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� Abstract
High-throughput single-cell cytometry technologies have significantly improved our
understanding of cellular phenotypes to support translational research and the clinical
diagnosis of hematological and immunological diseases. However, subjective and ad
hoc manual gating analysis does not adequately handle the increasing volume and het-
erogeneity of cytometry data for optimal diagnosis. Prior work has shown that
machine learning can be applied to classify cytometry samples effectively. However,
many of the machine learning classification results are either difficult to interpret with-
out using characteristics of cell populations to make the classification, or suboptimal
due to the use of inaccurate cell population characteristics derived from gating bound-
aries. To date, little has been done to optimize both the gating boundaries and the
diagnostic accuracy simultaneously. In this work, we describe a fully discriminative
machine learning approach that can simultaneously learn feature representations
(e.g., combinations of coordinates of gating boundaries) and classifier parameters for
optimizing clinical diagnosis from cytometry measurements. The approach starts from
an initial gating position and then refines the position of the gating boundaries by gra-
dient descent until a set of globally-optimized gates across different samples are
achieved. The learning procedure is constrained by regularization terms encoding
domain knowledge that encourage the algorithm to seek interpretable results. We eval-
uate the proposed approach using both simulated and real data, producing classifica-
tion results on par with those generated via human expertise, in terms of both the
positions of the gating boundaries and the diagnostic accuracy. © 2019 The Authors.
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Polychromatic flow cytometry technologies quantitatively measure surface and intra-
cellular protein expression and cytokine secretion at the single cell level. They are
widely applied in clinical diagnosis of immune system disorders and blood cancers,
including leukemia, lymphoma and HIV infection. (David et al. (1); Abraham and
Aubert (2); Zare et al. (3); Muchmore et al. (4); Krieg et al. (5)). However, due to
the heterogeneity of disease phenotypes at the cell population level, the analysis of
polychromatic clinical cytometry data remains challenging, without a gold-standard
analysis protocol or a universally applicable gating template to follow. The current
approach to the analysis of clinical cytometry data is manual gating, which relies on
a human analyst to create gating boundaries hierarchically in measurement space to
separate cells into subgroups (cell populations). The process is challenging to carry
out in high-dimensional spaces, as well as being subjective and difficult to reproduce
(Aghaeepour et al. (6); Mair et al. (7); Verschoor et al. (8); Saeys et al. (9)). In addi-
tion, generating gates for multiple samples can be time-consuming, leading to
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significant data throughput bottlenecks. For example, Rahim
et al. (10) report that the time spent in manual gating analysis
can be on the order of 5 to 15 min per sample. Thus, analyz-
ing 100 samples could take 8 to 25 hours.

In this article, we propose a new machine learning
approach that automatically searches for interpretable gates in
marker space, seeking gates that have high diagnostic accu-
racy in terms of prediction of class labels at the sample level.
The learned gates are optimized for discrimination at the
sample level rather than being designed to capture a single
and complete cell population. Thus, the proposed approach is
not an auto-gating method for identifying cell populations
but instead learns the location of hyper-rectangular regions in
marker space that are optimized for classification of cyto-
metry samples.

In this general context, in order to reduce human bias in
the analysis process and improve reproducibility of the analy-
sis results, a variety of different computational approaches
have been proposed and developed in prior work to process,
analyze, and classify cytometry samples (Pyne et al. (11); Qian
et al. (12); Aghaeepour et al. (6,13); Finak et al. (14); Hassan
et al. (15); Saeys et al. (9); Johnsson et al. (16); Lee et al.
(17,18); Arvaniti and Claassen (19); Li et al. (20); Lun et al.
(21); Rahim et al. (10); Ko et al. (22); Hu et al. (23); Lux (24);
Lee et al. (25)). For identification of cell populations, auto-
gating approaches include unsupervised, supervised, semi-
supervised (Lee et al. (18)), and constrained unsupervised
(Lee et al. (26)) methods. The unsupervised methods are typi-
cally based on data clustering and/or mixture modeling in
high-dimensional spaces, which can potentially identify novel
cell populations but can be difficult for users to interpret. In
contrast, supervised, semi-supervised, and constrained
unsupervised methods retain interpretability and are easier to
apply in clinical settings to support disease diagnosis. For dis-
ease diagnosis, classification of cytometry samples can be
achieved without necessarily identifying cell populations (Qiu
(27)). Many of the supervised learning approaches in the
FlowCAP-II competition (Aghaeepour et al. (6)) achieved
accurate classification without conducting auto-gating analy-
sis. However, for interpretation of the classification results, it
is necessary to identify the informative features that corre-
spond to characteristics of cell populations. When the results
of a learned model can be mapped to these cell population
characteristics, both the results and the model are more trust-
worthy to clinicians.

While there has been significant development of automated
techniques in the literature, predicting a classification outcome
for disease diagnosis of a subject is still largely a human-centered
process in clinics and hospitals. This process typically includes
manual gating analysis for identification of cell populations,
extracting features based on proportions of cell populations that
lie within selected gates, and applying decision thresholds to
these characteristics to make classification decisions. There are
subjective decisions involved in the process at multiple stages,
including: (1) defining the gating hierarchy, (2) selecting gate
boundaries, (3) selecting which features to use for sample-level
diagnosis/prediction, and (4) defining appropriate thresholds on

the features for sample or subject classification. The manual
nature of this diagnostic process means that it is not easily repro-
ducible and does not scale well to large numbers of markers or
cytometry samples or subjects.

