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Abstract

Background

It is critical to capture data and modeling from the COVID-19 pandemic to understand as

much as possible and prepare for future epidemics and possible pandemics. The Hawaiian

Islands provide a unique opportunity to study heterogeneity and demographics in a con-

trolled environment due to the geographically closed borders and mostly uniform pandemic-

induced governmental controls and restrictions.

Objective

The goal of the paper is to quantify the differences and similarities in the spread of COVID-

19 among different Hawaiian islands as well as several other archipelago and islands, which

could potentially help us better understand the effect of differences in social behavior and

various mitigation measures. The approach should be robust with respect to the unavoid-

able differences in time, as the arrival of the virus and promptness of mitigation measures

may vary significantly among the chosen locations. At the same time, the comparison

should be able to capture differences in the overall pandemic experience.

Methods

We examine available data on the daily cases, positivity rates, mobility, and employ a com-

partmentalized model fitted to the daily cases to develop appropriate comparison

approaches. In particular, we focus on merge trees for the daily cases, normalized positivity

rates, and baseline transmission rates of the models.

Results

We observe noticeable differences among different Hawaiian counties and interesting simi-

larities between some Hawaiian counties and other geographic locations. The results sug-

gest that mitigation measures should be more localized, that is, targeting the county level

rather than the state level if the counties are reasonably insulated from one another. We

also notice that the spread of the disease is very sensitive to unexpected events and certain

changes in mitigation measures.
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Conclusions

Despite being a part of the same archipelago and having similar protocols for mitigation

measures, different Hawaiian counties exhibit quantifiably different dynamics of the spread

of the disease. One potential explanation is that not sufficiently targeted mitigation mea-

sures are incapable of handling unexpected, localized outbreak events. At a larger-scale

view of the general spread of the disease on the Hawaiian island counties, we find very inter-

esting similarities between individual Hawaiian islands and other archipelago and islands.

Introduction

Significant local variations in the spread of COVID-19 have been established in heterogeneous

environments. For example, Thomas, et al., compares nineteen different cities and counties in

the US [1]. They found that small differences in network models for interdependence and

social interaction as well as the effects due to uneven population distributions can lead to sub-

stantial differences in infection timing and severity, leading different areas in each city to have

vastly different experiences of the pandemic. Similar patterns associated with heterogeneity

have been made for entire nations, such as the work comparing the most affected cities in

China [2]. These works are based on the premise that substantial heterogeneity in social rela-

tionships at various scales affect the viral spread. It is unclear, however, whether or not such

heterogeneity is a critical factor for an island chain and such study is absent from the literature.

This is of utmost importance due to islands’ vulnerability to any pandemic, especially for

native populations as demonstrated for example with the introduction of measles to the Pacific

Islands in the 1800’s [3]. Islands are smaller contained populations, and thus epidemiological

models may require adjustments to properly apply them to disease containment strategies.

Identifying if major local variations can be expected for an island chain in the spread of

COVID-19 is crucial since it directly impacts the effectiveness of mitigation measures, vaccine

distribution, and health-care management. We focus here on a specific island chain, the

Hawaiian archipelago, and take a somewhat different approach by comparing pandemic

dynamics within individual islands and identifying countries or geo-regions exhibiting similar

properties.

The Hawaiian Islands are an archipelago of eight major islands, with only seven of them

being populated. The State is divided into five counties: Hawai‘i, Honolulu, Kalawao, Kaua‘i,

and Maui. Since Kalawao is the smallest county in all of the 50 states in terms of both popula-

tion and land area, we focus here on only the four major counties (Fig 1). Honolulu city and

county is the most populated county of the state, with 69% of the state’s population. Hawai‘i

county has the largest land mass of 63% of the entire state, but comes second in resident popu-

lation. Third by population is Maui county, which spans the islands of Maui, Moloka‘i, Lanai,

and Kaho‘olawe. Kaua‘i county, which spans the islands Kaua‘i and Ni‘ihau, has the smallest

population of the four counties studied in this paper (S1 Table). Demographics information

about the four counties can be found in S1 Fig. The majority of health facilities are located in

Honolulu county. More precisely, each of the neighbor islands has at least one hospital, but

some like the one on Lanai are severely limited in services. Honolulu County has 16 hospital

branches, Maui county has 4, Kauai county has 3 and Hawai‘i county has 6, but these vary in

size, services and facilities, with most being quite limited compared to Mainland hospitals.
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The Hawaiian Islands are at close proximity to each other and it is relatively quick and easy

to travel between them. (Pandemic-related imposed restrictions made inter-island travel more

difficult, however.) The six major islands are connected by more than dozens of flights every-

day. Oahu is the hub of Hawaii inter-island travel. The most frequent services are between the

islands of Oahu, Maui, Kauai and the Big Island. Daily smaller planes also exists to connect to

the islands of Lanai and Molokai. Accounting for all types of travel (international and domes-

tic) before the pandemic, there was an average of 30,000 daily passenger counts. When the

COVID-19 pandemic first started, inter-island travel halted due to a mandatory 14-day quar-

antine in addition to the shutdown of activity. Travel later picked up again in October 15, 2020

with a travel program.

