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In the Alzheimer’s disease (AD) continuum, the prodromal state of mild cognitive impairment (MCI) 
precedes AD dementia and identifying MCI individuals at risk of progression is important for clinical 
management. Our goal was to develop generalizable multivariate models that integrate high-
dimensional data (multimodal neuroimaging and cerebrospinal fluid biomarkers, genetic factors, 
and measures of cognitive resilience) for identification of MCI individuals who progress to AD within 
3 years. Our main findings were i) we were able to build generalizable models with clinically relevant 
accuracy (~93%) for identifying MCI individuals who progress to AD within 3 years; ii) markers of AD 
pathophysiology (amyloid, tau, neuronal injury) accounted for large shares of the variance in predicting 
progression; iii) our methodology allowed us to discover that expression of CR1 (complement receptor 
1), an AD susceptibility gene involved in immune pathways, uniquely added independent predictive 
value. This work highlights the value of optimized machine learning approaches for analyzing 
multimodal patient information for making predictive assessments.

Alzheimer’s disease (AD) affects approximately 5.5 million people in the United States and more than 30 mil-
lion people around the world, and imposes substantial personal and societal burdens1. Typically, AD progresses 
through a preclinical phase with underlying biomarker abnormalities, then a prodromal state of mild cognitive 
impairment (MCI), and finally frank AD dementia2. Annually, 10–15% of patients diagnosed with MCI progress 
to AD dementia3. Identification of factors contributing to progression from MCI to AD is crucial for clinical 
prognostication and risk stratification to guide counseling and selection of potential treatments.

In the last decade, biomarkers from cerebrospinal fluid (CSF), positron emission tomography (PET), and 
magnetic resonance imaging (MRI) have been increasingly used in AD clinical and research studies to assess the 
degree of AD related pathology. Increased amyloid pathology measured by decreased CSF Aβ42 and increased 
cerebral amyloid on PET, as well as increased neuronal injury assessed by increased CSF tau, hypometabolism on 
FDG-PET, and atrophy on structural MRI, are important factors in assessing the degree of brain changes due to 
AD pathology and as a surrogate for prediction of progression in individuals with MCI2. In addition4–6, clinical 
measures such as Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale-Cognition 
(ADAS-Cog) which reflect the current level of impairment in individuals have been shown to be useful for pre-
diction of MCI progression4–6.

Two additional important factors in the context of MCI progression to AD are genetic factors and cognitive 
resilience. AD is a genetically complex disorder, with susceptibility thought to reflect the collective influences of 
multiple genetic risk and protective factors7. Other than the apolipoprotein E (APOE) ε4 allele, individual genetic 
variants associated with AD have shown modest population-level effect sizes, in keeping with current hypoth-
eses about the genetic architecture of the disease8. Although the heritability of AD is thought to be 60–80%, 
beyond the well-studied effect of the APOE ε4 allele9, relatively little is known about the genetic factors specifically 
related to MCI-to-AD progression10, particularly regarding their added value above known biomarker profiles. 
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Cognitive resilience represents the ability of an individual to delay the deleterious effects of neurodegenerative 
pathologies on onset of cognitive symptoms11. While cognitive resilience has been widely used to explain the 
pathology-cognition disconnect in cognitively unimpaired individuals with AD pathology (and normal cogni-
tion), its relative influence specifically on MCI-to-AD progression has not been fully evaluated12. Furthermore, 
the complex relationships among the well-known AD biomarkers, cognitive resilience, and genetic factors remain 
largely unknown and estimating the independent predictive values provided by each of these factors may open 
the door to alternative strategies to delay or prevent the onset of dementia.

Several machine learning (ML) based approaches have been proposed for predicting MCI-to-AD progres-
sion4,5,13,14 and clinical stage classification15 utilizing high-dimensional clinical and biomarker data among the 
potential predictors. A limitation of the ML-based approaches that utilize high-dimensional data is the poten-
tial for overfitting, such that the classifiers are so optimally trained to fit the primary dataset that they perform 
poorly on previously unseen test data, ultimately limiting the generalizability and wider interpretability15 of the 
predictive model. This is particularly important in this study because both a) an unbiased estimation of the con-
tributions of cognitive resilience and genetic factors in predicting MCI-to-AD progression and b) the successful 
clinical translation of this technique, would require a generalizable model. However, prior studies on the predict-
ability of MCI-to-AD progression have not performed satisfactory assessments of generalizability4,5,13,14. These 
approaches utilize non-linear classifications methods such as multi-kernel learning and artificial neural networks 
without establishing the need for non-linear models. Non-linear classification models are more susceptible to 
overfitting compared to linear classification models in problems involving high-dimensional data since they opti-
mize relatively higher number of model parameters16. Whereas, a pitfall associated with linear models is that they 
provide suboptimal prediction performance when the data is not linearly separable. Therefore, our goals in this 
study with respect to the development of a predictive model are a) to understand whether linear classifiers are 
sufficient to provide clinically relevant accuracies in predicting MCI-to-AD progression based on a set of features 
derived from multiple modalities and b) to develop an analytical method that evaluates the generalizability of 
different classifiers and to aid model selection in clinical settings.