The approach proposed in this article focuses on automating
and optimizing steps (2) through (4) of this process and it com-
plements existing methods such as RchyOptimyx (Aghaeepour
et al. (13)) that focus on optimizing the gating hierarchy (Step
1 in the process above). Specifically, we learn and optimize both
the gating boundaries and the diagnostic accuracy simultaneously
by defining an appropriate objective function that is a function of
gate locations in marker space, features based on gate locations,
and parameters of diagnostic classifier at the sample level based
on those features. Provided the objective function is differentiable,
techniques such as gradient descent can be used to find the gate
locations, features, and classification parameters that optimize the
objective function. The optimization works simultaneously across
a set of labeled cytometry samples (the training data) to find a
common set of gates that work well for classification across all
labeled samples.

An example of where our proposed approach can be
used in a practical setting is that of quality control in a clini-
cal diagnostic setting, such as for the leukemia diagnosis
problem we discuss in more detail later in the article. In such
a setting, discrepancies between a data-driven diagnosis (such
as that proposed in this paper) and the diagnosis from a hem-
atopathologist, can act as an automated tool to alert the hem-
atopathologist to review the subjective manual gating analysis
of the flow cytometry data by the diagnostic lab personnel to
avoid potential misdiagnosis.

MATERIALS AND METHODS

Learning Discriminative Gate Features
Notation and approach
Let xi be the observed single-cell cytometry data for subject i,
a set of multidimensional, multipanel cell-level measurements,
with i = 1, …, N, where N is the number of subjects. More
specifically, xi consists of a set of data matrices, one data
matrix per marker panel, where the number of rows in each
data matrix corresponds to the number of cells for subject
i in that panel, and the number of columns in each data
matrix corresponds to the number of marker measurements
for that panel.

We focus on binary classification, letting yi ∈{0, 1} indi-
cate the class label for subject i, such as healthy or disease.
The method we propose can be extended to problems with
more than two classes through the use of an appropriate
multiclass classification model such as a multinomial logistic
regression model.

To build a classification model, we need to learn a map-
ping from xi to yi. We follow the usual approach of defining a
P-dimensional feature vector fi for each subject i, where fea-
tures are extracted from the cell-level measurements xi using a
recursive gating process. For cytometry-based diagnosis, fea-
tures are typically defined based on appropriate domain knowl-
edge, such as proportions of cell populations and their mean
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fluorescence intensities (MFI) within gates for subsets of mea-
sured markers. In the experiments reported in this article, we
focus on classifiers that use features based on cell proportions.

Given a feature representation, each subject can then be
represented in feature-space as a table of N rows (each row
containing a feature vector fi for sample i) and P columns
(one per feature). When combined with class labels yi, this
table can then be used to train and evaluate a multivariate
classification model using any standard classification method.
This is a typical approach (e.g., Aghaeepour et al. (6); Ko
et al. (22)) for building diagnostic classifiers, consisting of two
steps: first, P features are defined, and second, a classification
model is constructed given vectors of the P-dimensional fea-
ture values for each subject.

In contrast to this two-step diagnosis protocol, the approach
we pursue in this article is to jointly optimize both the feature
definitions and the parameters of the classifier in a single step.
This has the goal of producing gates that are well-suited for
differentiating between the classes at the subject level. The vec-
tor of feature values fi = f(xi; θ) for each subject i is a function
of both the set of cell-level measurements xi and the gate
parameters θ. We focus in this article on parameterizations θ
that define rectangular gates, where gates in turn define fea-
tures that are then used by a classifier to make predictions.
Both the parameters of the gate locations (which determine the
features) and the parameters of the classifier (the logistic
weights) are simultaneously estimated by optimization of a
suitably-defined objective function. In this work, we use logistic
regression classifiers, but any classifier whose objective func-
tions are differentiable with respect to their parameters could
be used. The optimization of features and classification weights
is partly inspired by “end-to-end” training of deep neural net-
works, where early layers are optimized for feature extractions
from raw data and later layers are optimized for class predic-
tion given the features (LeCun et al. (28)).

Gating tree
Our approach assumes that a fixed gating hierarchy has been
determined by domain experts. This gating hierarchy contains
a tree-structured ordering of pairs of dimensions such as
those used in manual gating for identifying cell populations
of interest, but does not contain the locations of these gates.
Figure 1a shows a manually-determined gating hierarchy for
the Chronic Lymphocytic Leukemia (CLL) data used later in
the article. Given the gating hierarchy, our model learns the
gate locations at each node of the gating hierarchy.

We define each node k in the hierarchy as a tuple (dk,
θk), where dk is a two-dimensional vector that represents a
pair of markers over which the data in node k is applied; each
entry takes a value between 1 and the number of cell mea-
surements. We parametrize each gate with a 4-dimensional
vector θk that characterizes the location of the gate, where

θk1,1,θ
k
1,2,θ

k
2,1,θ

k
2,2 represent the lower and upper boundaries of

the gate in dimension dk1 and dk2, respectively. We constrain
these gate parameters to have the same side length in each
dimension but allow the parameters (corners) to be outside

the range of the data, which we normalize to lie between [0, 1]
per marker. The actual gate boundaries do not extend beyond
the [0,1] boundaries of the range, but this gives the algorithm
enough freedom to form rectangular gates at the edges, yet still
less freedom than unconstrained rectangular gating. We found
that this constrained approach led to more robust results than
unconstrained optimization of the four parameters.

