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Abstract

Introduction

Geographic Information Systems (GIS) and spatial analysis are emerging tools for global

health, but it is unclear to what extent they have been applied to HIV research in Africa. To

help inform researchers and program implementers, this scoping review documents the

range and depth of published HIV-related GIS and spatial analysis research studies con-

ducted in Africa.

Methods

A systematic literature search for articles related to GIS and spatial analysis was conducted

through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion

criteria, articles were screened and key data were abstracted. Grounded, inductive analysis

was conducted to organize studies into meaningful thematic areas.

Results and discussion

The search returned 773 unique articles, of which 65 were included in the final review. 15 dif-

ferent countries were represented. Over half of the included studies were published after

2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV

geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated

a broad range of GIS and spatial analysis applications including characterizing geographic

distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to

HIV care services.

Conclusions

GIS and spatial analysis have been widely applied to HIV-related research in Africa. The

current literature reveals a diversity of themes and methodologies and a relatively young,

but rapidly growing, evidence base.
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Introduction

Geographic Information Systems (GIS) are systems designed to store, manage and display spa-

tial data and aid in analysis and interpretation of spatial data [1, 2]. Spatial analysis are tech-

niques applied to geographic data to measure, interpret, and explore characteristics and

associations [1–4]. Geographic data can include defining the locations of a point in space

(known as point pattern data), quantifying values of a characteristic at a given location (geosta-

tistical data), or describing an entire geographical region (area-level data) [1, 5–7]. With the

rise and increasing accessibility of computing power and relevant software, GIS and spatial

analysis are finding wider audiences and novel applications [3, 8–10].

Notably, GIS and spatial analysis can be powerful tools to understand, prevent, and help

treat diseases. For example, as a visualization aid, GIS software can be used to map the geo-

graphic distribution of disease, associated risk factors, and services available for prevention

and treatment. Furthermore, spatial analysis of this data can analyze risks for disease, epidemic

trends over space and time, and disease hotspots [9, 11]. Taken together, these tools can con-

tribute to the design, planning, and allocation of global health resources for prevention and

treatment services, as well as help to assess intervention impact.

HIV continues to be a major global health threat, particularly in Africa which accounts for

67% of the world’s infections, highlighting a need for additional approaches to understand and

mitigate the epidemic [12]. GIS and spatial analysis techniques have begun to be applied to

HIV-related research in sub-Saharan Africa. However, it is unclear to what extent and depth

these tools have been utilized. In this scoping review focused on providing an overview of a

broad topic [13], we sought to systematically find and inductively summarize the literature on

applications of GIS and spatial analysis to HIV-related research in Africa. Our goal is to help

inform researchers, implementers, and policy makers on how GIS and spatial analysis tools

have been used, and to explore underlying themes and methodologies.

Methods

Eligibility criteria

Inclusion criteria. This review included peer-reviewed articles that focused on HIV in

Africa and involved GIS or spatial analysis. HIV-related topics included HIV prevalence or

incidence, HIV-specific mortality, HIV risk factors, and implementation of HIV prevention or

treatment services. Only articles explicitly based in a country or countries in Africa were

included. Spatial analysis techniques and the GIS use were defined broadly for the purposes of

this review in order to capture the diversity of emerging practices, i.e. we included articles that

used any specialized GIS software or specifically incorporated any spatial analysis techniques.

Articles were included regardless of participant characteristics, including age, race, sex, sexual

orientation, HIV status or other factors. Articles were included regardless of sample size, scope

or setting within Africa, type of program activities or interventions, or by study design.

Exclusion criteria. We excluded studies concerning non-opportunistic infection health

outcomes in HIV-positive individuals or for which HIV infection was not the main focus but

treated as a risk factor. We did not include studies that used geographic coordinates solely for

study enrollment purposes, e.g to generate sampling frames, or basic visualization, e.g. simple

display of points on a map. We excluded HIV phylogenetic studies, unless they involved other

spatial analyses, on the basis that such research is complex and specialized enough to warrant

its own review. Abstracts, posters, reviews and commentary pieces were also excluded.

Information sources and search. We developed a search strategy with terms relating to

“HIV”, “geographic information systems”, and “spatial analysis” (see Appendix for full search

GIS, spatial analysis, and HIV

PLOS ONE | https://doi.org/10.1371/journal.pone.0216388 May 3, 2019 2 / 22

https://doi.org/10.1371/journal.pone.0216388


strategy). This search was developed through an iterative process of incorporating new terms

and refining those included based on results returned and identification of relevant citations.