Our goal is to demonstrate that islands in general, whether they belong to the same archi-

pelago or not, respond differently to the pandemic and cannot be aggregated into one single

class. This is possibly due to the inherent stochasticity and non-linearity of viral spread which

gets exacerbated by the small population of the islands.

Materials and methods

Data sources

For the Hawaiian Islands, we compiled reported COVID-19 cases per day from March 6, 2020

to January 15, 2021. Specifically, we collected the numbers of COVID-19 cases for the four

counties under study from various dashboards. In addition to comparison between the 4

Hawaiian counties, we also collected and compared the Hawaiian counties to other geographic

Fig 1. The state of Hawai‘i and its counties. Kaua‘i county encompasses the islands of Kaua‘i and Ni’ihau. Honolulu county contains only the

island of Oahu. Maui county comprises the islands of Maui, Moloka’i, Lana’i, and Kaho’olawe. Hawai‘i county contains only the island of

Hawai‘i. Taken from Maps of World, Countries & Cities—Mapsof.Net.

https://doi.org/10.1371/journal.pone.0263866.g001
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locations with similar isolation features. See S1 Appendix for a list of data sources used for the

COVID-19 daily cases. For each county, we also compiled the distribution of cases per zip

code. The zip code tabulation areas can be found from the State of Hawai‘i Office of Planning

2010 Census Reference Maps. Since those numbers are not compiled in any open source

spreadsheet, they need to be fetched from the Disease Outbreak Control Division Dashboard

under their Hawai‘i COVID-19 maps daily. To obtain mobility data we used the open source

SafeGraph COVID-19 Data Consortium [4] that provides social distancing metrics illustrating

the daily view of movement between census block groups.

The transmission rate in our model is optimized to reflect non pharmaceutical mitigation

interventions. Fig 2 displays the timeline from March 6 to September 24. The primary events

assumed to impact the epidemiological curves after September 24 are noted in the timeline.

The first of these is the safe travel program implemented by the State of Hawai‘i in Fig 3. In

addition, the entire state has moved from Tier 1 to Tier 2 on October 22, 2020 (which are

Fig 2. Hawai‘i Covid-19 mitigation timeline. Timeline of events related to the pandemic in the State of Hawai‘i from

March 6, 2020 to September 24, 2020.

https://doi.org/10.1371/journal.pone.0263866.g002
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metrics for reopening with Tier 2 employing lighter mitigation measures) and has stayed in

that phase throughout the period studied in this paper. Note also that the State of Hawai‘i

started administering vaccines on Dec 15, 2020. As of January 17, 2021 the State of Hawai‘i

recorded 76,498 administered vaccines doses. Of additional note are the deadliest day since

September 24, and the global maximum happened on October 14, 2020 with a count of 14

individuals.

Travel to the Hawaiian islands has been heavily mandated by the Safe Travels Program.

With few exceptions, for travel to the islands prior to October 15, 2020, all travelers are

expected to self-quarantine for two weeks upon arrival, regardless of residency status. This

includes interisland travel. Starting on October 15, 2020 a way to bypass this quarantine was

implemented. One may take a Nucleic Acid Amplification Test up to 72 hours before the origi-

nating flight, and it must return a negative result in order to avoid quarantine. Kauai opted out

of the testing option and maintained mandatory quarantine. In January, Maui county imple-

mented mandatory contact tracing through the AlohaSafe Alert App. (https://hawaiicovid19.

com/travel) for all incoming travelers.

Comparing to other locations

We also compare our results to three geographical locations with some similar water-type geo-

graphical boundaries, namely Iceland, Japan, and Puerto Rico. Japan is natural to consider

given the close relationship it has with Hawai‘i, both in terms of travel destination and ethnic-

ity. Japan, while formed of many islands, is primarily divided into five major islands. The most

populated is Honshu, and it is well connected to Hokkaido, Kyushu and Shikoku, with people

able to travel by car, train, ferry or plane. Okinawa is isolated and accessible only by plane.

However, by the end of 2020 the cumulative daily cases for Okinawa were less than 2% of

Japan’s total case number. Prior to Jan 15, 2021 the daily cases for Japan are dominated by case

numbers in the prefecture of Honshu. Unfortunately, prefecture specific data are difficult to

access, and since our analysis is qualitative we opted to consider Japan data as reflective of the

Island of Honshu. Iceland was chosen for its stringent travel restrictions comparable to the

one of the State of Hawai‘i before the safe travel program. The US territory of Puerto-Rico

shares climate similarity with Hawai‘i and therefore was also a natural choice for comparison.