In this study, we used a machine learning-based approach and data from a well-characterized clinical cohort 
to identify individuals with MCI who rapidly progress to AD versus those with a more protracted course. 
Specifically, using a set of features derived from the ADNI multimodal biomarker and clinical dataset along 
with genetic factors and cognitive resilience measures, a linear model-based ML framework was developed for 
predicting MCI-to-AD progression. Based on a test of linear-separability17, we show that linear classification 
models perform just as good as non-linear models in this setting and a support vector machine classifier with a 
linear kernel provides the most generalizable performance with a test set area under ROC curve (AUC) value of 
0.93. Using this framework, we evaluated the predictive values of previously underexplored factors of cognitive 
resilience and genetic factors and gauged their relative importance compared to commonly used CSF and imaging 
predictors. We found that, while the markers of AD pathophysiology (amyloid, tau, and neuronal injury) pro-
vided very high predictive values, the genetic factors and brain regions associated with cognitive resilience also 
displayed independent predictive values.

Materials and Methods
Study participants.  This report utilized data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
a multisite longitudinal study of older adults representing clinical stages along the continuum from normal aging 
to AD18. All study participants provided written informed consent, and study protocols were approved by each 
local site’s institutional review board. Further information about ADNI, including full study protocols, complete 
inclusion and exclusion criteria, and data collection and availability can be found at http://www.adni-info.org/. 
All methods as stated on the website were performed with the relevant guidelines and regulations. Since all the 
analyses were performed on de-identified ADNI data which is publically available for download, IRB Review was 
not required. In addition, all methods were carried out in accordance with the approved guidelines.

In choosing ADNI participants to study, we used these inclusion criteria: i) the person had at least three years 
of follow-up; ii) the person had all the data modalities of interest (as specified below); and iii) the person was 
diagnosed with MCI at the baseline evaluation. We identified 135 participants who met those criteria. A total of 
39 of the 135 progressed to AD within three years of the MCI diagnosis (and are referred to as the MCI-P group); 
the remaining 96 progressed to AD after three years or remained in MCI until their last follow-up after three years 
(and are referred to as the MCI-NP group).

Predictive factors.  Figure 1 illustrates potential factors that may impact progression from MCI to AD. 
Below we describe the specifics of the individual biomarkers utilized in this work.

All the biomarkers utilized in this work were downloaded from the LONI data archive (https://ida.loni.usc.
edu/) where the pre-processed ADNI data are hosted.

Cerebrospinal fluid (CSF) biomarkers.  CSF levels of amyloid beta (Aβ) and total (T-tau) and phosphorylated 
(P-tau) tau proteins were assayed by the ADNI Biomarker Core as previously described19.

Magnetic resonance imaging biomarkers.  Structural MRI (SMRI) scans at baseline were downloaded and pro-
cessed as described previously20. FreeSurfer v5.1 was used to obtain volume and thickness measures for standard 
regions of interest (ROIs) as surrogates for cerebral atrophy. We scaled the volumes by total intracranial volume. 
In addition, we also included volumetric measurements of hippocampal subfields.

Positron emission tomography (PET) biomarkers.  Fluorodeoxyglucose (FDG) and F-florbetapir PET imaging 
from the baseline visit were analyzed as surrogates for neuronal injury and amyloid pathology, respectively18. For 
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FDG-PET, AD-specific ROIs representing the temporal, angular, and posterior cingulate gyri were utilized21. For 
F-florbetapir PET, we included regional amyloid deposition assessed by standardized uptake value ratio (SUVR) 
in the temporal, parietal, and cingulate cortex, as well as a composite global measure of multiple regions22.

Cognition.  Scores on the Mini-Mental State Examination (MMSE)23 at baseline were utilized as measures of 
cognitive performance.

Cognitive resilience.  The number of errors on the American National Adult Reading Test (ANART) (which is 
an estimate of pre-morbid verbal IQ) and years of education were utilized as surrogate measures of cognitive 
resilience.

Genetic factors.  Genotype and gene expression data from peripheral blood samples in ADNI were obtained as 
previously described24. In this study, we specifically analyzed APOE ε4 allele status (carrier vs. non-carrier) as 
well as expression data for the top genes with validated associations to AD (APOE, BIN1, CLU, ABCA7, CR1, 
PICALM, MS4A6A, CD33, and CD2AP) as listed in the AlzGene database25.

Demographics.  Gender and age at the baseline visit were utilized in the predictive model.

Data aggregation and ML preprocessing.  A total of 94 potential predictive factors were included for analysis. A 
matrix was generated with 135 rows (representing study participants) and 94 columns (representing the potential 
predictive factors for MCI-to-AD progression). Prior to further analysis, we centered and standardized all data on 
a feature-by-feature basis by subtracting the mean and then dividing by the standard deviation.

ML-based prediction framework.  Figure 2 shows a flow diagram of the prediction framework developed 
for this study. The framework consists of four major steps: information-theoretic feature selection, classifiers 
and hyper-parameter optimization, goodness-of-fit evaluation, and generalized performance evaluation. They 
are explained in the following paragraphs. A unique aspect of this workflow is the ability to specify the number 
of parameters optimized in the classification model by using an information-theoretic feature selection method. 
This is particularly useful in assessing the generalizability of a classifier as a function of the number of model 
parameters.

Feature reduction using joint mutual information (JMI).  Mutual information between two random var-
iables quantifies the amount of information shared between them. Mutual information is a more comprehensive 
measure of the relationships between random variables than statistical correlation-based approaches, which measure 
linear relationships only. Mathematically, mutual information is denoted by I Q R( ; ) and defined for discrete random 
variables Q and R as shown in Eq. 1, where Q and  denote the alphabets of Q and R, respectively.