When a gate gk is applied to cells of one sample, each
individual cell is mapped to a number between 0 and 1, which
reflects whether the cell lies within the gate or not. For typical
rectangular gates that practitioners use in a manual gating
process, the gating function can be defined as a product of
indicator functions as follows:

gk xij;θk ,dk
� �

= xi,dk1 ≥ θ
k
1,1

� �
× xi,dk1 ≤ θ

k
1,2

� �

× xi,dk2 ≥ θ
k
2,1

� �
× xi,dk2 ≤ θ

k
2,2

� �
ð1Þ

where xi,dk1 = xi, dk2 represent a measurement for markers

dk1 = d
k
2 respectively for a cell in sample i. This counts each cell

as being entirely in the gate if it is within the rectangle (value
of 1), and entirely outside the box if not (value of 0). How-
ever, the discontinuity in the indicator function precludes the
use of gradient-based optimization, since the objective func-
tion is not differentiable. To make the gating function differ-
entiable, we replace the indicator functions used in Eq. 1 with
sigmoid functions:

gk xij;θk ,dk
� �

= σs xi,dk1 −θ
k
1,1

� �
× 1−σs xi,dk1 −θ

k
1,2

� �� �

× σs xi,dk2 −θ
k
2,1

� �
× 1−σs xi,dk2 −θ

k
2,2

� �� � ð2Þ

where xij is the vector of measurements for the jth cell in sam-

ple i, xi,dk1 = xi, dk2 is the d
k
1 = d

k
2 th component of this vector.

The sigmoid function σs(z) = 1/(1 + exp(−sz)), parame-
terized by a positive constant s, approximates the indicator func-
tions in Eq. 1. The constant s controls the steepness or slope of
the logistic function and can be interpreted as the closeness of
the sigmoid function to an indicator function, that is, how close
the approximation is to hard gates used during manual gating
processes. Based on some initial experimentation, we used a
value s = 100 in the results reported in this article. This value typ-
ically corresponds (in our experiments) to a fairly steep (almost
step-like) sigmoid function, where data points that lie more than
about distance of about 0.05 from the boundary (on a 0–1 scale)
are included in the gate with a weight of 0.01 or less.

Feature extraction from gating trees
The predictive features for classification are defined as the log
proportions of cells that fall within each gate at the leaf nodes
of the gating tree, relative to the total number of cells from
the subject. Each feature, corresponding to each leaf node in
the gating tree, is extracted by applying all the gates along the
root to leaf path to each cell in sample xi, summing over the
resulting values, and normalizing to obtain proportions:
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f ip = log
1
Ni

X
xij∈xi

Y
k∈Path pð Þ

gk xij;θk ,dk
� �0

@
1
A ð3Þ

where Ni is the total number of cells in sample xi, and Path
(p) is the root-to-leaf path associated with the pth feature.
Using the logarithm of proportions of cell populations to
define features puts the feature values on a better scale for
learning classification weights (compared to using proportions
directly), especially in situations with very small proportions.

Modeling multiple panels as gating forests
Flow cytometry data sets often consist of multiple panels each
with different numbers of distinct protein markers. These dif-
ferent panels are not matched at the cell level. However,
although we cannot merge the raw data at the single cell level

across panels directly, we can merge the extracted features of
the same subject i from multiple panels by appending them
together in feature vector fi to provide as input to a classifier,
allowing our approach to directly handle cytometry measure-
ments from multiple staining panels. The gating parameters
across multiple panels and the classifier parameters can all
learned simultaneously by extending the loss function to
include the data, the gating locations, and the features across
multiple staining panels per subject. Experimental results on
CLL data, in which cells are stained with two panels of
markers, are reported later in Section “Results on Simu-
lated Data”.

Objective function
The classification model and gate features are learned by opti-
mizing (minimizing) an objective function consisting of two

Figure 1. Illustration of a gating hierarchy and one node in the gating tree. (a) Gating hierarchy for two-panel CLL data (from

Scheuermann et al. (29)). Each node contains a pair of axes and its gate parameters. We use two gating hierarchies to represent two

separate staining panels. Here, we only show θk for the CD5 + CD19+ gate in panel 1 in (b) to demonstrate the notation and soft-gating

mechanism. This gate is shown in blue in (a). The four θ parameters here define a rectangular gate, as shown in (b) by the bold red lines.

The two sigmoid functions below the green datapoints demonstrate the soft-gating function applied to this datapoint. Since this point is

slightly to the left of θk1,1, that is, the left side of the box, its corresponding sigmoid function, shown in the bottom sigmoid plot, takes a

value less than 0.5. However, since this point is very far from and to the left of the θk1,2 boundary (the right side of the box), the sigmoid

function shown in the top plot for this boundary is very close to 1. [Color figure can be viewed at wileyonlinelibrary.com]
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parts. The first component of the objective function is the
classification loss l(θ, α), which measures the difference
between predictions made by the model and the true labels of
subjects yi:

l θ,αð Þ= −
1
N

XN
i= 1

yilog P yi = 1jxi;θ,α
� �� ��

+ 1− yi
� �

log P yi = 0jxi;θ,α
� �� ��

where α is the vector of parameters for the logistic regression
model, θ is a vector of parameters for the gate positions, and
P(yi|xi;θ, α) are the probabilities produced by the model for
subject i for some fixed values of θ and α. We seek to mini-
mize l(θ, α) since lower values of this loss function corre-
spond to more accurate predictions by the model. This loss
function l(θ, α) is known as the log-loss and is the standard
loss function for binary classification used in machine learn-
ing (Friedman et al. (30); Murphy (31)). Other differentiable
loss functions (such as squared error) could also in principle
be used. By optimizing the classification loss l(θ, α) with
respect to gate locations and classifier parameters, the
sample-level diagnosis information is backpropagated to
model parameters, driving the gates to search the multi-
dimensional marker space to identify cell populations that
can discriminate between samples from different classes.