Fig 3. Safe travel protocols per counties. Kaua‘i county has the most restricted travel regulations since Dec. 2, 2020

following a significant initial surge in cases with the introduction of the Safe Travels Program on October 15, 2020.

https://doi.org/10.1371/journal.pone.0263866.g003
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Assumptions on travel

We have used several of these critical dates and restrictions to adjust incoming travelers and

their transmission parameters in our modeling. Regarding travel flux for the State of Hawai‘i

since the implementation of the Safe Travel Program on October 15, 2020, we compiled data

from the COVID-19 State of Hawai‘i Travel portal [5]. Based on the Safe Travels Digital Plat-

form from the State of Hawai‘i, we are assuming a pre-travel testing rate of 86%, and a false

negative rate of 0.5%. We also assume 1% of untested visitors go into exposed isolation

(namely we removed an assumed number of exempt travelers) and a 5% prevalence for the

virus. The pre-testing rates for travelers to Maui county is higher, and assumed to be 95%.

Traveler average influx is modeled as a piece-wise linear function over two week intervals

between October 15, 2020 and January 15, 2021.

The average assumed influx for Iceland, Japan and the US territory Puerto Rico is simplified

to be linear over the same time period. See S2 Table for the estimated values.

Testing and test positivity

We created plots to study the correlation between daily cases, testing, and test positivity (i.e.,

the percent of tests for COVID-19 that came back positive) for each county. To create the over-

layed plots, the metrics are normalized by calculating each data point as a percent of the maxi-

mum of the corresponding metric over the whole observation period and using a 7-day rolling

average.

Computational method

There are two main classes of epidemiological models for this type of disease spread: compart-

mental models [6–8] and agent-based models [9–12]. In this paper, we use a compartmental-

ized model inspired by [13], which is based on a standard discrete SEIR model. A key

extension to a standard SEIR model that we have added for this paper is a new compartmental

group for travelers. Indeed, the tourist population plays a prominent role in Hawai‘i and due

to our isolated geographic location we are able to to collect precise information about daily

arrivals and departures. On some islands there are routinely more tourists than residents, and

the tourists typically stay only a week or two and are thus better cast as travelers with their own

demographics.

In our model, a given population is divided into four compartments: Susceptible (not cur-

rently infected), Exposed (infected with no symptoms), Infected (infected with symptoms),

and Removed (recovered or deceased). Moreover, we subdivide the entire population into

three additional disjoint groups: the general community (C), healthcare workers (H) and visi-

tors (V). Healthcare workers are in a separate compartment since they appear to play a more

unique role in the spread of diseases, especially for Covid-19. This includes potentially differ-

ent exposure to the disease (both through exposure and mitigational personal protective equip-

ment) as well as potentially taking more precautionary measures than typical individuals [13–

15]. In practice, this is incorporated into the modeling by assigning slightly different transmis-

sion parameters to the compartment containing the health care workers.

Visitors, who are only considered after October 15 (when the safe travels Hawai‘i program

began) are further broken down into two categories: returning residents and tourists. While

the returning residents are absorbed into the community compartment, the tourists are treated

as a separate compartment. In addition, the sub-compartments denoted Exposed and Infected

(in each population group) are split into multiple stages each day to better reflect the progres-

sion of the disease. There are two key dynamics of each population group: the dynamics of Sus-

ceptible individuals and the dynamics of the rest of the compartments. The time dependent
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hazard rate, λ(t), governs the susceptible dynamics. It reflects the probability, 1 − e−λ(t), of an

individual becoming exposed at time t. The hazard rate is different for different population

groups and takes into account interactions between the groups, thus coupling their dynamics.

For more information regarding dynamics equations of the model, see S2 Appendix, and Fig 4

which provides a diagram of the dynamics within each compartment.

Key to controlling the spread of the disease within our model is the parameter β that models

the basal transmission rate due to various interactions among individuals. Our model opti-

mizes β to fit daily cases for a specific geographic location. We use several different values of β
to capture changes in COVID-19 mitigation policy based on the location. Table 1 displays the

variables and parameters common to all simulations in this paper. (Optimized β’s are given in

the Results section.) We introduce the parameters pi as the probability to develop symptoms

on day i, and choose them such that if symptoms do develop, it takes between 2 to 14 days,

with a mean between 4 and 6 days [16], while assuming that about 40% of all infections remain

asymptomatic. The values of qs,i reflect the sentiment that symptomatic individuals are likely

to isolate, especially after a couple of days of symptoms. In addition, the parameter r is the

probability of transitioning from one stage of the illness to the next (with the final stage being

recovery or death). Based on prior work [17], we choose r to yield an expected length of illness

of 17 days. Hospitals took precautions and implemented guidance for their healthcare workers

by taking drastic measures to guarantee the safety of their healthcare workers as well as

patients which is reflected through the parameter κ [18]. Note that the hospitals in Hawaii did

Fig 4. Diagram of our basic compartmental model. Illustration of the compartments and their interactions.

https://doi.org/10.1371/journal.pone.0263866.g004
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not run out of protective gear due to the fact the numbers of cases stayed relatively low com-

pare to other States. In addition we believe that healthcare workers are typically more careful

due to their knowledge of the disease and how it spreads. Access to protective gear is modeled

with the parameter ρ.