Figure 1.  Factors that can predict progression from MCI to AD. The extent of Aβ-deposition, clinical decline, 
and neuronal injury at baseline represent the clinical severity of the disease in the MCI subjects. Cognitive 
resilience, genetic traits, and demographic factors are measures of heterogeneity within the cohort. Aβ-deposition 
is generally measured using CSF-Aβ and PET amyloid imaging. Neuronal injury is measured using CSF-Tau, 
FDG-PET, glucose uptake, and MRI atrophy measures. Clinical cognitive decline is measured via clinical scores 
such as Mini Mental State Examinations (MMSE). Cognitive resilience in a subject can be measured using IQ and 
level of education. The genetic traits of an individual can be measured using gene expression (RNA) measures. 
Demographic factors like age, gender, and disease risk factors can also influence the progression. Indicated using 
solid arrows are factors that influence MCI-to-AD progression and broken lines indicate measurements that were 
used to measure those factors. Factors and measurements highlighted in red are those that have not been studied 
in previous MCI-to-AD progression studies in conjunction with the rest.
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When Fk is one of the attributes in a set of attributes …F F F{ , , }k1 2  and Y is an outcome or class that can be 
predicted by the attributes, mutual-information-based approaches can be used to select the most predictive attrib-
utes. One such approach is to treat the attributes as independent random variables, rank them in descending 
order based on their mutual information with respect to the outcome Y, and select the top n number of attributes. 
One limitation of that approach is that useful and parsimonious sets of features should be both (i) individually 
relevant, and (ii) not highly correlated with each other. Joint mutual information shared between …F F F{ , , }k1 2  
and Y is defined as shown in Eq. 2, where Fk and Y denote the alphabets of Fk and Y, respectively.
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Figure 2.  A flow diagram illustrating the prediction framework. The framework uses a machine learning-based 
approach to learn a classifier using 80% of the full dataset and to test its performance on the remaining 20% 
of the data. Specific details of each step in the framework are as follows. (A) Stratified data partitioning: After 
the order of the subjects is randomized, the MCI-NP and MCI-P groups are separately partitioned with an 
80%-training/20%-testing split. The respective training and testing sets from MCI-NP and MCI-P groups are 
combined to form the overall training and testing data for a single cross-validation. (B) Feature select loop: The 
top n out of 94 features that best jointly correlate with the class labels (P-MCI or MCI-NP) are selected using the 
joint mutual information (JMI) criterion. (C) Inner CV loop: A combination of hyper-parameters is selected 
for each classifier based on a tenfold cross-validation. (D) Goodness-of-fit metrics: The classifier learned 
in the previous step is tested on the testing dataset and measured on its performance. (E) Outer CV loop: A 
fivefold cross-validation is utilized to produce generalized performance metrics accounting for non-uniformly 
distributed data.
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A JMI-based feature selection method starts with an empty set of attributes and iteratively adds Fis that, when 
added, provide the maximum increase in the joint mutual information shared between the set of attributes and 
the outcome26. It has been shown to be the most stable and flexible feature selection method27 among all the 
information-theoretic feature selection methods developed to date.

Classification methods.  We evaluated a number of classifiers in this study to understand the concepts 
of linear separability and generalizability in the context of predicting MCI-to-AD progression. Support vector 
machine (SVM), multiple kernel learning (MKL), and generalized linear models (GLM) with elastic-net regular-
ization are the classifiers used in this study. SVM classifier, because it allows the transformation of features using 
linear and non-linear kernels, provides us the ability to evaluate the suitability of linear and non-linear classifiers 
for this problem. On the other hand, MKL allows the application of different kernel transformations for features 
from different modalities while optimizing more model-parameters than an SVM classifier. Although MKL and 
SVM are similar classification paradigms, MKL facilitates the integration of multiple modalities at the expense of 
potential overfitting. Finally, GLM classification with elastic-net regularization is an extension of the commonly 
known logistic regression classifier with additional regularization to minimize overfitting. In this study, we eval-
uated the overall generalizability of these classifiers that have distinct optimization objectives.

A support vector machine is a binary classifier that finds the maximum margin hyperplane that separates the 
two classes in the data28. Suppose that the data being classified are denoted by ∈ ×X N P (N subjects and P fea-
tures), and that the data from subject i are denoted by ∈X i P( ) . Let us also use ∈ −Y { 1, 1}N  to denote the class 
labels for all the subjects (where −1 and 1 are numerical labels for the two classes), and ∈ −Y { 1, 1}i( )  to denote 
the class label for subject i. The optimization problem to find the optimal hyperplane (described by weights 

∈W P and intercept term ∈b ) is shown in Eq. 3.
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Once the optimal hyperplane W b[ , ]opt opt  has been found, the predicted class label for subject i is obtained as 
the sign of +W X bopt

T i
opt

( ) . This formulation assumes that the data are fully linearly separable between the two 
classes. When that is not the case (but there is still a linear classification task), slack variables and a tolerance 
parameter (box-constraint) can be introduced to obtain separating hyperplanes that tolerate small misclassifica-
tion errors.

Dual formulation of SVM has received considerable interest due to its ability to use different kernel transfor-
mations of the original feature space without altering the optimization task, and due to its advantages in complex-
ity when the data are high-dimensional29,30. The dual form of the above optimization problem can be written as 
shown in Eq. 4, where the operation .  denotes an inner product between two vectors.
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Notably, the dual formulation can be expressed simply in terms of the inner product between X i( ) and X j( )

(which is a scalar value). Therefore, any transformation of the features can replace the original features, i.e., 
X X,i j( ) ( )  can be replaced by φ φX X( ), ( )i j( ) ( ) , where φ is a feature mapping. Furthermore, for any such feature 

transformation φ, we can define a kernel function K such that φ φ =X X K X X( ), ( ) ( , )i j i j( ) ( ) ( ) ( ) . With the kernel 
transformation, the cases where the original data are not linearly separable, may be solved as transforming the 
data to higher dimensions may introduce linear separation in the transformed domain. Linear, radial basis func-
tion (RBF), and polynomial kernels are widely used kernels in this context.