Reviewers conducted electronic searches of PubMed, EMBASE, and Web of Science on

November 16, 2017, with no restriction on date or language of publication. Potentially eligible

articles known to paper authors were also included in the initial search.

Study identification and data collection. Two reviewers independently screened article

titles and abstracts of all initial search results. Articles deemed eligible for inclusion by either

reviewer underwent full text review by three authors to determine final inclusion with adjudi-

cation done by majority vote when necessary. Reviewers extracted data to a master table, cap-

turing details about location, objectives, study design, data source and study population,

spatial analysis methodologies, software used, and results.

Synthesis of results. Following data extraction, we categorized studies based on the primary

content of the paper in an inductive, thematic analysis. Articles were permitted to sort into more

than one category as relevant. We did not assess study quality due to study heterogeneity.

Results

Study selection

As shown in Fig 1, 773 references were identified, excluding 780 duplicates, of which 681 were

screened out as not meeting eligibility requirements. Full text review of the remaining 92

Fig 1. Flowchart of article selection.

https://doi.org/10.1371/journal.pone.0216388.g001
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studies identified 65 final articles for inclusion in the review. The reasons for exclusion were

that the study was not based in Africa (1 reference), that the study was not primarily focused

on HIV-related topics (10 references), and that the analysis did not involve spatial analysis (16

references).

Included studies spanned the continent in geographic focus. Eight papers were multi-coun-

try analyses, and 15 different countries were represented in single-country papers. Among sin-

gle-country studies, 37 were based in Southern Africa, 16 in East Africa, and two each in West

Africa and Central Africa. South Africa was the most common country of study with 17

papers. Dates of publication spanned from 2000 to 2017, with almost all (98%) published

between 2006–2017 and over half published after 2014.

Study themes

Inductive thematic analysis found that GIS and spatial analysis were most commonly used to

examine: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. We

discuss methodological techniques in each theme and narratively and in tabular format high-

light key findings below.

HIV spatial epidemiology

Twenty-seven articles sorted into this thematic category which focused on the spatial distribu-

tion of HIV. The following subcategories were identified and used to further characterize stud-

ies: (i) spatial cluster analysis, and (ii) smoothed mapping.

Spatial clustering analysis. One of the most common spatial analytic techniques for eval-

uating the geographic distribution of HIV was local cluster detection (Table 1), or the identifi-

cation of HIV disease “hotspots”. Clusters are areas with higher or lower numbers of events in

a particular study region than expected if cases are randomly distributed [14].

Thirteen studies used the Kulldorff spatial scan statistic [15] to identify clustering of HIV

infection, [16–24], HIV-specific and all-cause mortality [25–27], and sero-discordant partner-

ships [28]. In these studies, the spatial scan statistic identified statistically significant “hotspots”

or “cold spots” by systematically scanning circular windows of varying sizes across the study

area, comparing the number of cases within the window to those outside the window. The

resulting data were used to identify areas of particular risk or concentrated need, and to com-

pare characteristics inside and outside of clusters. SaTScan software was the most commonly

used tool for identifying clusters (see S1 Table for software used in each study).

Clusters of high and/or low HIV prevalence were detected, independent of administrative

boundaries, in 20 of 22 countries where the Kulldorff spatial scan statistic was applied, though

the geographic size and relative risk strength of the clusters varied widely. Studies that com-

pared clusters over time found that they tended to persist with little change in location [17, 22,

25]. In one study, areas contained within high-prevalence clusters had stable or increasing

HIV prevalence over time, even when HIV significantly decreased in the rest of the country

[17].

Less commonly-used spatial statistics included Local Moran’s I and the τ statistic [29]. Both

of these methods are global clustering statistics which measure the tendency for points to

occur closer together in space by chance across the entire study area. In contrast, the Kulldorff

spatial scan statistic identifies local clusters in a particular region. Local clusters can exist in

either the absence or presence of global clustering [30]. In HIV epidemiology, global clustering

statistics have been used to determine if HIV-positive people tend to live closer to each other

than would be expected by chance. For example, a study in Uganda conducted a global cluster-

ing analysis and [31] found that a participant living in the same household as an HIV-positive
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person was 3.2 times more likely to be HIV-positive than any study participant; however, the

authors found no significant spatial clustering of cases outside the household.

Smoothed mapping of HIV. Smoothed maps, or “heat maps” of HIV use spatial methods

to create and display continuous gradations of HIV-related outcomes over space, using data

Table 1. Studies using cluster detection and clustering analysis to characterize the spatial distribution of HIV.