The second part of the objective function consists of reg-
ularization terms, which constrain the learned features (the
gates) to reflect expert intuition and relevant prior knowledge
about cell types and diagnosis. In the work described, here we
use two regularization terms that are well-suited to disease
diagnosis where the negative class (y = 0) is typically indi-
cated by the absence of particular cell types (such as cancer
cells) and where the positive class has a much larger propor-
tion of the same cells. In particular, the first regularization
term r1(θ) encourages the model to learn gates with lower
proportions for the negative class:

r1 θð Þ=
XN
i= 1

1− yi
� �

f i�m ð4Þ

where m is a binary mask which determines which particular
features are encouraged to have lower proportions. The sec-
ond regularization term r2(θ) encourages the model to make
the features (proportions) for the positive class be signifi-
cantly larger than those of the negative class push the features
(proportions) from positive samples apart from those of the
negative:

r2 θð Þ= − ln μpos−μneg

��� ���2
	 


, ð5Þ

where μpos and μneg are both p-dimensional vectors con-
taining the means of the positive features and negative fea-
tures, respectively. Note that these two regularization terms
are well-suited for diagnosis problems where the two classes

are differentiated by the presence or absence of cells in certain
regions of marker space. For other diagnosis problems, other
forms of regularization terms, reflecting different types of
prior knowledge about each problem, may be more
appropriate.

The full objective function then takes the form:

L θ,αð Þ= l θ,αð Þ+ λ1r1 θð Þ+ λ2r2 θð Þ ð6Þ

consisting of the log-loss plus a weighted combination of the
regularization terms, where λ1 ≥0 and λ2 ≥0 are the weights
for each regularization terms. Their values are determined via
grid-search and cross-validation (see below).

From a Bayesian perspective the full objective function
above can be viewed as the negative logarithm of the poste-
rior probability of the parameters given data, which in turn is
proportional to the negative log-probability of the data (the
log-loss term) minus a log-prior term on the parameters (the
regularization terms). Minimizing this function corresponds
to seeking the mode of the joint posterior probability of α
and θ conditioned on the data and the prior (regularization)
terms.

Optimization
The objective function L(θ, α), as defined in Eq. 6 above, is a
scalar function of the unknown parameter vectors θ and α.
To minimize L(θ, α) with respect to θ and α, gradient-based
search is a computationally practical option and is the stan-
dard approach in machine learning for optimization of
parameters with differentiable objective functions such as
logistic regression and neural networks (Friedman et al. (30);
Murphy (31); LeCun et al. (28)). It uses iterative local search
from an initial starting point in parameter space, then follows
the surface of L(θ, α) in small steps, where each step is in the
direction opposite of the local gradient, that is, the steepest
downhill direction. The search continues until a local mini-
mum of L(θ, α) is found.

We scaled all measurement values to lie within the range
[0,1], using the global maximum/minimum measurement
values per measurement dimension across all samples. This
type of normalization is a standard preprocessing step for
gradient-based optimization in machine learning to help
avoid numerical issues due to scaling.

We explored three different approaches for initializing
the gradient descent algorithm. The first method puts an ini-
tial square gate (of width 0.5) in the center of each two-
dimensional marker space. The second approach runs the
gradient descent procedure from 20 different randomly
located gate locations (square gates, width 0.5) and selects the
solution from the 20 gradient runs with the minimum value
of the objective function. The third approach uses the data
for initialization in the following manner. Cells across all
samples are pooled and an initial gate is determined for each
two-dimensional node by searching over a three-by-three grid
of equi-spaced points ([0.25, 0.5, 0.75] in each dimension),
extending each point to one of the four corners to create
36 candidate initial gates per node. From these 36 candidate
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locations, the gate which maximizes the difference in the pro-
portion of cells within the gate, between the positive and neg-
ative populations, is chosen independently per node. We
found that this third approach was more robust than the
other two approaches in terms of consistently finding features
(gates) that produced good classification performance and we
used this approach in the generation of results reported in the
remainder of the article. The grid size was selected to be rela-
tively coarse both for computational reasons and to avoid ini-
tializing with very small gates. In practice, other heuristic
initialization techniques could also be useful.

The term hyperparameters in machine learning is gener-
ally used to refer to algorithmic parameters that a user can set
prior to running the algorithm. For our model, the relevant
hyperparameters consist of the two regularization weights λ1
and λ2 and the learning rate ν > 0 for gradient descent. Fol-
lowing standard practice in machine learning, in the results
reported below we randomly selected a subset of data called a
development set, which was then used to optimize the hyper-
parameters using cross-validation and grid search. We used
the Adam algorithm (Kingma and Ba (32)) in the PyTorch
(Paszke et al. (33)) software package for optimization. Adam
is a widely used gradient-based optimization algorithm for
machine learning algorithms. Apart from the learning rate,
default settings for other optimization-related algorithm
parameters were used (β1 = 0.9, β2 = 0.999). We ran gradient
descent for 200 iterations in all of our experiments and this
appeared to be sufficient for convergence of the method for
the data sets we report on below.

Data sets
Chronic lymphocytic leukemia data
We also evaluated our approach in the context of the clinical
diagnosis of CLL. The data set consists of FCS files from
peripheral blood mononuclear cell (PBMC) samples from
146 human subjects (98 CLL-positive and 48 CLL-negative).
Two 10-color CLL staining panels were used to obtain multi-
dimensional single cell measurements from each individual
(i.e., 292 FCS files in total).

The FCS files and the diagnosis were provided by UCSD
clinical laboratories under pseudo IDs/file names. Protected
health information (PHI) was scrubbed at UCSD by applying
the FCS deidentifcation tool downloaded from
FlowRepository,1 followed by manual examination. The scat-
ter parameters and the markers measured in the two panels
are Panel 1: FSC-A, FSC-H, FSC-W, SSC-A, SSC-H, SSC-W,
CD45, CD22, CD5, CD19, CD79b, CD3, CD81, CD10, CD43,
CD38, Time; Panel 2: FSC-A, FSC-H, FSC-W, SSC-A, SSC-H,
SSC-W, FMC-7, Anti-Lambda, CD5, CD19, Anti-Kappa,
CD23, CD45, CD49d, CD20, CD38, Time. Acquisition was
performed on BD FACSCanto 10-color instruments.

