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Homozygous deletion (HD) of CDKN2A and CDKN2B (CDKN2A/BHD) is

the most frequent copy-number variation (CNV) in lung adenocarcinoma

(LUAD). CDKN2A/BHD has been associated with poor outcomes in

LUAD; however, the mechanisms of its prognostic effect remain unknown.

We analyzed genome, transcriptome, and clinical data from 517 patients

with LUAD from the Cancer Genome Atlas (TCGA) and from 788 pri-

mary LUAD tumor and matched control samples from the MSK-

IMPACT clinical cohort. CDKN2A/BHD was present in 19.1% of the

TCGA-LUAD cohort and in 5.7% of the MSK-IMPACT cohort.

CDKN2A/BHD patients had shorter disease-free survival and overall sur-

vival compared with CDKN2A/BWT individuals in both cohorts. Differ-

ences in clinical features did not influence the outcomes in the CDKN2A/

BHD population. Mutation analyses showed that overall tumor mutational

burden and mutations in classical drivers such as EGFR and RB1 were

not associated with CDKN2A/BHD. In contrast, homozygous deletion of

type I interferons (IFN-IHD) frequently co-occurred with CDKN2A/BHD.

CDKN2A/B and IFN-I are co-located in the same p21.3 region of chromo-

some 9. The co-occurrence of CDKN2A/BHD and IFN-IHD was not related

to whole-genome doubling, chromosome instability, or aneuploidy. Patients

with co-occurring CDKN2A/BHD and IFN-IHD had shorter disease-free sur-

vival and overall survival compared with CDKN2A/BWT patients.

CDKN2A/BHDIFN-IHD had downregulated several key immune response

pathways, suggesting that poor prognosis in CDKN2A/BHD LUAD could

potentially be attributed to an immunosuppressive tumor microenviron-

ment as a result of IFN-I depletion.

1. Introduction

As typical tumor suppressor genes (TSGs), the cyclin-

dependent kinase inhibitors CDKN2A and CDKN2B

located on chromosome 9, band p21.3, are frequently

mutated, deleted, or dysregulated in a variety of can-

cers [1–5]. Deficient function of TSGs leads to tumor

proliferation and progression. Homozygous deletion
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(HD) and corresponding loss of function of CDKN2A

and CDKN2B is associated with poor prognosis in dif-

fuse malignant IDH-mutant glioma [6], thymic carci-

noma [7], pleural mesothelioma [8], urothelial bladder

carcinoma [9], neuroblastoma [10], T cell acute lym-

phoblastic leukemia [11], and pancreatic cancer [12].

This suggests that CDKN2A and CDKN2B play an

important role in certain cancer types.

Knowledge of the roles of CDKN2A and

CDKN2B HD in lung adenocarcinoma (LUAD) is

scarce. CDKN2A was mutated or homozygously

deleted in 20 of 32 (63%) non-small cell lung carci-

noma (NSCLC) cell lines, and CDKN2B HD was

also detected in the same lines [13]. Two-hit inactiva-

tion of CDKN2A/2B was frequently found in KRAS-

mutant LUAD in The Cancer Genome Atlas

(TCGA) database, and loss of CDKN2A/B fostered

cellular proliferation, cancer cell differentiation, and

metastatic behavior in genetically engineered mouse

models of KRAS-mutant lung tumorigenesis [14].

Recently, loss of CDKN2A function was found to be

related to NSCLC clinical outcomes. CDKN2A HD

was detected in 24.4% (31/127) of LUADs in a Chi-

nese cohort, and the occurrence of CDKN2A HD in

EGFR-mutant LUADs was associated with poor

response to EGFR tyrosine kinase inhibitors (TKIs)

[15]. These findings support the significance of

CDKN2A HD in the clinical management of LUAD;

however, the mechanisms of CDKN2A/B HD and its

effects on the tumor immune microenvironment have

not been revealed.