AUTHOR COUNTRY ANALYSIS SIZE KEY FINDINGS

BARANKANIRA ET

AL. [18]

Burundi Kulldorff cluster detection to describe spatial

variation of HIV prevalence.

8,086 One high and one low HIV cluster, all

independent of provincial boundaries.

CHIMOYI &

MUSENGE [21]

Uganda Kulldorff cluster detection for HIV prevalence. 7,518 One significant primary and 15 tertiary clusters

that highlight Central and Eastern regions as

most at-risk.

CUADROS ET AL.

[16]

20 countries Kulldorff cluster detection of high and low

HIV. Evaluate association of national HIV

prevalence with population size and strength

of cluster(s).

20 countries Low prevalence countries had stronger clusters

of high HIV prevalence. High prevalence

countries had stronger clusters of low HIV

prevalence.

CUADROS &

ABU-RADDAD [17]

Cameroon, Ethiopia, Kenya,

Lesotho, Malawi, Mali,

Rwanda, Senegal, Tanzania,

Zimbabwe

Compare change in HIV prevalence within

high-HIV Kulldorff clusters vs. outside of

high-HIV clusters.

10 countries HIV prevalence within high-prevalence clusters

either did not decline or increased, even if

national prevalence declined.

CUADROS &

ABU-RADDAD [28]

Cameroon, Kenya, Lesotho,

Tanzania, Malawi, Zambia,

Zimbabwe

Kulldorff cluster detection of sero-discordant

couples and high HIV prevalence.

16,140 No spatial pattern for sero-discordancy

independent of HIV prevalence patterns. HIV

prevalence correlated with proportion of

couples that were sero-discordant.

GONZÁLEZ ET AL.

[22]

Mozambique Kulldorff cluster detection to compare HIV

over time.

722 (2010),

789 (2012)

Small cluster of high HIV in 2010 persisted and

grew in 2012.

GRABOWSKI ET

AL. [31]

Uganda Clustering analysis to determine the likelihood

that a participant living in the same household

as an HIV-positive person, or within given

distance rings from an HIV-positive person

would also have HIV.

14,594 Strong clustering within households: sharing a

household with an HIV-positive person

increased likelihood of HIV by 3.2. Weaker

clustering within 10-250m (1.2 times

likelihood) and 250-500m (1.08 times

likelihood).

LAKEW ET AL. [20] Ethiopia Kulldorff cluster detection for HIV prevalence. 30,625 Two clusters and spatial heterogeneity

identified.

MEE ET AL. [26] South Africa Space-time Kulldorff cluster detection for

HIV/TB mortality and non-HIV/TB mortality

during decentralization of ART provision.

73,000 Two low-risk and one high-risk HIV/TB

mortality clusters detected. Unclear link to

ART decentralization.

MESSINA ET AL.

[19]

Democratic Republic of

Congo

Kulldorff cluster detection of HIV by sex. 9,755 Detected clusters of HIV with evidence that

spatial distribution and intensity varies by sex.

NAMOSHA ET AL.

[25]

South Africa Kulldorff cluster detection for HIV mortality

comparing pre- and post-ART roll-out.

86,175 Strong clusters persisted over time. High-

mortality clusters in peri-urban communities

near National Road.

SARTORIUS [27] South Africa Comparison of identified high-mortality and

low-mortality Kulldorff clusters.

1,110,166

person-

years

Identified clusters and several risk factors that

differed significantly between high and low

clusters.

SCHAEFER ET AL.

[24]

Zimbabwe Compare HIV service uptake and

demographic characteristics inside and out of

identified HIV Kulldorff clusters.

8,092 Two high-prevalence and one low-prevalence

clusters of HIV. High HIV clusters were urban,

wealthier, and had better access but less uptake

of HIV services.

TANSER ET AL. [23] South Africa Compare characteristics inside and out of

identified HIV Kulldorff clusters.

12,221 High and low clusters detected. Settlements

near National Road had highest prevalence.

High prevalence communities have high

education, household wealth, employment,

lower marriage and migrants.

ZULU ET AL. [29] Malawi Global and local Moran’s I and Getis-Ord Gi�

statistics to identify district-level clusters and

outliers for high and low HIV prevalence over

8 time periods.

54 ANCs Identified hotspots and coldspots that moved

somewhat and shrank over time.

https://doi.org/10.1371/journal.pone.0216388.t001
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gathered in a limited number of locations to predict values in unmeasured locations (Table 2).