In addition to standard SEIR parameters, we further parameterize the model to account for

mitigation measures such as mask compliance and contact tracing, the latter being dependant

on the geographical location. Table 2 lists the values we use for the State of Hawai‘i (those are

assumed to be constant over the various counties) as well as the ones for three non-Hawaiian

geo-locations included in our study. The parameters have been derived from dashboards/arti-

cles and, when possible, using contact tracing [19–28]. The choice of qa,i reflects the various

testing and contact tracing efforts, and gives the assumed probability for an asymptomatic

individual to go into isolation as a result of testing and contact tracing.

Simulations of our generalized SEIR model are done using our own implementation writ-

ten in Python. An outline of the program structure is provided in S2 Appendix. The code is

available upon request.

Initial conditions. The initial values of most variables are zero. The only non-zero initial

values are the number of susceptible individuals in both the general community and the

Table 1. Variable and parameters common for all geographic locations.

Parameter, meaning Value

β, basal transmission rates optimized to fit data

Factors modifying transmission rate

ε, asymptomatic transmission 0.75

ρ, reduced healthcare worker

interactions

0.8

ρv, reduced visitor-community

interaction

0.5

γ, quarantine 0.2

γv, quarantine for visitor 0.3

κ, hospital precautions 0.5

η, healthcare worker precautions 0.2375

Population fractions

pi, i = 0,. . .,13, onset of symptoms after

day i
0.000792, 0.00198, 0.1056, 0.198, 0.2376, 0.0858, 0.0528, 0.0462, 0.0396,

0.0264, 0.0198, 0.0198, 0.0198, 0

qs,i, i = 0,. . .,4, symptomatic isolation

after day/stage i
C: 0.1, 0.4, 0.8, 0.9, 0.99;

H: 0.2, 0.5, 0.9, 0.98, 0.99

r, transition to next symptomatic day/

stage

0.2

https://doi.org/10.1371/journal.pone.0263866.t001

Table 2. Geographically dependent factors modifying transmission rate.

Parameter, meaning HI Counties Japan Puerto Rico Iceland

Factors modifying transmission rate

pmp, mask compliance 0.2 before Aug 27, 0.7

thereafter

0.2 before May 04, 0.8

thereafter

0.2 before Aug 21, 0.7

thereafter

0.2 before Oct 20, 0.5

thereafter

pme, mask efficiency 0.25 0.25 0.25 0.25

Population fractions

qa,i, i = 0,. . .,13, asymptomatic

isolation after day i
0 before Jun 08, then q5 = q6

= q7 = 0.05

0 before Feb 25, then q5 = q6

= q7 = 0.05

0 before May 05, then q5 = q6

= q7 = 0.05

0 before Apr 01, then q5 = q6

= q7 = 0.05

https://doi.org/10.1371/journal.pone.0263866.t002
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healthcare worker community compartments. These values are listed in Table 3. The count of

healthcare workers in the State of Hawai‘i comes from [29] and some newspaper articles listing

numbers to divide them per county. As an initial trigger, a single not isolated symptomatic

individual, Ic,0(0) = 1 is listed with the corresponding date of introduction into the model for

each region.

Table 4 provides the initial values for Iceland, Japan and Puerto-Rico used in our modeling.

Metrics for daily cases curves comparison

Critical to comparing the spread of the virus at different locations is the introduction of an

appropriate comparison metric. We analyze similarity between the counties of Hawai‘i by

computing the classical L2 norm for normalized model fits, with the time interval re-scaled to

[0, 1]. Considering that we have a single sample for each of the time series representing the

new daily cases, we assess the significance of the computed L2 distances by looking at how the

corresponding numbers change when the model is fitted to random perturbations of the origi-

nal time series data. These perturbations are obtained by adding Gaussian noise with mean

zero. Assuming that a large number of new daily cases implies a larger possible error, the stan-

dard deviation for the noise is time dependent and equal to one-tenth of the recorded daily

cases. In the rare cases when adding the noise yielded a negative number of new daily cases,

this number is set to zero.

To assess how the shape of a curve changes from one time period to another, we look at the

difference between the normalized L2 norms. Utilizing the generated permutations for all the

counties, we can then perform a permutation test [30] and estimate a p-value for the hypothe-

sis that the change is the same for all the counties. See [31] for a general discussion on distance

measures to effectively determine similarity between trajectories, and [32–36] for applications

to concrete problems using especially the L2 or more generally the Minkowski distance.

To quantify similarity between our counties and Japan, Iceland, Puerto Rico we use a

slightly different metric. We also ran a fit with our compartmental model for these three other

geographic locations and analyze similarity by looking at the qualitative structure of the results

as captured by merge trees (see e.g. [37]). The latter construct is a topological descriptor of

functions, and is constructed by tracking how connected components of the sublevel sets

appear and merge as the threshold for the sublevel sets increases. This comparison is better

represented with a standard L2 metric due to time shifts in the course of the pandemic for the

Table 3. Susceptible population for each region and first detected symptomatic individual. All other variables have

an initial value of 0. Kaua‘i is not represented in this table since the model cannot be implemented for this county due

to the very low count of daily cases.