In this study, we aimed to reveal the key genomic

and immune-related mechanisms of the prognostic

effects of CDKN2A and CDKN2B HD on LUAD

prognosis. We found that HD of type I interferon

(IFN-I) genes was the most frequent type of copy-

number variation (CNV) accompanying CDKN2A and

CDKN2B HD in LUAD. A previous report suggested

that homozygous co-deletion of IFN-I and CDKN2A

is a potential biomarker for therapy in thoracic can-

cers [16]. There are 16 IFN-I genes located on chromo-

some 9p21 that share a common receptor, induce

immune response, and participate in cell antiviral and

anti-tumor defense. We found that co-deletion of IFN-

I and CDKN2A or CDKN2B was associated with poor

clinical outcomes and downregulated expression of

genes related to inflammatory response, adaptive

immune response, and JAK-STAT signaling in the

tumor microenvironment. These findings provide fun-

damental knowledge about LUAD with cyclin-

dependent kinase inhibitor dysfunction and indicate

the necessity of tailored treatment for patients with

this molecular subtype of lung cancer.

2. Materials and methods

2.1. Datasets from the TCGA and MSK-IMPACT

Cohorts

We used the TCGAbiolinks R package to download

data of 517 TCGA-LUAD primary tumor samples

and matched nontumor samples, including somatic

mutation and masked CNV segment data, RNA

sequencing data, and clinical data [17]. We down-

loaded corresponding patient follow-up data from the

cBioportal database (http://www.cbioportal.org/). In

addition, we downloaded data of 788 primary LUAD

tumor samples and matched control samples from the

MSK-IMPACT clinical sequencing cohort using the

cBioportal website.

2.2. Focal-level and arm-level identification

There were multiple primary tissue samples for some

of the patients; however, to ensure consistency of the

CDKN2A/B mutation status, we only used one pri-

mary tumor sample from each patient. If more than

one sample was available for a given patient, we

selected a single sample with HD of CDKN2A or

CDKN2B (CDKN2A/BHD). In cases where a single

patient had more than one sample with CDKN2A/

BHD, we randomly selected one of these samples to

use.

To identify genes with somatic CNV, we used GIS-

TIC2 [18] with the following parameters: -ta 0.1, -

armpeel 1, -brlen 0.7, -cap 1.5, -conf 0.99, -td 0.1, -

genegistic 1, -gcm extreme, -js 4, -maxseg 2000, -qvt

0.25, -rx 0, -savegene 1, -broad 1, and all other param-

eters set to default values. The copy number for each

gene was given in an all_thresholded.by_genes.txt file,

with values of �2, �1, 0, 1, and 2 representing deep

deletion (HD), shallow deletion, diploid, low-level

gain, and high-level gain, respectively.

2.3. Mutation signature analysis

We extracted mutation signatures from the samples

using the Sigminer R package. First, we used the

read_maf method to load all the somatic mutations

and tallied components in each sample. We then gener-

ated a sample-by-component matrix using the sig_tally

method. Then, we used sig_fit to perform a signature

decomposition of the mutation catalog and compute

the absolute exposure of all COSMIC mutation signa-

tures from the spectrum of each sample. This resulted

in an absolute exposure matrix, in which the rows
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represented the samples and the columns represented

the COSMIC signatures. We then used Fisher’s exact

test to determine whether or not each signature was

associated with CDKN2A/B CNV status.

2.4. Immunity analysis and gene set enrichment

analysis

We performed immunity analysis using the GSVA [19]

package and 25 previously reported immune-related

gene sets covering the innate and adaptive immune

responses [20]. This produced an enrichment score for

each immune-related gene set in each sample. We used

gene set enrichment analysis (GSEA) software to iden-

tify biological pathways that were differentially enriched

(P-value > 0.05 and absolute value of enrichment

score > 1) between tumor molecular subtypes [21].

2.5. Statistical analysis

We performed Kaplan–Meier survival analyses imple-

mented in the R package survival. We then used log-

rank tests to determine significant differences in sur-

vival curves. We reported median overall survival (OS)

with 95% confidence intervals in relevant cases. We

used Fisher’s exact tests to determine associations

between genomic characteristics and clinical character-

istics and to determine which mutations/CNV co-

occurred or were mutually exclusive with CDKN2A/

BHD. We used Mann–Whitney tests to compare differ-

ences between different tumor molecular subtypes. P-

values less than 0.05 were considered statistically

significant.

