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Single Photon Emission Computed
Tomography/Positron Emission

Tomography Molecular Imaging for
Parkinsonism: A Fast-Developing Field

Antoine Verger, MD, PhD ,1,2 Stephan Grimaldi, MD, MSc,3

Maria-Joao Ribeiro, MD, PhD,4 Solène Frismand, MD,5 and Eric Guedj, MD, PhD6,7,8

The early differential diagnosis of Parkinson disease and atypical parkinsonism is a major challenge. The use of single
photon emission computed tomography (SPECT)/positron emission tomography (PET) molecular imaging to investigate
parkinsonism is a fast-developing field. Imaging biomarker research may potentially lead to more accurate disease
detection, enabling earlier diagnosis and treatment. This review summarizes recent SPECT/PET advances in radiophar-
maceuticals and imaging technologies/analyses that improve the diagnosis of neurodegenerative parkinsonism. We are
currently witnessing a turning point in the field. Integrating molecular imaging as a diagnostic technique represents an
opportunity to reassess the strategies for diagnosing neurodegenerative parkinsonism.
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The number of patients with neurodegenerative parkin-
sonism more than doubled between 1990 and 2015. It

is projected to increase again by as much as 56% by 2030.
It affects 1 in 120 people older than 45 years.1 Neurode-
generative parkinsonism exhibits extensive clinical heteroge-
neity and comprises many different neurodegenerative
diseases (Parkinson disease [PD], dementia with Lewy bod-
ies [DLB], multiple system atrophy [MSA], corticobasal
degeneration [CBD], progressive supranuclear palsy [PSP]).
The differential diagnosis of parkinsonism during early dis-
ease still presents major challenges to clinicians.

The differential diagnosis can be narrowed down
based on a combination of clinical and paraclinical

features. Atypical parkinsonism is characterized by early
onset (within the first 5 years) of symptoms that are
unusual for PD.2 In addition, response to dopaminergic
treatment is reduced.3 But it is only definitively diagnosed
after postmortem pathological examination of the brain
(gold standard for protein anomalies). The international
diagnostic criteria for atypical parkinsonism are based on
disease cohorts with postmortem brain data. The physi-
cian’s diagnosis therefore relies on identifying patient fea-
tures that correspond to the classification criteria.
Compared to pathological examinations, this approach has
a higher probability of diagnosing PD (>95% correlation)
than atypical parkinsonism (approximately 70%).4 There
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may also be some degree of variability between the pro-
gression of individual forms of atypical parkinsonism.
However, these are relatively small compared to the differ-
ences in complications (falls, swallowing disorders, severity
of dysautonomia) and survival periods between PD and
atypical parkinsonism. Atypical parkinsonism requires
more regular and multidisciplinary evaluations to prevent,
detect, and treat complications compared to PD. The
organization of health care therefore needs to be managed
differently for these two conditions. Atypical parkinsonism
patients have shorter median survival times (ranging from
6 to 7.4 years for PSP compared to 10.7 to >20 years for
PD).5,6 Although the multitude of neurodegenerative dis-
eases that constitute parkinsonism are clinically similar,
their underlying pathophysiological mechanisms are
poorly understood. Molecular imaging that is routinely
performed to assess neurodegenerative parkinsonism may
provide additional diagnostic information and help clarify
specific disease mechanisms (Fig 1).

Current Single Photon Emission Computed
Tomography and Positron Emission
Tomography Imaging in Routine Evaluation
of Parkinsonism
Presynaptic Dopaminergic Imaging
The European Association of Nuclear Medicine and the
Society of Nuclear Medicine and Molecular Imaging
recently published guidelines for dopaminergic imaging of