Region Sc(0) Sh(0) Date for Ic,0(0) = 1

Honolulu 937711 15000 Mar 06

Maui 167417 1500 Mar 15

Hawai‘i 201513 1500 Mar 16

https://doi.org/10.1371/journal.pone.0263866.t003

Table 4. Susceptible population for the three non-Hawaiian geo-locations.

Region Sc(0) Sh(0) Date for Ic,0(0) = 1

Japan 126500000 1673518 Feb 01

Iceland 356991 1404 Feb 21

Puerto Rico 3194000 89000 Mar 04

https://doi.org/10.1371/journal.pone.0263866.t004
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various countries. An easy way to visualize this process is to move a horizontal line from the

bottom to the top of the graph of a function and keep track of the function values at which a

new connected component of the graph appears under the line or two existing components

get merged. The actual horizontal locations of the branches, which represent the connected

components, is not important. Rather their relative (left-right) positions are key. Unfortu-

nately, assessing sensitivity of the computed merge trees to noise is significantly more chal-

lenging than in the case of the L2 distance. The main issue is that while one can define a metric

on the space of merge trees, computation of this metric is a very complicated problem [37].

Nevertheless, we can try to informally assess the sensitivity by looking at how the definition of

the distance between merge trees applies to the merge trees obtained for the model fitted to

perturbed time series (as described above).

Results

In this section we provide the results from the simulations of our model for the counties of the

State of Hawai‘i under analysis. We display the raw daily cases and not the 7 day average

because our model fit plots the sum over all groups of the newly isolated and isolated daily

exposed as well as infected individuals. Individual model fits for each county as well as the cor-

responding optimized transmission rates can be found in S3 Appendix. For Kaua‘i county the

daily cases are too small to generate a model, we therefore only use the raw daily cases.

As we hypothesized, there are clearly major differences among the four counties. Fig 5

shows, on the same plot, the normalized model fits for Honolulu, Hawai‘i and Maui counties

as well as the daily raw numbers for Kaua‘i (each island is normalized individually by their

max daily cases). It can be observed that (excluding Kaua‘i for which numbers have been too

low to draw comparison) the spikes in case rates in the three main counties correlate well with

each other until the Safe Travels Program began on October 15, 2020. Each of these counties

have a spike preceding this date. Hawai‘i county displays the sharpest spike, which was attrib-

uted to a specific pair of clusters (one in the town Hilo and one in the residential area Ocean

View). Maui also had a few clusters, including a major one around October 20 on Lanai and

Fig 5. Honolulu, Maui and Hawai‘i counties with a normalized model fit, Kaua‘i with normalized daily cases. It is

clearly observed that counties started to differ in response to the spread of COVID-19 after the Safe Travels Program

opened.

https://doi.org/10.1371/journal.pone.0263866.g005
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another major one in early January in the town of Kahului. After October 15, 2020, both

Honolulu county and Hawai‘i county show a slight increase (Hawai‘i has a localized spike that

initiated just before the safe-travels program and was identified to a known cluster). This is in

contrast to Maui county, which displays a very sharp increase. The optimized transmission

rates provided in S3 Appendix show that the exponential growths and decays for Hawai‘i and

Maui counties require typically larger values for the basal transmission rate than for Honolulu

county. We believe that the reason for this is that changes occur more rapidly in the outer-

islands. For instance the peak for Honolulu county is based on a build-up starting in June,

while for Hawai‘i county the peaks are much more narrower. For Maui county the decay due

to the second stay-at-home order is extremely efficient at the beginning and then slows down.

This forces an increase in β for an appropriate data fit.

For each county, the perturbed normalized fit is considered over two time intervals: into

two groups: before the safe travels (October 15) and until January 15, 2021. Then the mean dif-

ference between the L2 norms (with intervals re-scaled to [0, 1]) is computed for each county

over all perturbations (see Table 5). For a pair of counties, we take the null hypothesis to be the

equality of the means of these differences. We then perform a permutation test (with 20000

random permutations) to estimate the p-value for such a null hypothesis, as shown in Fig 6

and Table 6.