3. Results

3.1. CDKN2A/BHD was highly recurrent and

indicated poor prognosis in LUAD

We first investigated the prevalence of CDKN2A and

CDKN2B HD in two independent LUAD cohorts. In

the TCGA-LUAD cohort, the frequencies of CDKN2A

HD and CDKN2B HD were 19.0% (98/517) and

18.4% (95/517), respectively. Co-deletion of both genes

within the same patient was very common (P < 0.001,

OR = 7572.3), so we decided to analyze both genes in

combination. The patient characteristics of the TCGA-

LUAD cohort are described in Table S1. HD of

CDKN2A or CDKN2B (CDKN2A/BHD) was the most

prevalent CNV event in the TCGA-LUAD cohort,

appearing in 19.1% (99/517) of the patients.

CDKN2A/BHD was also one of the prevalent CNV

events in the MSK-IMPACT cohort, appearing in

5.7% (45/788) of the patients. These results confirmed

that CDKN2A/BHD is a common genetic event in

LUAD, which is consistent with previous reports [22].

We next analyzed the potential influence of

CDKN2A/BHD on LUAD outcomes, using disease-fee

survival (DFS) and OS as the primary endpoints. In

the TCGA-LUAD cohort, patients with CDKN2A/BHD

tumors had significantly shorter DFS (P = 0.015, HR

0.66, 95% CI 0.45–0.97; Fig. 1A) and OS (P = 0.040,

HR 0.70, 95% CI 0.49–1.02; Fig. 1B) than patients

with wild-type CDKN2A/B (CDKN2A/BWT) tumors.

CDKN2A/BHD was also associated with shortened OS

in the MSK-IMPACT cohort (P < 0.001, HR 0.45,
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Fig. 1. Relationship between CDKN2A/B homozygous deletion and survival in the TCGA-LUAD cohort and the MSK-IMPACT cohort. (A)

Disease-free survival in patients with CDKN2A/B homozygous deletion (n = 87) or wild-type CDKN2A/B (n = 373) in the TCGA-LUAD cohort.

(B) Overall survival in patients with CDKN2A/B homozygous deletion (n = 99) or wild-type CDKN2A/B (n = 409) in the TCGA-LUAD cohort.

(C) Overall survival in patients with CDKN2A/B homozygous deletion (n = 43) or wild-type CDKN2A/B (n = 678) in the MSK-IMPACT cohort.

The log-rank test was used to compare the survival times between two groups. A 95% confidence interval was used to indicate the

precision of the estimated hazard ratio.
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95% CI 0.24–0.85; Fig. 1C). The MSK-IMPACT

cohort did not provide DFS data. These results con-

firmed CDKN2A/BHD poor prognostic factor in

LUAD.

3.2. CDKN2A/BHD tumors had disparate

mutational features compared with CDKN2A/BWT

tumors

To explore the prognostic mechanism of CDKN2A/

BHD in LUAD, we first analyzed common clinical

characteristics including age, gender, smoking history,

and tumor stage. The results revealed no significant

differences in clinical characteristics between patients

with CDKN2A/BHD and patients with CDKN2A/BWT

in the TCGA-LUAD cohort (Figs. 2A-D). Further-

more, although high tumor mutational burden (TMB)

was associated with better prognosis in a previous

study of patients with resected LUAD [23], there was

no significant difference in TMB between CDKN2A/

BHD tumors and CDKN2A/BWT tumors in the TCGA-

LUAD cohort (Fig. 2E).

We compared the genomic landscapes between

CDKN2A/BHD tumors and CDKN2A/BWT tumors in

the TCGA cohort to identify potentially prognostic

genetic factors. The most frequently mutated genes,

including TP53 (46% vs. 48%), TTN (43% vs.

46%), MUC16 (35% vs. 41%), and CSMD3 (33% vs.