As described in Scheuermann et al. (29), the expert man-
ual gating strategy for identifying the CLL cells from the two
UCSD panels is as follows (see also Supplementary Fig. 1). In
Panel 1, eight parameters including both scatter and

fluorescence markers were used in a sequential gating process
to identify the CLL cell population: (1) SSC-H versus CD45
to identify leukocytes; (2) FSC-A versus SSC-A to identify live
lymphocytes; (3) CD5 versus CD19 to identify the CD5
+ CD19+ abnormal B cell population; (4) CD10 versus
CD79b to extract the CLL cells at the left lower corner of the
scatter plot (CD79b-CD10-). In Panel 2, there are four addi-
tional markers involved in the human-defined gating hierar-
chy: CD38, CD20, anti-Kappa and anti-Lambda, including
(1) CD38 versus CD20 to identify the abnormal CD38-CD20
+ B lymphocytes; (2) there are two children nodes following
the root node, for identifying either kappa-lambda+ cells and
kappa+lambda- cells from the CD38-CD20+ cells, with the
ratio of kappa-lambda+ cells to kappa+lambda- cells being
informative. We describe results below for learning gating
locations for Panel 1 data alone and also simultaneously
learning gating locations for Panel 1 and Panel 2 data
together.

Data Availability and Software
Software and simulated data can be found in our github
repository2. FCS files of the CLL study together with their
diagnosis labels have been deidentified and submitted to
FlowRepository. Files of Panel 1 and Panel 2 for the 102 sam-
ples used for training and development can be found under
IDs: FR-FCM-Z27S and FR-FCM-Z27T. Files of Panel 1 and
Panel 2 for the 44 hold out samples used for testing can be
found under ID FR-FCM-Z27U for the first 24 samples, and
the last twenty (in TXT format) can be found at a separate
github repository.3

RESULTS

Results on Simulated Data
To help evaluate our approach, we construct a simple two-
class, eight-dimensional simulated data set that mimics flow
cytometry data with a single panel, as shown in Figure 2. The
gating hierarchy for this data consists of a single tree, with a
left branch of depth two and a right branch of depth three. At
each node, we sample from a Gaussian mixture with different
weights for each class. At the M3, M4 leaf node the first class
has more cells than the second class in the lower left corner,
while for the M7, M8 leaf node, the second class has more
cells in the upper right corner if the bottom right cluster is
selected for the M5, M6 gate, or more cells overall if the top
right cluster is selected for the M5, M6 gate. We also add
Gaussian noise centered on the optimal gate locations at the
leaves, which makes finding the optimal leaf gates harder.
The model must filter out the noise at the leaf nodes by plac-
ing the non-leaf gates in the correct positions. In order to
evaluate our model performance on these data, we randomly
generated 2000 samples with each sample containing 950 cells,
and held out 1,000 samples for testing. We learned four gates

1 https://flowrepository.org/offlinedeidentification

2 https://github.com/disiji/fc_differentiable
3 https://github.com/JCVenterInstitute/DAFi-gating/tree/master/CLL_
Dataset
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on this data following the gating hierarchy as shown in
Figure 2. The model achieves accuracy of 96% on the holdout
data, reaching convergence after 200 iterations.

Results on CLL Data
We first describe our results using only Panel 1 data, and in
section ’Learning with Multiple Panels’ we describe the results
using both Panel 1 and Panel 2. In our experiments on CLL
PBMC data, the algorithm learned the locations of four gates
for Panel 1, for marker-pairs CD45/SSC-H, SSC-A/FSC-A,
CD19/CD5, CD79b/CD10, corresponding to the 4-level gating
hierarchy for Panel 1 in Figure 1a. The algorithm is provided
with the structure of the tree (i.e., the sequence of pairs of
markers involved in gating) and jointly learns the gate loca-
tions across all nodes using the discriminative learning algo-
rithm outlined earlier.

Data partitions, hyperparameter tuning, and runtime
FCS files from 44 of the 146 CLL PBMC samples were set aside
as a holdout set for final model evaluation and were not used
in any development or training of models. Of the remaining
102 PBMC samples, 34 were randomly selected as a develop-
ment set for hyperparameter tuning. The 68 remaining samples
were designated as a validation set for cross-validation experi-
ments to compare model performance with baselines. Final
predictions were made on the 44 sample holdout set by train-
ing a single model on the 102 samples in the combined devel-
opment and validation sets and then making predictions on
each of the 44 holdout samples. When making predictions with
the learned model on new samples, we thresholded the class

probabilities from the logistic classifier at 0.5 to predict the pos-
itive class.

The three hyperparameters of the algorithm, the two reg-
ularization weights and the learning rate, were selected by a
grid search on the development data by maximizing the aver-
age accuracy across a five-fold cross validation run. The grid
values used were [0, 0.001, 0.01, 0.1] for the regularization
weights and for the learning rate ν, [0.001, 0.005,0.01, 0.05,
0.1] with the values λ1 = 0.001, λ2 = 0.001, ν = 0.01 being the
values that maximized accuracy and that were used in all sub-
sequent experiments with the CLL data.

The algorithm takes a total of 1,676 s to train on the
102 samples using a GeForce 1,080 Ti GPU.