parkinsonism.7 These guidelines predominantly focus on
two commonly used nuclear medicine examinations of pre-
synaptic dopaminergic function, namely, single photon
emission computed tomography (SPECT) using 123I-labeled
dopamine transporter ligands and positron emission tomog-
raphy (PET) using 18F-fluorodopa (Fig 2A). These differen-
tiate neurodegenerative parkinsonism from other dementias
(particularly DLB from Alzheimer disease [AD]), from other
forms of parkinsonism (drug-induced, psychogenic, and vas-
cular parkinsonism, whose diagnosis requires images to be
fused with magnetic resonance imaging [MRI]) and from
essential tremor. These scans can also detect early degenera-
tive parkinsonism.7 SPECT, with specific 123I-labeled dopa-
mine transporter ligands and 18F-fluorodopa PET, detects
different molecular dopaminergic targets. 123I-labeled dopa-
mine transporter ligands identify presynaptic dopamine
active transporters (DATs). 18F-fluorodopa PET visualizes
L-dopa, which is subsequently decarboxylated to dopamine
by the aromatic L-amino-acid decarboxylase. Both types of
dopaminergic imaging need to take into account
radiotracer–drug interactions prior to performing acquisi-
tions. Current guidelines recommend discontinuing anti-
parkinsonian drugs before 18F-fluorodopa PET imaging.7

DAT and L-dopa targets decrease in parallel but not neces-
sarily synchronously with progression of neurodegenerative
parkinsonism.8 This may be due to the presence of compen-
satory mechanisms in the presymptomatic and early symp-
tomatic phases: a reduction in the number of presynaptic
DATs, which increases the intrasynaptic availability of

FIGURE 1: Flow diagram showing the rationale for performing single photon emission computed tomography (SPECT)/positron
emission tomography (PET) molecular imaging in a patient with parkinsonism. FDG = fluorodeoxyglucose; MIBG =
metaiodobenzylguanidine; MRI = magnetic resonance imaging.
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dopamine, and an upregulation of the fluorodopa to dopa-
mine conversion by aromatic L-amino acid decarboxylase in
nerve terminals.8,9 Clinical 18F-fluorodopa PET studies
focusing on the presymptomatic stage have confirmed the
high sensitivity of the method.10 Albeit performed on a rela-
tively small number of patients, comparative study con-
firmed that SPECT and PET diagnose presynaptic
dopaminergic deficiencies in early stage PD.11

Fluorodeoxyglucose (18F-FDG) PET and
123I-metaiodobenzylguanidine (123I-MIBG) scintigraphy are
also routinely used to evaluate parkinsonism (see Fig 1).12

18F-FDG PET
Brain 18F-FDG PET images glycolytic metabolism in the
brain. It may identify significant levels of brain dysfunc-
tion more consistently than any potential brain atrophies
detected by MRI.13 18F-FDG PET differentially diagnoses
PD and parkinsonian “plus” syndromes at sensitivities and
specificities greater than 75 and 90%.14 This is particu-
larly significant, because differential diagnoses based on
dopaminergic imaging are somewhat limited for these
entities.15 18F-FDG PET provides a number of disease-
specific metabolic patterns. DLB is characterized by the

preservation of posterior cingulate metabolism (as opposed
to posterior associative cortical hypometabolism in the
occipital cortex). PSP is distinguished by prefrontal mesial,
putamen, and pons hypometabolism. CBD displays asym-
metrical frontoparietal hypometabolism. MSA exhibits a
somewhat lesser extent of basal ganglia or cerebellum
hypometabolism (see Fig 2B).16

123I-MIBG Scintigraphy
123I-MIBG scintigraphy/SPECT imaging targets the
peripheral sympathetic noradrenergic stores. It can help
differentiate PD/DLB (decreased cardiac binding) from
MSA and PSP (normal binding) based on their sympa-
thetic myocardial innervations (see Fig 2C). 123I-MIBG
scintigraphy differentiates PD/DLB from cognitive decline
and/or parkinsonism (AD, MSA, PSP, frontotemporal
lobe and vascular dementia) with a specificity of 91% and
sensitivity of 94%.17 Advances in 18F-fluorodopa PET
heart scans18 and PET MIBG radiotracer analogues19 may
further enhance these performances. Current parkinson-
ism SPECT/PET diagnoses rely on a combination of
dopaminergic imaging, 18F-FDG PET, and 123I-MIBG
scintigraphy. Imaging biomarker research has the potential