38%), had roughly equivalent mutation frequencies in

both molecular subtypes of tumors (Fig. 2F). Also, the

mutation frequencies of 11 genes that represented the

union of the top 10 recurrently mutated genes in both

tumor molecular subtypes were similar (Fig. 2G). We

next used Fisher’s exact tests to comprehensively

examine co-occurring and mutually exclusive mutation

events. The results showed that mutations in several

genes either co-occurred (e.g., EGFR) or were mutually

exclusive (e.g., RB1) with CDKN2A/BHD (Fig. 2H).

Further analysis showed that co-occurring or mutually

exclusive mutations were not prognostic in the TCGA

cohort (Fig. S1A,B), indicating that the prognostic

effect of CDKN2A/BHD was not influenced by these

mutations.

To identify the processes driving mutagenesis, we

analyzed all the samples in the TCGA-LUAD cohort

to determine the proportion of mutations in each sam-

ple that were attributable to COSMIC mutational sig-

natures (v2) on the basis of their flanking trinucleotide

context. We then used Fisher’s exact test to test

whether each COSMIC signature was associated with

CDKN2A/BHD. We found significant associations for

three out of 30 COSMIC signatures: signature 4 (asso-

ciated with tobacco use; OR = 0.53 [0.32–0.89],
P = 0.02) and signatures 15 and 26 (associated with

defective DNA mismatch repair; OR = 2.26 [1.24–
4.05], P = 0.01; Fig. 2I).

We also compared mutations in 10 typical signaling

pathways between CDKN2A/BHD tumors and CDKN2A/

BWT tumors in the TCGA-LUAD cohort. If a given path-

way contained at least one mutated gene, then we consid-

ered the pathway to be mutated. We found that the

NOTCH signaling pathway was more likely to mutated

in CDKN2A/BWT tumors than in CDKN2A/BHD tumors

(P = 0.05; Fig. 2J).

3.3. Variation causing loss of IFN-I function was

the most frequent co-occurring CNV event with

CDKN2A/BHD

Next, we investigated the difference in CNV between

CDKN2A/BHD tumors and CDKN2A/BWT tumors to

identify potentially prognostic CNV events. The fre-

quencies of copy-number amplification and deletion in

each chromosome region are shown in Fig. 3A. The

results showed that the CDKN2A/BHD tumors had a

high frequency of deletion in the chromosome 9p

region. Differences in copy-number amplifications

between the CDKN2A/BHD tumors and the CDKN2A/

Fig. 2. Comparison of clinical characteristics and genomic features between patients with CDKN2A/B homozygous deletion and patients

with wild-type CDKN2A/B. The associations between CDKN2A/B CNV status (CDKN2A/B homozygous deletion: n = 99, wild-type CDKN2A/

B: n = 418) and (A) age, (B) smoking history, (C) gender, and (D) tumor stage (CDKN2A/B homozygous deletion: n = 98, wild-type CDKN2A/

B: n = 411). (E) Comparison of mutational burden between tumors with CDKN2A/B homozygous deletion (n = 96) and tumors with wild-

type CDKN2A/B (n = 407). (F) The mutation landscape of tumors with CDKN2A/B homozygous deletion (n = 96). (G) Comparison of the

frequencies of recurrently mutated genes between tumors with CDKN2A/B homozygous deletion (n = 96) and tumors with wild-type

CDKN2A/B (n = 407). (H) Mutations that co-occurred or were mutually exclusive with CDKN2A/B homozygous deletion (n = 96, wild-type

CDKN2A/B: n = 407). (I) The distribution of mutational signatures in tumors with CDKN2A/B homozygous deletion (n = 96) and tumors with

wild-type CDKN2A/B (n = 407). The graph showed the estimates and 95% confidence intervals. (J) The distribution of mutant pathways in

tumors with CDKN2A/B homozygous deletion (n = 96) and tumors with wild-type CDKN2A/B (n = 407). (A, E) P-values were calculated by

Mann–Whitney test. The centerline of the boxplot represents the median, while the lower and upper limits of the box correspond to the

25th and 75th percentiles. Whiskers extend from the box limit to the minimum or maximum, not exceeding the 1.5 * quartile range. (B, C,