Baseline prediction methods for comparison
We conducted experiments with two baseline models on the
CLL data. Unlike our proposed single-step approach, the
baseline approaches use two-steps to make sample predic-
tions. First, features are constructed by performing a cluster-
ing algorithm (K-means or FlowSOM) on the pooled training
data, followed by calculating proportions of data in the clus-
ters for each individual sample (Shen (34); Gassen (35)). A
logistic regression classifier is then fit to the training data,
using the cluster membership features to predict the probabil-
ity of CLL. In order to select the optimal number of clusters
K, we performed a grid search over the range [5, 10, 30,
50, 100], computing the average testing accuracy across five
80/20 splits of the development data. For K-means clustering,
we found K = 5 and K = 30 both had the highest average test-
ing accuracy across the development folds (73%). So we used

Figure 2. Learning gate locations for simulated data: Green dashed lines show the initialization of gate locations before learning, while

solid red lines represent the learned gates after convergence. . The two contour plots shown above are generated by applying kernel

density estimation to the pooled data for each respective class. Deeper blue corresponds to higher data density at that region. For class

1, the M3 vs M4 leaf has more data in the bottom left corner. For class 2, the M7 vs M8 leaf has more data overall. Our proposed method

successfully locates these two regions, which differ between the two classes starting from the heuristic initialization discussed in 2.1. (The

M7 vs M8 leaf gate initialization has no data in it because the plot shows the data at each node filtered by its parents gates. Using the

initial instead of final gates to filter the data, there is data in the M7, M8 heuristic initialized gate.) [Color figure can be viewed at

wileyonlinelibrary.com]
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both values of K in our experiments below. FlowSOM cluster-
ing, for different numbers of clusters K, did not yield features
or classifiers that produced classification accuracies that were
systematically better than predicting the majority class—this
may be because of the relatively small sample sizes. (training
sets of with 54 samples for the 80/20 splits on the valida-
tion data).

Cross-validation results
We conducted cross-validation experiments on the validation
set by randomly splitting the set of subjects 50 times into dis-
joint partitions of 80% for training and 20% for testing. For
each run, we trained a classification model on the training
data to learn the gate locations to produce the proportion-
based features and to simultaneously learn the weights of the
logistic classifier, without using any information about the
human-defined gating boundaries. Separately, we trained a
logistic classifier using the features computed from the
predefined human-generated gates as shown in Supplemen-
tary Figure 1, which we refer to as “human-gates+logistic”
below. We also evaluated the classification accuracy from
human-generated gates, using a predefined expert rule that
classifies a sample as positive if the proportion of cells within
the gate exceeded 0.01% of CD45+ leukocytes (a standard
rule-of-thumb in diagnostic laboratories) and refer to this as
the “human-gates+rule.” The means (and standard devia-
tions) of the classification accuracy of the algorithm gates, the
human-gates+logistic, and the human-gates+rule were 82.0%
(7.1%), 80.7% (9.1%), and 83.47% (8.19%), respectively, rela-
tive to a base-rate classification accuracy of 62% on the vali-
dation data. The differences in classification accuracies across
the 50 runs, between each of the human gate methods
and the algorithmic method, were not statistically significant
at the 0.05 level under a Wilcoxon signed-rank test. That
is, our proposed learning approach achieved results that
are consistent with the results obtained with human gating
(gating boundaries as well as classification accuracy) without
knowledge of the location of the human-defined gates.

We also evaluated the k-means baseline approach, with
both k = 5 and k = 30, on the same 50 cross-validation train-
test sets, resulting in mean accuracies (and standard devia-
tions) of 65.6% (10.6%) and 73.3% (8.9%) for k = 5 and
k = 30, respectively. The differences in classification accura-
cies across the 50 runs, for each value of k, between k-means
and each of the algorithm gates and the two versions of
human-gates were statistically significant at a 0.001 level
under a Wilcoxon signed-rank test. Thus, the unsupervised k-
means method led to classification accuracies that were signif-
icantly lower than those produced by either the algorithmic
or human gates.

Classification with hold-out samples
We fit a single model to the 102 samples in the combined
development and test data sets, using the same initialization
and optimization methods as used above and the same hyper-
parameter settings. This model was then used to make classi-
fication decisions on the 44 holdout samples that had not

been used in any aspect of model development or evaluation
prior to making these predictions. We also used the human
gates+logistic, human gates+rule, and k-means methods as
reference baselines for comparison. The human gates+logistic
used the human-defined gates (Supplementary Fig. 1) for
defining features (proportions) for each of the 102 samples
and a logistic classifier was trained on these labeled features.
The k-means method was also trained (clustering followed by
logistic regression) on all 102 samples in the combined devel-
opment and test data sets.

The discriminatively-trained gates from the algorithm
correctly classified 90.9% of the 44 samples (40 correct), the
human-gates+logistic and the human-gates+rule methods
each correctly classified 86.4% (38 out of 44). Thirty two of
the 44 samples in the holdout set are positive, so a majority
classifier that predicts all samples as positive could achieve an
accuracy of 72.7%. The K-means baselines produced accura-
cies of 77.0% and 88.6% (K = 5 and K = 30, respectively) for
the same holdout data. Although the hold-out sample size of
44 is small, the results suggest that the discriminatively-
trained gates are at least as accurate as the human-generated
gates for this data. Figure 3 shows a scatter plot of the log-
proportions (the features used by the classifier) for both the
samples used to train the model (left) and the holdout sam-
ples (right). The x-axis corresponds to the features from the
human-generated gates and the y-axis corresponds to features
from the algorithm-generated gates. Decision boundaries for
each are also shown. The feature values are well correlated,
indicating that proportions from the algorithmic gates and
the human-defined gates are in broad agreement. The algo-
rithmic gates tend to be systematically somewhat smaller than
the human gates with mean cell proportions of 5.45% (posi-
tive samples) and 0.0053% (negative samples) for the algorith-
mic gates, compared to proportions of 12.75% (positive) and
0.023% (negative) for the human gates. This reflects the ten-
dency of the algorithmic gates to seek out “discriminative
pockets” of cells in the marker space during the gradient-
based training.