FIGURE 2: Representative single photon emission computed tomography (SPECT)/positron emission tomography (PET) images
investigating parkinsonism from clinical routine practice radiotracers in normal subjects and patients with parkinsonism.
(A) SPECT with 123I-labeled dopamine transporter ligands (left panel) and 18F-fluorodopa PET (right panel). (B) 18F-FDG PET.
(C) 123I-metaiodobenzylguanidine scintigraphy. CBD = corticobasal degeneration; DLB = dementia with Lewy bodies;
MSA = multiple system atrophy; PD = Parkinson disease; PSP = progressive supranuclear palsy.
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to improve disease recognition and allow earlier diagnosis
and treatment.20 The development of in vivo biomarkers
may be envisaged to follow the progress of personalized
drug treatments. In vivo biomarkers may also become
integrated in the earliest stages of parkinsonism rehabilita-
tion. This review summarizes recent advances in radio-
pharmaceuticals and imaging technologies/analyses that
improve the diagnosis of parkinsonism.

Advances in Radiopharmaceuticals
The new radiotracers developed for imaging of parkinson-
ism target either dopaminergic function or a pathological
process.

New PET Radiotracers for Dopaminergic
Imaging
New dopaminergic PET tracers target presynaptic
DATs.9,21,22 In addition to overcoming the technical per-
formance limitations of SPECT, PET imaging of DATs
with 18F-FE-PE2I (N-[3-iodoprop-2E-enyl]-2β-carbo-18F-
fluoroethoxy-3β-[4-methylphenyl]-nortropane) allows rou-
tine performance of 10-minute static acquisitions only
30 minutes after administration of radiotracer. This

represents a definite advantage over DAT SPECT imag-
ing.23 Another dopaminergic PET radiotracer that targets
DATs, the [18F] (2S,3S)-methyl-8-([E]-4-fluorobut-2-en-
1-yl)-3-(p-tolyl)-8-azabicyclo(3.2.1)octane-2-carboxylate,
namely, 18F-LBT-999, is being developed (Fig 3A).24

Additional molecular dopaminergic pathway targets
are also being developed. 18F-FP-DTBZ ([+]-α-9-O-
[3-18F-fluoropropyl]-dihydrotetrabenazine) is a PET
radiotracer that specifically binds to VMAT2 (vesicular
monoamine transporter type 2), an integral membrane
protein that transports dopamine from the cytoplasm into
synaptic vesicles.25 This PET radiotracer is expected to
suffer from the same limitations as 18F-fluorodopa PET
due to potential compensation phenomena at the early
stages of PD. The iodobenzamide, 123I-IBZM, is used for
postsynaptic dopaminergic SPECT imaging and 11C-
raclopride, 18F-fallypride, and 18F-desmethoxyfallypride
for PET imaging.26 Postsynaptic dopaminergic imaging
predominantly aims to differentiate PD from atypical par-
kinsonism.26 Although radiotracers for this application are
still in the research phase, one report already suggests that
18F-FDG PET outperforms these postsynaptic dopaminer-
gic radiotracers in terms of the differential diagnosis of
PD/DLB and atypical parkinsonism.15

Tau PET Imaging
The cognitive proteinopathy field27 has predominantly
focused on imaging targets involved in the neurodegenera-
tive process. Tau PET imaging is undoubtedly the best
choice for the differential diagnosis of PD/DLB and other
forms of atypical parkinsonism (see Fig 3B). The atypical
parkinsonism PSP and CBD are tauopathies. PSP patients
exhibit increased 18F-AV-1451 signals in the pallidum,
midbrain, dentate nucleus of the cerebellum, thalamus,
caudate nucleus, and frontal regions compared to con-
trols.28 CBD patients have increased 18F-THK5351 reten-
tion contralateral to the side with the greater cortical
dysfunction.29 These non-AD tauopathy deposits consist
mainly of 4R tau, located in subcortical nuclei. Because
AD is associated with 3R and 4R deposits, there is sub-
stantial clinical and neuropathological overlap between
these tauopathies. Given that many regions of interest in
corticobasal syndrome (CBS) and PSP largely coincide
with off-target binding (eg, with monoamine oxidase B in
the basal ganglia), there is substantial overlap of tracer
binding load across the different diagnostic groups. This is
particularly true for 18F-AV-1451, which has been tested
in the largest number of patients.30 In CBS and PSP, tau
burden determined by neuropathological assessment and
in vivo 18F-AV-1451 imaging yield inconsistent results.
18F-AV-1451 PET, for instance, identifies in vivo areas
with high postmortem tau in some brain areas but not