Fig 7 shows the total number of tests, the test positivity rate (i.e., the percent of tests for

COVID-19 that came back positive) as well as the daily cases for each county following the

description in material and methods. The noticeably large initial values of the test positivity

rate (present for all counties) are likely caused by the a small number of test that have been

administered to a very narrow slice of the population with much higher chances of having the

virus. When interpreting these plots, it should also be noted that even later in the pandemic

the sample of people receiving tests is not unbiased, since the State of Hawai‘i has been admin-

istering the test to people who satisfy criteria that make them more likely to have the virus. In

general the movement between counties dramatically slowed down right after the onset of the

pandemic. Afterwards, it rises slightly and then fluctuates with a movement index between the

shutdown and almost normal rates. Curiously, the correlation between the mobility index and

the daily case is far from strong, and in the case of Kaua‘i county the picture is more similar to

anti-correlation. It suggests that the spread of the virus among households, especially large and

multi-generational, could significantly contribute to the overall daily cases. Delving more

deeply into the spread within counties, we use case rate data binned by zip codes. We find that

for Honolulu county, Honolulu downtown as well as the West Coast (Waianae) have been the

most affected in terms of daily cases. See Fig 8A. For the West Coast it is possibly due to its

high pacific islanders population and the fact that they have been disproportionately impacted.

While they form about 4% of the total Hawai‘i population they account for more than 27% of

total cases [38]. Zip code 96819 dominates the count per 100 inhabitants, containing Moana-

lua, Kalihi, Kapalama, and Daniel K. Inouye International Airport on the south side of Oahu.

A second area of interest is 96792 of the Waianae area on the west side of Oahu. From Fig 8B,

we see that zip code 96701 displays a cluster behavior and that almost all its cases happened

Table 5. Means for perturbed normalized L2 norms and their differences for Hawaiian counties computed over

the time periods until Oct. 15 and until Jan 15.

Mar 06–October 15 Mar 06–Jan 15 Difference

Honolulu 0.326 0.367 0.041

Hawai‘i 0.250 0.297 0.047

Maui 0.257 0.314 0.057

https://doi.org/10.1371/journal.pone.0263866.t005
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Fig 6. Estimated distribution of permuted difference, Δ, between the mean differences in L2-norms for the

intervals before Oct. 15 and the one until Jan 15 for the three pairs of counties. The observed values, shown by

black vertical lines, clearly suggest that the hypotheses of equality of the mean differences for the three pairs of counties

should be rejected.

https://doi.org/10.1371/journal.pone.0263866.g006
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Table 6. The difference, Δ, between the mean differences in L2-norms for the intervals before Oct. 15 and the one

until Jan 15, along with the p-value estimated using the permutation test.

Δ p-value

Honolulu—Maui 0.00601 0.0422

Hawai‘i—Honolulu 0.01588 0.0001

Maui—Hawai‘i 0.00987 0.00675

https://doi.org/10.1371/journal.pone.0263866.t006

Fig 7. Testing, positivity and mobility plots. A: Honolulu. A sharp increase in the test positivity rate (along with the daily cases) in July indicates an

outbreak of the disease. The later decrease in the positivity rate with the increased number of tests indicates a substantial slowdown of the spread of the

disease. B: Hawaii. A sharp increase in the test positivity rate around August indicates an outbreak the disease. The later decrease in the positivity rate

with the number of tests hovering around the same value indicates a welcome slowdown of the spread of the disease. Maui: A series of ups and downs in

the test positivity rate and the number of daily cases indicate the occurrences of outbreaks of the disease. The significant increase in these numbers at the

beginning of this year suggests a serious spread of the virus. A noticeable jump in the daily case number that does not correlate with the positivity rate

can be explained by a jump in the number of tests, since the latter are performed for people with higher chances of having the virus. C: Kauai. The

number of daily cases and test positivity rate are still well correlated, even though the raw numbers are small. Similar to Hawai‘i county, we can see a

jump in the daily case numbers that correlates with the increased number of tests rather than the test positivity rate, which is likely due to the biased

nature of the population sample on which the tests are performed. Overall mobility suggest a modest correlation with the number of daily cases. It shows

a major dip in mobility triggered by the first stay-at-home order back in March 2020. The mobility data clearly suggests why the second lockdown was

not as efficient as the first one.

https://doi.org/10.1371/journal.pone.0263866.g007
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between December 16, 2020 to January 6, 2021. This was due to a cluster at Halawa Correc-

tional Facility. There is no real immediate visible pattern from the other zip codes.

For Hawai‘i county the vast majority of cases are located in one of the two main town:

Kona (West) and Hilo (East). Zip codes 96720 and 96740, respectively Hilo and Kona, clearly

dominate the counts. We can see on Fig 9A that Kona had a consistently larger case rate than

Hilo except for the few days before Christmas. This can might be explained by the fact that

during the period October 15 to January 18, air traffic was more significant into Kona than

into Hilo. The incoming air travel counts are as follows(tourist, returning resident): Kona

(76189,23824), Hilo (15808, 8800). Each island also displays nonuniform population density

and demographics. The low counts on the eastern half of Maui are likely associated with low

population density of local residents and relatively few tourists Fig 9B. There was a large out-

break in a multistory building in early 2021 located in zip code 96732. (Multistory buildings

with elevator usage are relatively rare on Maui.) This outbreak and spread has been attributed

by authorities to elevator usage by the building residents in this complex, an uncommon phe-

nomenon on Maui. There are a relatively larger number of tourists compared to local residents

Fig 8. Honolulu county cumulative daily counts distributed per zip code from March 2020 to January 18, 2021. A: Map produced using Excel Map

charts). B: Honolulu county cumulative daily counts distributed per zip code.

https://doi.org/10.1371/journal.pone.0263866.g008
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in zip codes 96761 and 96753 as compared to most other Maui zip code areas. Tourist travel is

a possible reason these two zip code area had larger increases in December than other areas.