Illustration of gate learning
Figure 4 illustrates how the gates are learned during gradient
descent and how they compare to the human-defined gates.
These results correspond to the model that was fit to all
102 samples and used for prediction on the hold-out data—
these gates are typical of the results that were obtained across
the 50 cross-validation runs. Figure 4a shows the locations of
the gates after being initialized (using the heuristic procedure
described earlier). Figure 4b shows the locations of the gates
after they have moved during gradient descent from their ini-
tial locations to their final location after 200 gradient descent
iterations on the gate parameters. Figure 4c shows the
human-generated gates. The blue points in each plot corre-
spond to cell-level measurements in each two-dimensional
marker space after gating by the parent node. From a qualita-
tive perspective, the locations of the algorithmic gates in the
lower two nodes confirms the finding in Scheuermann et al.
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Figure 4. Learning gate locations for panel 1 from the clinical CLL data. Gate locations are shown in red dotted lines (for the algorithm)

and in black (for the human gates). Blue points correspond to cells/events pooled across samples with positive (CLL) or negative (non-

CLL) labels and where the cells/events in each row have been filtered by the gates above them. (a) Initial gate locations for the algorithm,

(b) final gate locations after 200 iterations of gradient descent, (c) gate locations as drawn independently by human experts. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 3. Scatter plot of features (log scale) per sample for the model trained on 102 samples showing results in-sample on the

102 training samples (left), and out-of-sample on the 44 holdout samples (right). Red symbols denote CLL samples and blue symbols

denote non-CLL samples. Samples that are misclassified in each data set are indicated by black open circles for the human gates and

black X’s for the algorithm gates. The vertical dotted line in each plot corresponds to the decision threshold of 0.01% for the human gates

and the horizontal dotted line corresponds to the decision boundary for the logistic regression classifier for the algorithm’s gates (the

feature value where the two posterior class probabilities equal 0.5). [Color figure can be viewed at wileyonlinelibrary.com]
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(29), namely that the CD5 + CD19 + CD10-CD79b- cell pop-
ulation is diagnostic for CLL.

Comparing Figure 4a,c, we see that the initialization places
the gates in the general region of the human-defined gates, but
with somewhat different sizes and locations for some of the
nodes. The learned gate locations are quite similar to the
human-defined gates, with the exception of the gate at the sec-
ond node from the top, where the algorithm’s gate is consider-
ably larger than the human gate. However, the human gate
captures more cells than the algorithm’s gate (being centered
on more dense regions of cells than the algorithm’s gates):
approximately 11.1% of all positive cells pass through the
human gates, while only 5.0% of the positive cells pass through
the (converged) algorithm’s gates. In addition, between
Figure 4a,b, from the beginning to the end of gradient descent,
the proportion of cells passing through the gates decreases
from 16.4% to 5.0%. We noticed that this was a common phe-
nomenon when learning of discriminative gates, namely that
the gradient procedure tended to converge to gates that cap-
tured smaller (and more discriminative) sets of cells, compared
to either the human gates or the initial gates—and was also
noted above in the features for the holdout data.

There is a corresponding increase in accuracy (and
decrease in log-loss) during gradient descent: the converged
gates have a classification accuracy of 91.2% compared to accu-
racies of 76.5% and 87.3% for the initial and human gates,
respectively. For log-loss, l(θ, α), there is a corresponding
decrease (lower is better) with a log-loss of 0.198 for the gates
after gradient descent compared to log-losses of 0.405 and
0.247 for the initial and human gates. These numbers for accu-
racy and log-loss are computed on the training data and, as is
typical for discriminative machine learning methods, the train-
ing data metrics tend to be optimistic estimates relative to out-
of-sample values. Nonetheless, the CV and hold-out results
(described above) indicate that the discriminative gate-learning
process is not overfitting by much, that is, that the learned
gates perform at least as well as the human gates when evalu-
ated in cross-validation mode or out-of-sample.

Figure 5 plots the increase of classification accuracy during
training, as well as the optimization process of classification

loss. Accuracy increases quickly during the early iterations, and
stays near 90% after 100 iterations as shown in Figure 5a. The
classification loss converges around 175 iterations as shown in
Figure 5b. Further iterations after 100 may be over-fitting
slightly to the training data as shown by the gap between the
train (orange) and blue (test) classification losses, however, the
accuracy remains stable on the 44 hold out test data.

Learning with multiple panels
As mentioned previously in section “Materials and Methods”,
our method can be extended to simultaneously learn gates
across multiple staining panels of data that are matched at
the sample level, allowing the algorithm to potentially utilize
multiple discriminative features from a diverse set of markers.
We investigated this approach by including data from Panel
2 into the CLL data set as shown in Figure 1a. We configured
the gradient descent algorithm to simultaneously learn one
feature (and relevant gates) from the Panel 1 data, and two
features (and sets of gates) from the Panel 2 data. We then
performed the same set of validation and holdout experi-
ments as describe above for models based on Panel 1 alone.
The binary mask, m, in regularization term r1(θ) for the
results with both panels is set to one for the feature from
Panel 1 and zero for the Panel 2 features since they are based
on the ratio of kappa-lambda+ cells to kappa+lambda- cells,
and regularizing these features to zero would inhibit learning
the ratio.The addition of the second panel did not improve
classification results across the 50 cross-validation runs on the
validation data set or when evaluating a single model on the
holdout set, yielding an average accuracy of 80.21% for cross-
validation, and a holdout accuracy of 88.64%. The results are
not significantly different from the results with the single
panel model described earlier. The slightly poorer results sug-
gest that the addition of a second panel for this problem
allowed the model to overfit (given the relatively small
amount of labeled data at the sample level), and that the
information from the markers in Panel 2 data did not provide
the learning algorithm with any additional discriminative
information beyond that in the Panel 1 data.