Multiple kernel learning is a classification technique that builds upon the above property of SVM and intro-
duces additional variables in order to weight the kernel transformation of31 individual features. It does so by 
replacing the kernel function K X X( , )i j( ) ( )  with β∑ = K X m X m( ( ), ( ))m

P
m m

i j
1

( ) ( ) , where Km is the kernel function of 
the mth feature and βm is its weight. This technique is particularly useful when the data contain different modali-
ties of features that need to be weighted differently. In a standard kernel-SVM, either the kernel transformation is 
uniformly weighted, or the weights are determined manually. It has been shown that the same dual formulation 
of SVM can be utilized to find the optimal weightings of the kernel transformation under the constraint that 

βΣ == 1m m1
P .

Logistic regression is a subclass of generalized linear models (GLM) and is well-suited for binary classifica-
tion tasks32. It models the response variable as a binomially distributed random variable whose parameters are 
described by predictor variables and model parameters. Regularization of the model parameters is utilized to 
avoid effects related to overfitting. The objective function of a regularized GLM model is

λ βΣ + − − + αβ β =N
Y h X Y h X Pmin 1 [ log ( ) (1 )log(1 ( ))] ( ) (5)I

i i i i
, 1

N ( ) ( ) ( ) ( )
0

where h x( ) is the logistic function defined as 
+ −e

1
1 x  and βαP ( ) is the regularization term with the elasticity param-

eter α. The regularization term in general might contain both L1-norm terms and L2-norm terms, a situation that 
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is commonly referred to as elastic net regularization with β β α β= +α
α−P ( ) 1

2 2
2

1
33. The elasticity parameter 

α ranges in (0, 1] with values of α → 0 approaching ridge regression and α → 1 approaching LASSO regression.

Hyper-parameter optimization.  The hyper-parameters of the three classifiers are SVM’s kernel, kernel 
scale σ, and box-constraint C, MKL’s kernel, and GLM’s penalty term λ and elastic-net parameter α. The optimal 
values of hyper-parameters are chosen by performing a grid-search of parameter values with a k-fold 
cross-validation within the training dataset.

Goodness-of-fit evaluation and generalized performance metrics.  Goodness of fit of a classifier is 
evaluated by i) predicting the classes of the test dataset by using the classifier that was trained on the training data-
set, and ii) comparing the predictions against the true class labels of the test dataset. The comparison is performed 
using standard performance metrics such as receiver operating characteristics (ROC) curve analysis, area under 
ROC curve (AUC), sensitivity, specificity, accuracy, precision, recall, and F1-score.

Because of heterogeneity in the data, choosing one partition of training and test datasets is not sufficient to 
credibly evaluate the performance of a classifier. A common practice to obviate the effect of heterogeneity in the 
data is to perform an k-fold training-testing cross-validation of the dataset. One run of this procedure is carried 
out by randomly choosing a subset of the dataset as training data, and testing on the rest of the dataset. That is 
repeated n different times, and the performance metrics of all n evaluations are averaged. In addition to this, the 
proportion of the different classes in the randomly chosen training dataset was kept constant in our approach via 
a stratified data-partitioning to eliminate any variability in the performance of the classifiers due to class imbal-
ances in the data16. We performed those extra steps to obtain a generalizable set of performance metrics for the 
analyzed classifier.

Implementation of the prediction framework.  The prediction framework was implemented in MATLAB 
version R2017b and the code is publicly made available at https://gitlab.engr.illinois.edu/varatha2/adni_mci2ad_pre-
diction. We utilized a standard fivefold cross-validation with 80% training data and 20% testing data to evaluate the 
performance of the classifiers. Training and testing data selection was performed using the stratified 
data-partitioning approach explained previously. The JMI criterion was used to identify ∈ …n {5, 10, , 90, 94}
features based on the training dataset and corresponding labels. Using the reduced dataset, we trained SVM with a 
linear kernel, SVM with an RBF kernel, MKL with a linear kernel, LR with elastic net regularization, and RF. The 
highest average AUC obtained with a tenfold cross-validation within the training set was used as the selection crite-
rion for the optimal hyper-parameters. We generated performance metrics for each classifier with the best identified 
hyper-parameters by predicting the labels of the test set and comparing them against the true class labels of the test 
set. The performance metrics of all five of the (outer) cross-validation runs were averaged to generate generalized 
performance metrics.

Test for linear separability.  Linear separability of a dataset with two classes signifies that a linear classifier 
(or a hyperplane) can separate the two classes in the data as well as nonlinear classifiers can. We show that by 
using a slight modification of the histogram of projections17 method, which is considered a test for class separabil-
ity using SVM classification. The histogram of projections method17, is as follows. An SVM classifier is trained 
using the training data and a chosen kernel. Then, the test samples are projected on the 1-dimensional line per-
pendicular to the maximum margin hyperplane learned by the SVM model. Histograms of these projections for 
the two different classes are compared to evaluate the degree of separation achieved by the classifier. In our 
approach, we applied a sigmoid transformation to the projections of the test samples to obtain likelihood proba-
bilities, and then, based on the likelihood probabilities, we created histograms of the two classes. This modifica-
tion was performed in order to eliminate the effects of scaling when different kernel transformations are applied 
in SVM classification and to maintain the range of histograms within a closed set [0, 1].