D, H, I, J) P-values were calculated by Fisher’s test.
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Fig. 3. Genome-wide somatic copy-number variations in patients with wild-type CDKN2A/B and patients with CDKN2A/B homozygous

deletion. (A) The frequencies of genome-wide somatic copy-number gain (top) and loss (bottom) in tumors with CDKN2A/B homozygous

deletion (n = 99, red line) and wild-type CDKN2A/B (n = 418, blue line). Significantly different gain (B) or loss (C) frequencies of cytobands in

tumors with CDKN2A/B homozygous deletion (n = 99) versus tumors with wild-type CDKN2A/B (n = 418). Comparison of (D) tumor ploidy,

(E) whole-genome doubling, and (F) genome-instability index between tumors with CDKN2A/B homozygous deletion (n = 99) and tumors

with wild-type CDKN2A/B (n = 418). (G) Copy-number variation that was co-occurring or mutually exclusive with CDKN2A/B homozygous

deletion (n = 99). (B, C, E, G) P-values were calculated by Fisher’s test. (D, F) The centerline of the boxplot represents the median, while
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maximum, not exceeding the 1.5 * quartile range. P-values were calculated by Mann–Whitney test.
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BWT tumors mainly appeared on chromosomes 14 and

15 (Fig. 3B), whereas differences in copy-number dele-

tions appeared on chromosomes 5, 9, 12, 14, 18, 19,

and 20. The most significant copy-number deletions

are shown in Fig. 3C. There were no significant differ-

ences in genome-instability index, whole-genome dou-

bling, or tumor ploidy between the two

groups (Fig. 3D,E,F). These results suggested that

CDKN2A/BHD LUAD is not associated with broad

chromosome-level instability, which contributes to

poor prognosis by accelerating the development of

anticancer drug resistance [24].

We further analyzed the focal and arm-level copy-

number profiles of the CDKN2A/BHD and CDKN2A/

BWT tumors using GISTIC2.0. The CDKN2A/BHD

tumors showed a higher degree of arm-level CNV than

the CDKN2A/BWT tumors, and the difference was

most pronounced in deletions including 9p, 9q, 18q,

and Xp (Fig. 4A). We also identified 41 regions of sig-

nificant focal-level CNV in the CDKN2A/BHD tumors

(FDR < 0.25; Fig. 4C), including 19 regions of recur-

rent amplification covering common drivers such as

EGFR, MET, FGFR1, MYC, and KRAS, and 22

regions of recurrent deletion, which contained

NOTCH2, ATM, and CDKN2A. The frequently

mutated 9p21.3 region, where CDKN2A and CDKN2B

are located, contains numerous IFN-I genes, which

were the sites of the most common homozygous dele-

tions that co-occurred with CDKN2A/BHD (Fig. 3G).

3.4. Poor outcomes in CDKN2A/BHD LUAD were

associated with IFN-IHD genetic events

IFN-I is a proinflammatory cytokine induced by

viruses and other environmental stressors. It is also an

important driver of anti-tumor immunity, potentially

enhancing the ability of immune cells to clear tumor

cells [25]. Therefore, we asked whether IFN-I variation

was associated with outcomes in CDKN2A/BHD

LUAD. We compared survival among patients with

CDKN2A/BWT tumors and patients with CDKN2A/

BHD tumors with or without accompanying homozy-

gous deletion in all IFN-I genes (CDKN2A/BHDIFN-

IHD and CDKN2A/BHDIFN-IWT, respectively). We

found that the patients with CDKN2A/BHDIFN-IHD

tumors had shorter DFS (P < 0.001, HR 0.42, 95%

CI 0.22–0.81) and OS (P = 0.02, HR 0.56, 95% CI

0.31–1.03) than the patients with CDKN2A/BWT

tumors (Fig. 5A), whereas there was no difference

between the patients with CDKN2A/BHDIFN-IWT

tumors and the patients with CDKN2A/BWT tumors in

DFS (P = 0.58, HR 0.88, 95% CI 0.55–1.41; Fig. 5C)
or OS (P = 0.32, HR 0.81, 95% CI 0.52–1.27;

Fig. 5D). These results indicated that concomitant

functional deletions of IFN-I genes contribute to the

prognosis of CDKN2A/BHD LUAD.