FIGURE 3: Representative positron emission tomography
images investigating parkinsonism with new radiotracers.
(A) 18F-LBT-999 targeting the dopamine transporters in a
normal subject (left panel) and a Parkinson disease
(PD) patient (right panel). (B) 18F-Flortaucipir targeting the
tau protein in a normal subject (left panel) and a tauopathy
patient (Alzheimer disease, right panel). LBT = Laboratoire
Biophysique de Tours.
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others. This presumably reflects a reduced sensitivity of
the tracer to non-AD tau.31,32 In vitro staining and/or
autoradiography studies have, however, highlighted that
tracers of the THK family do bind to CBS and PSP tau
deposits to some extent, which is consistent with in vivo
findings.33 A new generation of more specific 4R tau
tracers with less off-target binding is needed to improve
the in vivo diagnosis of non-AD tauopathies.

α-Synuclein PET Imaging
Specific PET tracers targeting α-synuclein aggregates have
great potential for diagnosing movement disorders but are
currently exclusively in the research phase.34 The identifi-
cation of any additional transporter targets that facilitate
movement across the blood–brain barrier is also required.
The recently identified small, high α-synuclein affinity
molecules are nevertheless not ideal lead compounds for
PET radiotracer development. Although other different
chemical entities that bind to α-synuclein, such as
anle138b (11C-MODAG-001), have been described, their
selectivity for β-amyloid and tau fibrils still needs to be
resolved.35

Neuroinflammation PET Imaging
There are a number of PET radiotracers that target neu-
roinflammation in parkinsonian disorders.36,37 18F-DPA-

714 and 18F-GE-180 are translocator protein (TSPO)
ligands. TSPO is an outer mitochondrial membrane pro-
tein expressed in activated microglial cells and macro-
phages in the brain. It is a marker of nervous system
inflammation. Increased 18F-DPA-714 and 18F-GE-180
radiotracer uptake has been reported in the pons, basal
ganglia, frontal and temporal cortex, and midbrain of PD
patients compared to normal controls.36 Although PET
neuroinflammation imaging assesses one aspect of neuro-
degenerative parkinsonian disorder neuropathology
(ie, TSPO expression), it is unable to diagnose specific
parkinsonian disorders. There is no consensus about the
optimal method for analyzing PET data or for selecting an
anatomically defined reference region. This is because
TSPO is expressed constitutively in the brain and because
neurodegenerative pathologies are perhaps more wide-
spread than previously assumed. The recent identification
of populations of high- and low-affinity TSPO ligand
binders has further complicated the issue.37 The signifi-
cance and potential clinical relevance of PET radiotracers
targeting neuroinflammation requires further research.

Other innovative treatments that were initially iden-
tified in preclinical studies are currently being evaluated in
a number of clinical trials. These include antibody-based
treatments (anti–α-synuclein, antitau), iron chelators, and
α-synuclein and tau aggregation inhibitors.38 These

FIGURE 4: Pathophysiological mechanisms of single photon emission computed tomography (SPECT)/positron emission
tomography (PET) radiotracers in neurodegenerative parkinsonism. FDG = fluorodeoxyglucose; MIBG =
metaiodobenzylguanidine.
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treatments could potentially influence the course of disease
and improve patients’ and caregivers’ quality of life. It also
highlights the importance of developing early PET brain
neurodegeneration biomarkers that closely reflect the path-
ophysiology of these diseases, to rapidly identify patient
profiles that would benefit from being included in these
therapeutic trials. This would maximize the chances of
offering patients a treatment that may potentially improve
disease outcome. Figure 4 summarizes the pathophysiolog-
ical mechanisms of SPECT/PET radiotracers used to
assess neurodegenerative parkinsonism.

Advances in Imaging Technology
There have been major technological advances in both
SPECT and PET imaging that have facilitated the use of
neurotransmission imaging in the practice. First and fore-
most is the widespread deployment of hybrid systems for
morphofunctional imaging.