See S3 Appendix for tables with the numbers for each counties.

We now compare our counties to Japan, Iceland and Puerto Rico using the notion of

merged trees. The merge trees for our Honolulu, Hawai‘i and Maui counties and the compari-

son geo-locations are shown in Fig 10. They are computed using the normalized time series

for the daily cases numbers starting from June 15. We juxtaposed the merges trees based on

their visual semblance and provide more details regarding their comparison in the Discussion

section.

Fig 11A–11C display the model fit for Honolulu, Hawai‘i and Maui counties along with the

Islands paired to them using the merge trees of Fig 10. Iceland, most similar to Honolulu

County, detected their first case in February and had a significant first wave, but then con-

trolled the spread beside a super spreader event trigger by two travelers. Traveling has then be

very restricted which is why the daily cases are mostly in the single digits at the end of the fit.

Hawai‘i county is most similar to Puerto Rico. The accuracy of the data for Puerto Rico is

unclear and it was very difficult to find the travel restrictions. The primary difference is the

peak in December that Puerto Rico suffered. Maui and Japan display a very similar qualitative

curve, especially when travelers are ignored for Maui. We believe the reason for Japan’s explo-

sive growth at the end of the year is likely attributed to a few factors, including a controversial

policy encouraging domestic travel and possibly COVID-19 mitigation fatigue by the popula-

tion. We note that the travel policy was made more restrictive in January.

Fig 9. Hawai‘i and Maui cumulative daily counts distributed per zip code from October 2020 to January 18, 2021. A. Hawaii County. Cases

restricted to the two major towns Hilo and Kona. B. Maui county. There were a few clusters on Maui which is an explanation for some of the higher

spikes, in particular in early January in Kahului which is zip code 96732.

https://doi.org/10.1371/journal.pone.0263866.g009
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Discussion

Understanding the impact of a pandemic on isolated locations is of extreme importance not

only to the locations themselves but also can shed light on pandemic spread generally because

of the lesser number of independent parameters. Due to their isolation, populations on islands

Fig 10. Merged trees. Merge trees elucidate the qualitative structure of the daily case numbers over time.

https://doi.org/10.1371/journal.pone.0263866.g010
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or archipelagos are very vulnerable to pandemics and are potentially subject to devastating

effects because of their isolation and often limited supply chains and hospitalization capacity.

In this paper, using the Hawaiian archipelago, we explore the importance of taking into

account local variations in island chains. In characterizing the individualistic island behavior,

we believe that ratios between residents and tourists, age demographics and differences in gov-

ernmental application of controls may account for the substantial noted differences.

The Hawaiian island chain has been significantly impacted by disease throughout their his-

tory. See, for example, the recent popular article in the Smithsonian Magazine which notes

Fig 11. Comparison between the daily cases between Hawai‘i counties and other geo-regions. A: Honolulu County and Iceland. B. Hawai‘i County

and Puerto-Rico. C: Maui county and Japan. Dots are daily cases and the curves are the computational fit using our compartmentalized model. The

blue fit for the Hawai‘i counties starting October 15, 2020 corresponds to not taking into account the travelers.

https://doi.org/10.1371/journal.pone.0263866.g011
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that, “Foreign diseases have come through here before, and they have inflicted unfathomable

damage” [39]. COVID-19 is therefore a major threat for the State of Hawai‘i. While the major-

ity of the population lives on Oahu, there are seven inhabited islands. The State numbers dur-

ing the pandemic have been dominated by daily cases in Honolulu County, which

overshadowed the spread of the disease in the other counties. Our results clearly illustrate that

it is not sufficient to average the initial conditions of the virus spread and assume that the dif-

ferent islands will exhibit similar behavior in an average sense. On the contrary, nonlinear

effects and clusters can take off in one of the contained populations at a different time, thus

requiring different pandemic control mandates. This highlights the need for targeted measures

at the county(island) level, especially once travel restrictions are started to be lifted. Indeed,

during the initial stretch of the pandemic, there was very little inter-island travel due to a man-

datory 14-day quarantine that was in place. (It was dropped in June 2020, but then reinstated

in August 2020.) Travel picked-up again in October 15 with the Safe Travels Program in place.

As illustrated by the numbers in Table 6 the counties started to become more dissimilar once

travel restrictions were eased, which supported by the fact that the estimated p-values reject

the null hypothesis of the same change for all the counties. It also demonstrates how localized

clusters have a larger impact on the less populated islands. This is clearly demonstrated by the

fact that as of January 2021, Maui county went into an alarming trend despite sharing the

same mitigation measures and travel restrictions as Honolulu and Hawai‘i county. (Note that

in Hawai‘i, the islands themselves correspond roughly to a single county. There are not county

lines dividing contiguous state interiors as on the Mainland).