Results
Our results are organized as follows. Table 1 represents the overall summary statistics of the dataset analyzed in 
this study with some important demographic factors. First, we present the results of our evaluation of whether 
linear models are sufficient to classify this dataset. Second, we report the analytic method we developed to eval-
uate generalizability and the results on the generalizability of the analyzed linear classifiers. Third, we report 
the relative importance of the biomarkers and clinical variables utilized in this study evaluated using the most 
generalizable classifier selected based on the previous result. Finally, we report the analysis based on LASSO 
regression34 and a set of identified features that provide independent information in predicting MCI-to-AD 
progression.

MCI-P (n = 39) MCI-NP (n = 96)

Average age (and range of ages) 72 (55–84) 71 (55–88)

Number of females (and percent female) 19 (49%) 48 (50%)

Average years of education (and range) 16 (9–20) 16 (12–20)

Number of APOE carriers (and percent) 6 (15%) 3 (3%)

Table 1.  Summary characteristics of participants at baseline. Here we list the summary statistics of the 
participants in this study.
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Linear separability.  First, we evaluated the linear separability of the data in order to understand whether 
linear classifiers, which are less susceptible to overfitting, were sufficient to perform prediction of MCI-to-AD 
progression. We applied the modified histogram of projections method to our dataset by training two SVM clas-
sifiers with linear and RBF kernels and by plotting histograms of sigmoid transformations of the projections of 
test samples.

Figure 3A shows a generic illustration of our approach based on the histogram of projections method. 
Figure 3B,C show the histograms obtained using our approach for linear and RBF kernels, respectively. The two 
histograms have similar shapes, and the misclassification errors obtained by choosing an appropriate threshold 
are also close (20.52% for the linear kernel and 19.78% for the RBF kernel). Figure 3D shows a grouped scatter 
plot of the probabilities obtained using linear versus RBF kernels for the MCI-P and MCI-NP classes. There is a 
significantly high correlation between the probabilities obtained using the two kernels (ρ = 0.99, p < 1e-6), indi-
cating that the classification boundaries learned using the linear and nonlinear kernels are similar. This experi-
ment suggests that the dataset being analyzed is linearly separable. Hence, we limited our analyses to linear 
classification techniques for the rest of this paper.

Generalizability of classifiers.  Second, we evaluated the overfitting characteristics of the linear classifiers 
in order to identify models that were likely to provide highly generalizable performance on this dataset. Three 
linear classifiers—multiple kernel learning (MKL) with linear kernels, support vector machine (SVM) with linear 
kernel, and generalized linear model (GLM) with elastic-net regularization—were trained using 80% of the whole 
dataset as the training set but using only a subset of all the features. We selected the subset (out of a total of 94 
features) using the joint mutual information (JMI) criterion, by varying the number of features used each time as 
{5, 10, 15, …, 85, 90, 94}. We utilized tenfold stratified cross-validation to obtain average training and testing area 
under ROC curve (AUC) metrics and their respective standard deviations on each occasion. Figure 4 shows plots 
of the cross-validated AUCs with their standard deviations against the ratio number of features used in training

number of training samples
 for both 

Figure 3.  An illustration of the method that evaluates linear separability of the data. We utilize a slightly 
modified version of the histogram of projections method to evaluate linear separability of the data. (A) A 
maximum margin hyperplane is learned using SVM with a choice of kernel. All samples are projected onto the 
line perpendicular to the hyperplane to obtain the projections. The projection lengths are transformed to a 
probability value via the sigmoid function. Histograms of the probabilities for the two classes are plotted 
separately. (B) Histograms of the probabilities of the MCI-P and MCI-NP samples in our dataset obtained using 
a linear kernel. (C) Histograms of the probabilities of the MCI-P and MCI-NP samples in our dataset obtained 
using an RBF kernel. (D) A grouped scatter plot of the probabilities obtained using linear and RBF kernels for 
MCI-P and MCI-NP classes. The similar histogram shapes and similar misclassification errors in (B,C), and the 
high correlation (ρ = 0.99, p < 1e-6) between the probabilities obtained using the two kernels, indicate that 
linear and nonlinear kernels result in similar boundaries for classification; hence, this dataset is linearly 
separable.
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training (4A) and test (4B) sets. On the training set, the AUCs of all the classifiers showed better performance 
with increasing numbers of features used in training. But on the test set, only SVM and GLM showed a relatively 
steady trend in the AUC. MKL, on the other hand, showed a decreasing testing AUC trend with increasing num-
bers of features used in training. Those data suggest that the MKL classifier may be overfitting the training data 
when the ratio number of features used in training

number of training samples
 is not small (it is >0.14 in this case).

Those results suggest that both SVM with a linear kernel and GLM with elastic-net regularization have good 
generalizability (with a consistent AUC value of approximately 0.9) regardless of the ratio of the number of fea-
tures to the number of training samples, and MKL had good generalizable performance only when this ratio was 
small. Further, particularly for this dataset, all linear classifiers showed a reasonable test set predictability when 
the number of features was appropriately chosen during the training phase.