The strongest neuroimaging associations are
achieved with MRI. This approach integrates two devices
into one system, enabling sequential and simultaneous
bimodal acquisitions to be performed. These hybrid
PET/MRI systems are, however, costly and currently not
widely available. Alternatively, and perhaps more relevant
in terms of current clinical practice, the data can also be
fused after registering acquisitions performed on separate
devices. This combination of information allows identifi-
cation of striatal lesions that may impact the uptake of the
radiotracer and development of bimodal correlations based
on morphofunctional information.39

Large-field cadmium–zinc–telluride (CZT) SPECT
cameras, which provide high performances in terms of
count sensitivity, and spatial and energy resolution, are
now also used for brain imaging.40,41 Up to 2-fold shorter
acquisition times, due to the lower number of counts
required for 123I-labeled dopamine transporter ligands
SPECT imaging with large-field CZT cameras, have been
reported.40 The 360� detector ring configuration of CZT
cameras may further enhance count sensitivity and image
quality by providing focus acquisitions. Brain perfusion
SPECT with 360� CZT cameras has recently been shown
to provide high image quality in high-speed recording
conditions.41 These improvements allow short acquisitions
of as little as 15 minutes, yield high image quality, and
may challenge the cost-effectiveness of dopaminergic PET
imaging systems. Additional specific CZT technology
advances, such as absolute quantifications and dual isotope
acquisitions, may further improve SPECT imaging.

The concomitant evolution of PET systems and dig-
ital PET technologies now offers marked improvements in
image signal/noise ratios and contrast, and has significant

potential for further enhancing spatial resolution.42 Digital
PET systems using silicon photomultipliers improve time-
of-flight resolution, which facilitates routine dynamic PET
recording.43 This is particularly helpful to compute 18F-
fluorodopa influx constants (Ki) from brain time–activity
curves of dynamic PET acquisitions. One advantage of Ki
over the conventional ratio approach is that it provides a
more direct measure of the 18F-fluorodopa decarboxyl-
ation rate constant.44 These dynamic acquisitions are also
expected to come online for the newer dopaminergic PET
radiotracers such as 18F-FE-PE2I.45 Further studies will be
required to directly evaluate the additional value of such
dynamic acquisitions over conventional static ratios for
dopaminergic imaging of parkinsonism.

Advances in Image Analyses
Novel image analysis approaches may further enhance
neurotransmission imaging of parkinsonism. Analyzing
the metabolic connectivity of 18F-FDG PET imaging in
brain pathologies represents a significant shift from evalu-
ating an underlying pathology of local neuronal function
to improving the understanding of long-distance effects
on interconnected neural systems.46 The 18F-FDG meta-
bolic connectivity is based on voxelwise or region of inter-
est methods with or without any a priori assumptions
about the specific neurodegenerative disease, including
PD.46,47 When applied to resting-state 18F-FDG PET
scans of PD patients, this method identifies abnormal
disease-related spatial covariance patterns (PD-related met-
abolic patterns [PDRPs]). PDRPs include numerous cor-
ticostriatopallidothalamocortical pathway components and
are characterized by increased pallidal, thalamic, and pon-
tine metabolic activity, coupled with relative reductions in
the premotor cortex, supplemental motor area, and parie-
tal association areas.48 18F-FDG PET and multivariate
classifications using PDRP features are objective, sensitive
biomarkers of disease stage that may potentially detect
treatment effects during PD progression.49 These disease-
related spatial covariance patterns are starting to be applied
to atypical parkinsonism.48 Prospective application of
these models allowed determination of the probability of
predicting PD, MSA, and PSP based on metabolic covari-
ance patterns. The models were able to predict MSA with
90% specificity and an 85% positive predictive value.50

PSP was predicted with 94% specificity and a 94% posi-
tive predictive value.50 When a movement disorder spe-
cialist is not readily available, the application of such
metabolic patterns improves the diagnostic accuracy by
10 to 15% for PD and 20% for atypical parkinsonism.51

Compared to functional MRI (fMRI), metabolic
18F-FDG PET patterns performed at the group level may
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provide specific advantages. The cerebral metabolic rate of
glucose measured by 18F-FDG PET is known to precede
the relative transient decrease in blood oxygen level–
dependent signals without any magnetic limitations.52