Figure 5. Optimization of accuracy, and classification loss l(θ, α), as a function of iteration number, on the CLL data. The model is trained

on all 102 training samples and evaluated on the 44 hold out samples. [Color figure can be viewed at wileyonlinelibrary.com]
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DISCUSSION

The proposed approach provides a machine learning solution
for optimizing the locations of hyper-rectangular discriminative
gates for classification of multidimensional cytometry data at
the sample level. The resulting algorithm optimizes gating loca-
tions by maximizing classification accuracy within a single
framework and is applicable to cytometry data analysis prob-
lems that (i) have labeled training data at the sample level and
(ii) where samples can be classified using features derived from
gating boundaries, for example, the number of cell events, the
proportions of the cell populations, or their ratios.

The primary strengths of the approach are two fold. The
first strength is that the method produces interpretable low-
dimensional gate representations. Unlike the data clusters
identified by many existing unsupervised auto-gating methods
in high-dimensional marker spaces, a hyper-rectangular gate
is simple and easy to translate into marker expression levels
for clinical use. The second strength of the approach is that
the learning of gate locations is coupled to diagnostic classifi-
cation at the sample or subject level. Existing auto-gating
methods are largely unable to incorporate discriminative
information from the sample level and often rely on the less
optimal two-step approach of first identifying sub-populations
of cells in an unsupervised manner and then using these rep-
resentations to learn classifiers at the sample level in a second
step (Aghaeepour et al. (6); Saeys et al. (9); Rahim et al. (10)).

There are a number of potentially useful directions for
further development of the approach. For example, in the
work described in this article, we assumed that the gating
hierarchy is known a priori. In principle, however, one could
also learn the structure of a gating hierarchy, given an appro-
priately defined objective function, potentially leveraging exis-
ting methods, such as RchyOptimyx (Aghaeepour et al. (13)),
that optimize the sequence of steps of the auto-gating process
to correlate with clinical outcome. In a manner analogous to
learning of decision tree classifiers in supervised learning, a
greedy approach could be used to search over pairs of marker
dimensions, using the algorithm described in this article to
find discriminative gate locations for each pair, and then
selecting the markers and gate locations that have maximal
discriminative power.

The process of searching over pairs of markers and gate
locations could be applied recursively on the child nodes. Bra-
nches could be terminated when there appears to be little
additional discriminative power to be found in a node. A
potential issue with this approach for learning gating hierar-
chies is the computational complexity. If K is the number of
markers, then this greedy tree search process involves, at each
node in the gating hierarchy, O(K2) instantiations of the algo-
rithm for learning gate locations for each possible pair of
markers. For even relatively moderate numbers of markers
(e.g., K = 10), this will be computationally demanding. How-
ever, it may be possible to reduce this complexity in practice,
for example by leveraging prior knowledge available about
markers and cell-types to provide hints to the search algo-
rithm, or by using an initial manual gating as a starting point

and then having the algorithm make local changes to the
structure to try to improve it in terms of its predictive accu-
racy. This initialization could also be done in a
semisupervised manner based on given phenotype of cell
populations of interest, without requiring prior knowledge for
the locations of the gates (e.g., using a Bayesian tree method
(Ji et al. (36))).

Another direction to extend the current model is to learn
nonrectangular polygonal gates, providing more flexibility in
terms of capturing dense regions of cells that have discrimina-
tive power, based on reparameterization of the parameters θ
for each gate. One option, for example, would be to parame-
trize a six-sided polygon that is symmetric about its major
and minor axes and that can be uniquely specified by the
locations of three 2d vertices (i.e., six parameters in all). As
long as the loss function is differentiable with respect to the
shape parameters then such parametrizations could replace
the rectangular representations assumed in this article. In the
current approach, density is not directly a factor in where
gates are located, allowing the algorithm to include regions
that are relatively empty. Polygonal gates can provide a mech-
anism for taking local cell density into account, by providing
more representational power to enclose denser regions of
points. This requirement for density could be added as a reg-
ularization constraint to encourage the algorithm to find
dense and discriminative regions that correspond to distinct
cell types, further improving the interpretability of the results.

Another direction for improvement would be to address
the limitation that a single set of global gate locations are
learned for all samples in our proposed approach. This will
not work well if there is significant misalignment of measure-
ments across samples. A potential solution to this would be
to first use an existing alignment approach to align the sam-
ples. A second option would be to try to learn gates that can
vary the location of their boundaries per sample, but nonethe-
less constrain them to be similar by regularizing the variance
of gate locations across different samples, using for example a
random effects approach similar to the joint clustering and
alignment framework proposed by Lee et al. (17).

CONCLUSIONS

In this article, we describe the development of a novel
approach that can learn discriminative gate locations given a
gating hierarchy. The learning process iteratively optimizes
gating locations based on the discriminative power of the
events inside the hyperrectangle gate to maximize the predic-
tive power of the classifier. The experimental results show
that the algorithm we propose has the ability to learn gate
locations that broadly agree with the locations of manually
defined gates and have similar accuracy to those gates. Apply-
ing the algorithm to a CLL diagnosis data set not only con-
firms our previous finding (Scheuermann et al. (29)) that the
CD5 + CD19 + CD10-CD79b- cell population is diagnostic
for CLL but also demonstrates the utility and effectiveness of
the proposed discriminative learning method, showing that it
is possible to simultaneously optimize both the gating
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location and classification accuracy across multiple cytometry
samples and subjects in an interpretable way. Although there
are still a number of important next steps to explore, the pro-
posed discriminative gating approach has the potential to
impact and benefit both translational research and clinical
studies that need objective analysis of cytometry data for
identification of interpretable differences in cytometry data
between cohorts.
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