Prediction performance of linear classifiers.  Based on the previous experiment, we selected the subset 
of features that provided the most generalizable predictive performance for each linear classifier. Table 2 lists all 
the cross-validated goodness-of-fit metrics (AUC, sensitivity, specificity, accuracy, precision, recall, and F1-score) 
obtained using MKL with linear kernels, SVM with a linear kernel and GLM with elastic-net regularization, with 
their respective subsets of features. All linear classifiers produced comparable results, while SVM with a linear 
kernel provided the best result.

Predictive ability of individual modalities.  To understand the predictive ability of individual modali-
ties in a statistically impartial manner, we restricted our analysis in this subsection to only one linear classifier. 
Based on Table 2, we chose the SVM classifier with a linear kernel, as it provided the best performance in terms 
of the AUC metric. Then, we repeated our classification procedure using a stratified tenfold cross-validation for 
each of the modalities (using all the variables in the respective modality each time). Figure 5A shows a bar-chart 
of the average AUCs obtained by individual modalities. CSF proteomic markers (including Aβ, total-Tau, and 
phosphorylated-Tau) provided the best individual prediction capability, followed by the imaging markers in 
the order amyloid PET, FDG-PET, and SMRI. Gene expression, clinical, cognitive resilience, and demographic 
markers showed lower predictive ability than did CSF and imaging-based markers. Figure 5B shows a different 
bar-chart of the average AUCs obtained by iteratively removing the respective features of the individual modal-
ities in a descending order based on their individual predictive abilities seen in Fig. 5A. A gradual decline in the 
AUC is observed, with the largest drop occurring when SMRI features were removed.

Figure 4.  An evaluation of generalizability of linear classifiers. Three linear classifiers—multiple kernel learning 
(MKL) with linear kernels, support vector machine (SVM) with a linear kernel, and generalized linear model 
(GLM) with elastic-net regularization—were trained multiple times using 80% of the data as the training set but 
with a variable number of features each time. We plotted the cross-validated AUCs with their standard 
deviations against the ratio number of features used in training

number of training samples
 for both training (A) and testing (B) sets. While all the 

classifiers show an increasing AUC trend on the training set with increased numbers of features used in 
training, only SVM and GLM show a relatively steady trend on the test set. MKL on the other hand, shows a 
decreasing testing AUC trend with increased numbers of features used in training.

AUC Sensitivity Specificity Accuracy Precision Recall F1-score
Training 
size #Features

MKL-Linear 0.90(0.02) 0.86(0.03) 0.78(0.03) 0.80(0.02) 0.63(0.03) 0.86(0.03) 0.72(0.03) 80% 5

SVM-Linear 0.93(0.02) 0.93(0.03) 0.77(0.03) 0.81(0.02) 0.64(0.03) 0.93(0.02) 0.75(0.03) 80% 65

GLM-Elastic Net 0.92(0.02) 0.91(0.02) 0.76(0.02) 0.81(0.02) 0.62(0.03) 0.91(0.04) 0.74(0.03) 80% 25

Table 2.  Cross-validated goodness-of-fit metrics for linear classifiers. Here we list the goodness-of-fit metrics 
(AUC, sensitivity, specificity, accuracy, precision, recall, and F1-score) obtained for the test dataset (20% of the 
whole dataset), using the subset of features that provided the most generalizable result, as shown in Fig. 4. Their 
average values and standard deviations were computed using a tenfold stratified cross-validation.
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Best predictors of MCI-to-AD progression.  Next, we sought to identify a minimal set of predictors 
required to model MCI-to-AD progression. This was motivated by an observation about Fig. 5: although CSF fea-
tures provided the best individual AUC (Fig. 5A), the removal of CSF features from the data (Fig. 5B) did not result 
in a substantial drop in the AUC (the reduction in AUC is within the error limits). That suggests that other modal-
ities provide overlapping information that may be correlated with the CSF markers, and also indicates that all the 
modalities might have a notable level of correlation with each other. We used a generalized linear model (GLM) 
classification method with L1 regularization (known as LASSO regression) to identify a sparse set of features with 
minimal within-correlation and maximal prediction potential of clinical progression34. We chose to use LASSO 
regression instead of SVM classification for this task because the feature weights assigned by the SVM classifier 
with a linear kernel do not represent the independent predictive values of individual features when the features 
themselves are correlated with each other. However, the L1-norm-based regularization of LASSO regression may 
enable identification of the smallest possible set of predictors, since it penalizes the classifiers that utilize a large 
number of features in the resulting predictive function. Table 3 shows the results from this approach, identifying 
the factors that provided the best spread of independent information to predict MCI-to-AD progression. This 
model included PET, MRI, and CSF variables in addition to age and expression of CR1 (complement receptor 1)  
and was able to predict MCI-to-AD progression with an AUC of 0.92.

Discussion
In this work, we developed an accurate and generalizable machine learning-based methodology for predicting 
short-term progression of MCI to AD dementia in a well-characterized clinical cohort. A unique aspect of this 
work was our evaluation of important genetic markers and cognitive resilience markers in addition to the neuro-
imaging biomarkers and clinical examination. The results suggest that a combination of selected neuroimaging, 
blood and CSF biomarkers, and demographic traits reflect the underlying pathophysiology and factors that drive 
clinical progression in the AD spectrum. The methodology allowed us to discover that expression of CR1 and 
AD-pattern neuropathology and neurodegeneration (MRI measures in the frontal lobes) in brain regions asso-
ciated with cognitive resilience added independent predictive values in predicting MCI-to-AD progression. We 
also evaluated the relative importance of individual predictors and identified a minimal set of predictors that are 
important for predictive modeling of MCI progression to AD.

