogenes and suppressor genes [61,62]. The most upregulated miRNA found
in our study was miR-32-5p (fold change 15.1), which maps to Xq26.2, is a member of
the miR-32 family, and is involved in the development of numerous cancers. miR-32-5p
plays a key role in the tumorigenesis of various types of cancer by regulating multiple
target genes [63]. Liu et al. [64] showed that miR-32-5p is upregulated in cervical carcinoma
tissues, where it inhibits cell proliferation, migration, and invasion. Moreover, numerous
miRNAs, including miR-32-5p, interact functionally with PTEN inhibiting its expression.
PTEN was the most mutated gene in our series. Out of the 17 EC samples with pathogenic
PTEN variants, 13 showed an aberrant expression of miR-32-5p. Fu et al. [65] showed
that miR-32-5p could activate the PI3K/Akt pathway and induce multidrug resistance by
modulating angiogenesis and the epithelial–mesenchymal transition (EMT) process.

The two samples classified as “adenocarcinoma NOS” shared the same heteroge-
neous profile as all EC tumors regarding pathogenic variants, as well as genes/miRNAs
expression. No subtype-specific clusters were identified. This phenomenon has been seen
before [8,10] with most serous and mixed histology tumors (i.e., nonendometrioid carcino-
mas) clustering together with some of the endometrioid tumors. In our series, it was not
possible to determine any specific genomic/transcriptomic profile that set endometrioid
apart from nonendometrioid carcinomas.

5. Conclusions

Also, in the present study, a high degree of heterogeneity existed among ECs even
by unsupervised analysis of expression profiles. This notwithstanding, tumor samples
were as a group well-separated from controls, albeit with no clear-cut separation between
endometrioid and nonendometrioid ECs. Whether this means that the current phenotypic
classification is of little relevance or if one still has not detected which genomic parameters
to enter into correlation analyses is still unknown. Regardless, a better classification based
on relevant biological tumor features is clearly still needed for carcinomas of the uterine cor-
pus, preferably one that takes into account the essential genomic events of carcinogenesis.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14143536/s1; Table S1: Overview of the genomic imbalances.
Table S2: Overview of the pathogenic variants. Figure S1: Differential expression (DE) volcano plot
for cancer pathway panel (S1A) showing the 10 most upregulated genes, PKMYT, NF1, BRCA1,
FUBP1, MSH2, POLR2C, MEN1, POLR2H, FANCG, and DAXX, as well as the 13 most downregulated
genes, ZBTB16, SHC2, SOCS2, HGF, PLA2G4A, NGFR, PDGFRA, FGF2, GADD45G, ITGA8, RUNX1T,
FGF7, and RASGRP2.
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