3.5. Suppression of the tumor immune

microenvironment contributed to poor prognosis

in CDKN2A/BHDIFN-IHD LUAD

It was reported that IFN-IHD in human cancer was

associated with immunotherapy resistance [26]. To fur-

ther explore how the co-deletion of IFN-I influences

outcomes in CDKN2A/BHD LUAD, we examined the

tumor immune microenvironment by performing an

immunity estimation of 25 gene sets associated with

innate and adaptive immunity. A detailed gene list of

the 25 gene sets is shown in Table S2. Comparison of

the enrichment scores for the 25 gene sets between

CDKN2A/BHDIFN-IHD tumors and CDKN2A/

BHDIFN-IWT tumors showed that six immune-related

gene sets were relatively downregulated in the

CDKN2A/BHDIFN-IHD tumors, including signatures

related to inflammatory response, acute inflammatory

response, JAK-STAT signaling, adaptive immune

response, macrophage activation, and myeloid cell

activation (Fig. 6A-F). The results for the other 19

gene sets are shown in Fig. S2.

A pathway enrichment analysis based on the GSEA

results showed that negative regulation of the canoni-

cal WNT signaling pathway, negative regulation of

DNA binding, and negative regulation of double-

strand break repair via homologous recombination

were enriched in the CDKN2A/BHDIFN-IHD tumors

compared with the CDKN2A/BHDIFN-IWT tumors. In

the CDKN2A/BHDIFN-IWT tumors, IFN-I receptor

binding, T helper cell differentiation, Tab cell differen-

tiation, CD4ab T cell differentiation, and myeloid cell

development were upregulated (Fig. 6G,O). IFN-I can

activate the STAT3/4-granzyme B pathway in tumor-

infiltrating CD8+ T cells, inhibit tumor growth [27,28],

and directly maintain the clonal expansion of CD4 T

cells to fight virus infection [29]. We compared several

key marker genes in activated CD4+ T cells, activated

CD8+ T cells, and granzymes between CDKN2A/

BHDIFN-IWT tumors and CDKN2A/BHDIFN-IHD

tumors. KNTC1 (marker for activated CD4+ T cell)

and AHSA1 (marker for activated CD8+ T cell) had

significantly higher expression levels in CDKN2A/

BHDIFN-IHD tumors, whereas there were no significant

differences in granzymes genes (Fig. 7A,B,C). KNTC1

knockdown was previously shown to suppress cell pro-

liferation and viability in various cancers [30–32].
AHSA1 is a therapeutic target for the treatment of

multiple myeloma [33]. IFN-I signaling pathways in
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Fig. 4. Significant arm-level and focal somatic copy-number variations in patients with wild-type CDKN2A/B and patients with CDKN2A/B

homozygous deletion. (A) Somatic CNV of arm-level amplifications and deletions in CDKN2A/B wild-type (n = 99) and CDKN2A/B

homozygous deletion (n = 418). P-values were calculated by Fisher’s test. (B) Somatic CNV of focal amplifications and deletions in CDKN2A/

B wild-type (n = 418) and (C) CDKN2A/B homozygous deletion (n = 99).
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tumor cells are associated with the efficacy of immune

checkpoint (such as PD1 and PD-L1) inhibitor immu-

notherapy [34,35]. However, our results showed that

PD1/PD-L1 expression was not significantly different

between CDKN2A/BHDIFN-IWT tumors and

CDKN2A/BHDIFN-IHD tumors (Fig. 7D,E). Innate

immune cells respond to type I IFNs by enhancing

antigen presentation and production of immune

response mediators such as cytokines and chemokines

[36,25]. Expression of the chemokine receptor

CX3CR1, which has a major role in proinflammatory

and anti-inflammatory responses [37], was lower in

CDKN2A/BHDIFN-IHD tumors than in CDKN2A/

BHDIFN-IWT tumors (Fig. 7F). We observed similar

results for IFNA1. Conversely, expression of XCL1,

which when produced by tumor cells may induce PD1/
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Fig. 5. Kaplan–Meier curves comparison of disease-free survival and overall survival between tumors with wild-type CDKN2A/B and tumors

with CDKN2A/B homozygous deletion and wild-type IFN-I/IFN-I homozygous deletion. Differences in (A) disease-free survival and (B) overall

survival between patients with homozygous deletion of both CDKN2A/B and IFN-I (A: n = 30, B: n = 34) and patients with wild-type