Predictors of MCI progression to AD.  The broad pathogenesis of AD has been well-described conceptu-
ally, from initial alterations in molecular and cellular pathology to neurodegeneration and eventually to clinical 
impairment sufficient to cause dementia2. However, it is not yet fully understood what specific factors “shift 
the curve” to either promote or inhibit the development of dementia. As a result, we initially approached our 
study in a relatively unbiased fashion, casting a broad net for potential predictive factors out of multidimensional 
clinical, neuroimaging, and other biomarker data. Through our ML approach, we found that measures of AD 
neuropathology (CSF amyloid and tau and cerebral amyloid assessed by PET) and neuronal injury (assessed by 
FDG-PET and structural MRI) explained the most variance in separating fast versus slow progression from MCI 
to AD dementia. The importance of biomarkers in predicting progression has been studied in the past, but the 
approach we took allowed us to rank various predictors (including the biomarkers) as well as identify the minimal 
predictor set that are key to the overall models. When the biomarkers were excluded, predictors such as cognitive 

Figure 5.  An evaluation of the relative predictive abilities of modalities. (A) The cross-validated AUCs obtained 
using an SVM classifier with a linear kernel separately for each of the modalities. (B) The AUCs obtained by 
iteratively removing the modalities in a descending order based on AUCs obtained in (A). (Modalities with 
high AUC values per (A) were removed first.) In (B), “~X” indicates that modality X was removed while the 
modalities that are less predictive than X were kept, to obtain the respective AUC.
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performance, cognitive resilience, and expression of selected genes individually explained less of the outcome 
variance and collectively appeared to offer less new information to the predictive model. Our results support the 
hypothesis that CSF biomarkers and imaging can be used as surrogates for neuropathology and brain health and 
can serve as key indicators of future MCI prognosis.

Information added by genetic factors and cognitive resilience.  An important aspect of this work 
is the incorporation of genetic factors and cognitive resilience into our predictive model. Most cases of AD are 
thought to be genetically complex, with multiple factors presumed to contribute to susceptibility and protection, 
with the largest known factor being the APOE ε4 allele35. Understanding of the genetic architecture of AD has 
greatly expanded over the last decade as a result of genome-wide and rare-variant association studies, among 
other approaches7. However, the specific genetic factors that influence progression at various clinical stages of 
AD are still not well-characterized. Our ML approach identified expression of CR1 as a key factor in predicting 
fast versus slow progression to AD dementia, which is a novel finding of this study. Interestingly, our final min-
imal set model included CR1 expression but did not include APOE ε4 allele status, suggesting that the former 
provided unique information for clinical course prediction while the latter was already represented by surrogate 
biomarkers, specifically amyloid deposition36. Polymorphisms (genotype variations) in CR1 have been associated 
with AD status and endophenotypes in numerous large-scale studies37–42. CR1 encodes a receptor involved in 
complement activation, a major immune mechanism with a wide array of functions; it has been proposed that it 
impacts the clearance of amyloid in AD43. Previous findings on CR1 have been illuminated by a more recent and 
extensive body of work highlighting immune system pathways as potential cruxes in AD pathophysiology44–48. 
Our new findings relating CR1 expression to progression from MCI to AD dementia provide further validation 
of that previous work and argue for greater focus on CR1—and on genetic variation in MCI-to-AD progression 
more broadly49—to enable better understanding of the mechanisms underlying AD and its clinical trajectories.

It is not unexpected that in our ML-based prediction model for MCI to AD progression, CR1 gene expres-
sion contributed relatively less to explaining variance than biomarkers of neuropathology and neuronal injury. 
Surrogates of pathology (fluid biomarker and neuroimaging) reflect the extent of disease related changes and are 
likely more proximal to clinical manifestations of disease compared to gene expression which may be upstream 
of these changes and thus possibly modifiable by concomitant forces over time. An example is the relationship 
between APOE ɛ4 and amyloid: while APOE ɛ4 is a key driver of amyloidosis, the measured effect of amyloid load 
on cognition is significantly stronger than the impact of APOE ɛ4 on cognition36,50. Complementary methods to 
incorporate collective effects of multiple genes, including pathway analyses and polygenic risk scoring51–54, could 
be incorporated into our ML approach in future. In addition, for this study we analyzed microarray gene expres-
sion (rather than genotype) data, which offers the conceptual advantage of being a dynamic (rather than static) 
marker of late-life conditions but which has the disadvantage of representing a downstream effect of influences 
earlier in life with the potential to be modified by interactions with other heritable and non-heritable factors. 
Finally, for this study we limited the focus to the AlzGene Top 10 list, but other genes with less well-known 
population-level effects on case-control status may have larger contributions to late-life clinical progression which 
could be discovered with an unbiased genome-wide approach. Despite these constraints, our approach serves 
as a proof of concept that incorporating genetic data can add value to ML-based clinical prediction models and 
highlights CR1 for further study on its potential effects at the inflection of MCI to AD progression.

Although cognitive resilience has been shown to contribute significantly to delaying the onset of clinical 
impairment, neither education nor verbal IQ was identified as a key predictor of MCI progression. There are two 
possible explanations for those results. (i) Preservation of structure or lack of atrophy, as observed via MRI, may be 
a better surrogate of resilience than are estimates of pre-morbid IQ or educational attainment. It has been shown 
that cognitive resilience is captured well by greater volume and metabolism, especially in the frontal and cingulate 
regions55. (ii) Cognitive resilience may be more relevant before the onset of cognitive symptoms or impairment12, 
and thus may be of less importance in cognitively impaired individuals, who are the focus of this study.