Group-level PET imaging is also expected to yield better
signal-to-noise ratios, variance concentrations, and out-of-
sample replications compared to single-subject–level
fMRI. This is due to the unrivaled sensitivity of PET
imaging to measure concentrations in the subpicomolar
range. The 18F-FDG radiotracer is also more commonly
used and static imaging acquisitions are more easily appli-
cable than dynamic ones.53 These analytical approaches
have now also been applied to dopaminergic imaging54

and have been further validated in patients with move-
ment disorders.55,56 Molecular connectivity modeling
approaches may improve our understanding of neurode-
generative movement disorder pathogeneses and provide a
comprehensive strategy to identify the pathological net-
works involved. A combination of early perfusion scans to
characterize spatial covariance patterns in PD and late
striatal neuroreceptor binding scans were recently per-
formed using 18F-FP-CIT PET imaging. This original
approach provides an alternative to 18F-FDG PET for PD
network quantification. This technique evaluates PDRP
expression and DAT binding using a single tracer in one
scanning session.57

Any discussion of recent advances in image analyses
would be incomplete without the due consideration of
artificial intelligence (AI). Radiotracers for SPECT/PET
molecular imaging need to provide highly reliable binding
specificities to achieve good signal-to-noise ratios. All
molecular images are a compromise between the number
of counts detected for generating a signal and the noise of
nonspecific binding counts. This is particularly true for
the new radiotracers that provide limited binding specific-
ity (tau PET imaging, α-synuclein imaging, neu-
roinflammation imaging), at least until more selective
radiochemicals are developed. AI-based methods may
improve diagnostic assessments in the meantime. Several
dopaminergic imaging studies using AI have reported
accuracy of up to 90% for diagnosing PD. These auto-
mated learning approaches involve machine learning
methods, based on textural analyses, for (1) differentiating
PD and healthy subjects, (2) differentiating PD and vascu-
lar parkinsonism, and (3) discriminating between the dif-
ferent forms of atypical parkinsonism. A 2-center study
using a linear support vector machine (SVM) model dis-
criminated PD from healthy subjects with an accuracy of
82.5%.58 This performance is similar to visual assessment
by nuclear physicians.58 A linear SVM model based on
voxel values of statistical parametric images differentiated
PD from vascular parkinsonism with 90.4% accuracy.59

Both Nicastro et al and Iwabuchi et al were able to differ-
entiate between the different forms of atypical parkinson-
ism by respectively using an SVM model or a
classification and regression tree analysis.60,61 Both
approaches were based on FP-CIT uptake in caudate and
putamen volumes of interest. CBD was correctly
diagnosed with accuracies of up to 83.7% and PSP with
accuracies of up to 94.4%. PSP was found to be associated
with MIBG scintigraphy uptake. A higher degree of
striatal impairment was observed in MSA parkinsonian-
type patients and PSP. CBD patients showed a moderate
reduction in uptake and a higher asymmetrical index.60

DLB was associated with a lower level of impaired puta-
men to caudate ratio compared to the other forms of par-
kinsonism.61 A fully automated artificial neural network
based on deep-learning analyses of dopaminergic imaging
has also been shown to diagnose PD with accuracies of
>90%. This is similar to accuracies obtained by experi-
enced physicians.62 Although these deep-leaning
approaches are better than those based on SVM algo-
rithms in terms of diagnostic performance, they do not
allow easy extraction of features used to classify patients
with parkinsonism. Automated learning approaches also
need further validation in clinical practice. This requires
multicentric studies on well-characterized clinical cohorts.
Extensive multicentric databases, which include healthy
subjects as well as patients, will be needed to collect
enough data to accurately perform these types of analyses.

To conclude, SPECT and PET molecular imaging is
currently at a turning point and is consolidating its posi-
tion in the diagnostic strategy of parkinsonism. The devel-
opment of novel targeted radiopharmaceuticals, the
improvement in performance of technical imaging sys-
tems, and the rapid evolution of new image analysis
approaches improve the diagnosis of neurodegenerative
parkinsonism. These innovations may potentially lead to
more accurate disease detection, enabling earlier diagnosis
and treatment.
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