CDKN2A/B (A: n = 373, B: n = 409). Differences in (C) disease-free survival and (D) overall survival between patients with CDKN2A/B

homozygous deletion and wild-type IFN-I (C: n = 57, D: n = 65) and patients with wild-type CDKN2A/B (C: n = 373, D: n = 409). (A, B, C, D)

The log-rank test was used to compare the survival times between two groups. A 95% confidence interval was used to indicate the

precision of the estimated hazard ratio.
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Fig. 6. Comparison of immune-related gene sets and pathway enrichment analysis between two different IFN-I CNV statuses in patients

with CDKN2A/B homozygous deletion. (A–F) Comparison of immune-related gene sets between tumors with homozygous deletion of both

CDKN2A/B and IFN-I (n = 34) and tumors with CDKN2A/B homozygous deletion and wild-type IFN-I (n = 65). The centerline of the boxplot

represents the median, while the lower and upper limits of the box correspond to the 25th and 75th percentiles. Whiskers extend from the

box limit to the minimum or maximum, not exceeding the 1.5 * quartile range. P-values were calculated by Mann–Whitney test. (G–L)

Pathways with significant enrichment in tumors with homozygous deletion of both CDKN2A/B and IFN-I. (M-O) Pathways with significant

enrichment in tumors with CDKN2A/B homozygous deletion and wild-type IFN-I.
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Fig. 7. Boxplots for gene expression of immune-related biomarkers. (A) activated CD4+ T cell, (B) activated CD8+ T cell, (C) granzymes, (D)

PD1, (E) PD-L1, (F) chemokines, and (G) cytokines between tumors with homozygous deletion of both CDKN2A/B and IFN-I (n = 34) and

tumors with CDKN2A/B homozygous deletion and wild-type IFN-I (n = 65). The centerline of the boxplot represents the median, while the

lower and upper limits of the box correspond to the 25th and 75th percentiles. Whiskers extend from the box limit to the minimum or

maximum, not exceeding the 1.5 * quartile range. P-values were calculated by Mann–Whitney test.
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PD-L1 interaction and dysfunction of CD8+ T cells in

the tumor microenvironment [38], was higher in

CDKN2A/BHDIFN-IHD tumors than in CDKN2A/

BHDIFN-IWT tumors (Fig. 7G).

These results indicated that IFN-I co-deletion con-

tributed to poor outcomes in CDKN2A/BHD LUAD

by altering the tumor immune microenvironment.

4. Discussion

Recent studies suggested that CDKN2AHD is one of

the most frequent genetic alterations in many human

cancers, including LUAD [39]. Loss of CDKN2A has

been associated with poor clinical prognosis and tumor

progression in lung cancer [40]. However, the mecha-

nism by which CDKN2A/BHD leads to poor prognosis

has not yet been revealed. We analyzed the genomic

events, tumor microenvironment characteristics, and

clinical outcomes associated with CDKN2A/BHD

LUAD and identified a mechanism involving IFN-I

that leads to poor prognosis.

We confirmed that CDKN2A/BHD LUAD was asso-

ciated with worse outcomes than CDKN2A/BWT

LUAD. Patients in the TCGA and MSK-IMPACT

cohorts with CDKN2A/BHD LUAD had shorter OS

than with patients with CDKN2A/BWT LUAD. These

results were consistent with those of previous lung can-

cer studies [15,40]. Indeed, prognostic effects of

CDKN2A/BHD have been observed in a series of can-

cers [6–12]. A pan-cancer study of chromosome arm-

level CNV found that deletions on the 9p arm, which

contains the CDKN2A/B genes, were among the most

substantial arm-level events in 33 cancer types [41].