CSF PIB-PET FDG-PET SMRI Genetic Demographics

Total-Tau COMPOSITE REFNORM Angular-Left Cortical Thickness Average of Insula CR1 AGE

Amyloid Beta TEMPORAL Temporal-Left Cortical Thickness Average of SuperiorFrontal

Phosphorylated-Tau Cingulum-Bilateral Cortical Thickness Average of InferiorParietal

Temporal-Right Cortical Thickness Average of Parahippocampal

Cortical Thickness Average of MedialOrbitofrontal

Cortical Thickness Average of CaudalAnteriorCingulate

Cortical Thickness Average of SuperiorParietal

Cortical Thickness Average of IsthmusCingulate

Cortical Thickness Average of ParsTriangularis

Cortical Thickness Average of PosteriorCingulate

Hippocampal Subfield Volume of Subiculum

Table 3.  A minimal set of markers that are predictive of MCI-to-AD progression. A generalized linear model 
(GLM) classifier with L1 regularization was utilized to identify a small set of minimally correlated features that 
can predict MCI-to-AD progression. Those features are categorized here based on their feature modality.
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Strengths of the computational approach.  We presented a machine learning-based prediction frame-
work for predicting MCI-to-AD progression using state-of-the-art classification techniques under a widely 
accepted cross-validation setup that accounts for sample bias and unbiased hyper-parameter optimization. 
Our results indicate that linear classifiers are sufficient to identify patients who have the potential to progress 
from MCI to AD within 3 years, via the use of multimodal measurements including imaging, CSF, genetic, and 
clinical data. The reason for this might be that all the features were engineered prior to application of machine 
learning in such a way that a dichotomy within a feature correlates with disease progression. Linear classifiers 
are less susceptible to overfitting and thus can be appropriate for clinical translation. In addition, we developed 
an analytic method for evaluating the generalizability of three different linear classification approaches, namely 
GLM-ElasticNet, multi-kernel SVM with linear kernels, and standard SVM with a linear kernel. Multi-kernel 
SVM showed a slightly greater tendency to overfit than the other linear classifiers in our experiments. Because 
multi-kernel SVM optimizes twice as many model parameters as standard SVM or GLM, it seems that the num-
ber of samples used in this study was not enough to train multi-kernel SVM in a generalizable manner. However, 
as indicated in the experiments, when the number of features used in the classification was small, multi-kernel 
SVM seemed to provide a more generalizable performance compared to when more features were used in the 
classification, since there were fewer optimized model parameters in the former scenario. Even so, standard SVM 
and GLM provided better generalizability and achieved higher classification accuracies with more features. In 
comparison with previously published predictors of MCI-to-AD progression, our approach achieves superior 
predictive performance, with a 0.93 area under ROC curve providing a 6% improvement over the current best 
predictor4, which utilized only CSF and imaging modalities for the prediction of short-term MCI-to-AD progres-
sion. It is our firm belief that AUCs of test sets are the most reliable measure of a classifier’s general performance, 
and hence that our evaluation presents a fair assessment of the proposed ML-based predictor.

Limitations and future directions.  Our study has several limitations, which may be addressed by future 
work. We used publicly available data from the ADNI and ultimately analyzed only a modest sample, because 
we could only use data from patients for whom we had complete data for all the assessed predictive variables. 
Replication of our methods in similar and larger cohorts would help validate our approach. In addition, applica-
tion of our final model to an independent dataset could extend our findings by assessing their success in predict-
ing clinical progression from known baseline data. Further, use of alternative surrogate variables—such as verbal 
episodic memory performance (rather than MMSE scores) as a reflection of cognitive impairment, and lifetime 
intellectual enrichment (rather than, or in addition to, the AMNART or educational attainment) as a reflection 
of cognitive resilience—as well as newer biomarkers such as Tau-PET might produce a more optimal model. We 
also chose to focus on differentiation of faster versus slower progression from MCI. However, it is not yet known 
whether the factors that are important at that clinical stage are more broadly generalizable to earlier stages of 
AD at which clinical intervention might have greater impact. Finally, a broader investigation of genetic factors, 
including genome-wide genotype and expression data, might increase the accuracy of our model and raise addi-
tional loci for follow-up.

In conclusion, we used a machine learning approach to integrate data from multiple sources to predict pro-
gression from MCI to AD dementia. By analyzing the linear-separability of the dataset, we established that linear 
classifiers are sufficient for predicting MCI-to-AD progression in the proposed setting. Furthermore, we also 
developed an analytical method to assess the generalizability of classifiers based on the number of model parame-
ters. We also showed that, the markers of AD pathophysiology (amyloid, tau, and neuronal injury) provided very 
high predictive values, the genetic factors and brain regions associated with cognitive resilience also displayed 
independent predictive values. Our findings, particularly in relation to the impact of genetic factors and cognitive 
resilience in the setting of biomarkers and clinical tests, warrant further investigation using larger datasets and 
may have downstream benefits leading to improved prognostication and risk stratification in AD.

Data Availability
Data used in preparation of this article were obtained from the Alzheimer’s disease Neuroimaging Initiative 
(ADNI) database (http://adni.loni.usc.edu). Thus, the investigators within the ADNI contributed to the design 
and implementation of ADNI and/or provided data, but did not participate in this analysis or the writing of this 
report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wpcontent/uploads/
how_to_apply/ADNI_Acknowledgement_List.pdf/. For additional details and up-to-date information, see http://
www.adni-info.org.
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