More precisely, we can see that the Honolulu county merge tree is visually similar to the

Iceland merge tree and the Maui county merge tree is visually similar to the Japan merge tree.

While the Hawai‘i county and Puerto Rico merge trees are less visually similar than the previ-

ous pairs, they both feature a tall right branch connecting to the absolute maximum as well as

a tall right subtree of the main left branch, and are even more visually dissimilar from other

merge trees than from each other. Looking more carefully at the definition of the interleaving

distance between merge tress (see [37]), the reader can get a better understanding as to why

these visual similarities are likely to be supported by the actual interleaving distances. We

should also mention that the interleaving distance is bounded from above by the standard sup-

norm of the difference between the corresponding time series. We observed that fitting the

model to perturbed data does not change the resulting time series much, especially in terms of

the sup-norm. Hence, we expect that the interleaving distances between the merges trees

obtained for perturbed data are likely be very close to the distances between the merge trees

shown in Fig 10. An example of merge trees computed for perturbed data is provided in S2

Fig. It shows that these merge trees are indeed very visually similar to the ones obtained for

unperturbed data.

It is somewhat surprising that islands with control over the influx and outflow of people

may have a similar overall pandemic experience even if they are geographically distant and cul-

turally different. Merge trees indicate that the new daily cases curves for each of Honolulu,

Hawai‘i and Maui counties display similar qualitative behavior to the corresponding curves for

Iceland, Puerto Rico, and Japan, respectively. This suggests a much more complex dynamics

for the spread of the disease within the island chain since similarity, climate, and proximity do

not always correlate in terms of a disease spread behavior.

The State of Hawai‘i launched an aggressive mass vaccination campaign starting in Decem-

ber, but its effects are only now starting to impact the daily case rate. During the period of our

study the very small impact of vaccination was ignored. As of February 2, 2021 we have

202,200 doses administered. The State policy is to keep the vaccination plan as originally

planned, that is, administer two doses per individual, even though two cases of the more
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transmissible B1.1.7 have been detected in Hawai‘i. As of February 8, 2021, cases have been

decreasing in all four counties. We note that the vaccination rate should also be adjusted to tar-

get specific counties in different ways (timeline, demographics, etc).

Conclusions and future work

In this paper we present an in-depth study of the Covid-19 pandemic in the Hawaiian Islands.

We pay special attention to details of the heterogeneity effects and compared individual island

results with each other in Hawai‘i and with other islands outside of Hawai‘i to discern how

much granularity and detail is appropriate for making policy decisions related to curtailing

disease spread. We use the unique situation of the Islands’ officials ability to impose more

effective quarantines and isolation to study the dynamics of the disease spread. We also use the

paper to collect timely information that might otherwise be lost and directly related it to dis-

ease dynamics. This aids in connecting policy decisions aimed at curtailing viral spread with

actual results in reduction of number of cases. Future work in this area should include more

advanced modeling techniques that include better vaccine and tourist population dynamics as

the pandemic progresses and hopefully wanes.

An important conclusion of this research is the identification of patterns that change

extremely rapidly. This is due primarily to the nonlinear behaviour of the underlying equations

that simulate the spread of the pandemic. We find that it is critical to assure that heterogeneity

is included in modeling and thus decision making for adequate and effective pandemic

control.

In addition to the daily cases, we looked at the cumulative daily counts for our Hawai‘i

counties distributed per zip code from the onset of daily cases to January 18, 2021 (see Figs 8

and 9 and S3 Appendix). It shows that the cases are very localized. Not surprisingly, they are

higher in urban locations and towns where the population density, as well as the probability of

indoor gatherings, is higher.

Not studied in this paper is hospital bed capacity for the State of Hawai‘i. The county of

Honolulu is home to most of the hospital facilities and healthcare workers. During the pan-

demic, COVID-19 patients with severe enough symptoms needed to be transferred to the hos-

pitals on either Maui or Oahu. For example, after the outbreak on Lanai, patients with severe

symptoms had to be transported to either Oahu’s or Maui’s hospitals. The primary reason we

did not consider this subject here is the lack of consistent and clear data regarding hospitalisa-

tions. Similarly, quantification of COVID-19 related fatalities in the State of Hawai‘i is chal-

lenging and delicate. For instance, in January about 60 deaths have been reclassified and added

to the cumulative count.

Supporting information

S1 Fig. Demographic data for the four counties. Age demographic and ethnicity distribution

per county.

(PDF)

S2 Fig. Merge trees for perturbed data. An example of merge trees for the islands from Fig 10

computed for the model fitted to perturbed data.

(PDF)

S1 Table. The state’s general statistics by county. The table provides population and area

densities statistics by county.

(PDF)
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for the State of Hawai‘i and comparing countries since the beginning of the Safe travel pro-
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sources used to collect COVID-19 cases.
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