Further survival analysis based on a Cox proportional

hazard model revealed that CDKN2A/B copy-number

loss was one of the most significant prognosis-related

factors in low-grade glioma. Therefore, we hypothe-

sized that CDKN2A/B should be considered in the

management of clinical lung cancer.

A previous study indicated that CDKN2A/BHD

influenced the EGFR-TKI response [15]. Although our

comprehensive screening of the genomic landscape

identified mutation events that either co-occurred or

were mutually exclusive with CDKN2A/BHD in

LUAD, none of these events had any prognostic value

in the TCGA cohort. Therefore, additional cohort

data are needed to study the interaction between

CDKN2A/BHD and EGFR in different treatment

backgrounds.

Analysis of gene copy numbers revealed a potential

prognostic mechanism for CDKN2A/BHD in LUAD.

We found no prognostic influence of chromosome

instability, whole-genome doubling, or tumor ploidy,

all of which were previously associated with accelerat-

ing resistance to anticancer chemotherapy, targeted

therapy, and immunotherapy [42,24,43]. However,

functional deletions of segmentally adjacent IFN-I

genes frequently co-occurred with CDKN2A/BHD,

affecting 34.3% of the CDKN2A/BHD LUADs in

TCGA cohort. Patients with CDKN2A/BHDIFN-IHD

tumors, but not those with CDKN2A/BHDIFN-IWT

tumors, had worse outcomes than patients with

CDKN2A/BWT tumors, indicating a key role of IFN-I

dysfunction in determining the prognosis of CDKN2A/

BHD LUAD.

Recent studies showed that IFN-I is a crucial effec-

tor cytokine involved in antiviral immunity and medi-

ates antineoplastic effects against several malignancies,

which were attributed to its immunostimulatory func-

tions [25]. Our analysis showed that functional damage

to IFN-I negatively regulated several immune

responses, including T lymphocyte differentiation,

IFN-I receptor binding, inflammatory response, adap-

tive immune response, and JAK-STAT signaling. IFN-

I and IFN-I receptor heterodimer function as activa-

tors of JAK-STAT signaling, which results in the

recruitment of immune-related signal transducers [44].

These results indicated that loss of IFN-I function

leads to a series of immune response signaling disor-

ders. Furthermore, the clinical activity of a wide range

of chemotherapeutic, radiotherapeutic, and immuno-

therapeutic interventions relies on the induction of

IFN-I signaling in malignant cells, tumor-infiltrating

myeloid cells, or lymphoid organs [25]. Accordingly,

our results suggest that reduced myeloid cell activation

might be related to IFN-I deletion. In addition,

CDKN2A/BHDIFNHD tumors were associated with

canonical WNT signaling pathway negative regulation.

Disorganization of canonical WNT signaling should

be considered as a prognostic mechanism in cancer, as

persistent WNT pathway activation was found to

endow cancer cells with self-renewing properties and

was linked to therapy resistance [45].

We found that the negative prognostic effect of

CDKN2A/BHD in LUAD was dependent on loss of

IFN-I function. It has been reported that oncogenes

such as MYC and KRAS can regulate immune

response by suppressing IFN-I pathways in various

cancers. For example, the combined actions of endoge-

nously expressed mutant KRAS and modestly deregu-

lated MYC expression led to NK cell-mediated

immune escape through inhibition of IFN-I pathways

in pancreatic ductal adenocarcinoma and lung cancer

[46,47]. Overexpression of MYC suppresses the recruit-

ment and activation of immune cells by inhibiting the

induction of interferon signaling in triple-negative
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breast cancer [48]. These studies further confirmed that

repression of the type I Interferon pathways underlies

oncogenes or tumor suppressor genes-dependent eva-

sion of immune cells in lung cancer.

5. Conclusions

We showed that CDKN2A/BHD is associated with poor

prognosis in LUAD because of frequent co-occurrence

of IFN-I functional loss, which leads to a suppressed

tumor immune microenvironment.
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