Eighteen studies in this review created smoothed maps of HIV [17–19, 23, 24, 27–29, 32–41].

Methods for creating smoothed maps of HIV varied in complexity. Simpler methods were

based on calculating weighted averages of existing data surrounding an unmeasured location.

These included inverse distance weighted estimates (IDW) [17, 19, 28, 29, 34, 38] and kernel

density smoothing with a fixed [18, 23] or varying radius [32, 33]. More complex methods,

such as kriging or Bayesian hierarchical modeling with a spatial component, used statistical

models to predict HIV prevalence [24, 27, 32, 34–37, 39–41]. Software use varied by method,

with IDW and kriging maps typically created using ArcGIS [38], kernel density smoothing

done in BayesX [18] or Idrisi [23], and Bayesian modeling done in R [35, 36], WinBUGS [39,

40], or OpenBUGS [27] (see S1 Table).

Two studies compared different mapping techniques, and the most comprehensive study

found that a Bayesian geostatistical modeling approach was slightly more accurate than five

other methods [32, 34]. However, it was also noted that the choice of mapping method may

have less impact on the accuracy of the HIV estimates than the underlying quality and sam-

pling frame of the data used [32–34]. HIV estimates derived from smoothed maps and aggre-

gated to the country level were found to align closely with more complex UNAIDS model

data, regardless of mapping methodology [34].

Smoothed mapping techniques generated maps which estimate HIV prevalence in areas

where data is not available from surveys [17, 29, 32–34, 42]. Studies that generated smoothed

maps found high-risk areas that stretched across more than one administrative area [19, 29,

32–34, 36, 37], or high prevalence pockets in provinces that would not necessarily have been

identified as high priority settings [29, 32, 36]. As Kleinschmidt et al note, a high prevalence

area that they detected across two South African provinces could benefit from inter-provincial

coordination of treatment and prevention service provision [36].

Detailed smoothed maps also enabled visual comparisons of the spatial patterns of HIV

over time periods [17, 29, 34, 35], or between various subgroups of the population, such as

men and women or those living in sero-discordant partnerships and those not [19, 28, 36, 39].

GIS software also helped validate HIV prevalence estimates from antenatal care surveillance

against population-based survey estimates, which are more comprehensive, but more

resource-intensive, by comparing data between the two sources at similar locations [43, 44].

HIV risk factor analysis

Thirty-three studies sorted into this thematic subcategory which focused on the spatial epide-

miology of HIV which is based on the concept that both HIV and the factors associated with

infection vary spatially and have some degree of spatial dependence. Articles in this theme

divided into three sub-topics based on underlying methods utilized: (i) spatial regression, (ii)

joint spatial disease/risk factor modeling, and (iii) geography of risk factors.

Spatial regression. Spatial analysis contributed to the evaluation of risk factors for HIV

by testing the assumption that data is independent of geography (Table 3). Many studies noted

that this independence assumption was violated if data displayed spatial dependence or corre-

lation, meaning that data points in close proximity to each other were more alike than those

further apart [18, 21, 27, 40, 45–50]. To address this issue, thirteen studies included in their

analysis spatial regressions with spatial random effects to represent the correlations within geo-

graphic areas and between geographically proximate areas [18, 21, 27, 39, 40, 45–52]. These

analyses used BayesX [18, 21, 45, 46, 48–50], WinBUGS [27, 39, 47]and OpenBUGS Bayesian

software [40]. Studies that compared non-spatial and spatial regressions found that the spatial

models had better fit [45–47]. Spatial models may have been more accurate in these studies

GIS, spatial analysis, and HIV
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Table 2. Studies creating continuous surface maps of HIV.

AUTHOR COUNTRY TYPE OF SPATIAL PREDICTION SIZE KEY FINDINGS

BARANKANIRA ET AL.

[18]

Burundi Kernel density smoothing 8,086 Spatial heterogeneity independent of

administrative boundaries. Identified

locations in need of HIV resources.

CARREL ET AL. [35] Democratic Republic of

Congo

Bayesian kriging of 2007 and 2013 HIV

data, subtracting the maps to show areas of

greatest difference.

9275 (2007),

18,257 (2013)

HIV prevalence decreased in urban locations

and increased in rural locations, but areas of

high difference were relatively small.

CHANG ET AL. [41] Uganda Bayesian modeling of percent and number

of people living with HIV (PLHIV) per km2
17,119 High HIV prevalence along Lake Victoria

and patchy prevalence in district interior.

Areas with highest number of PLHIV were

inland in high population-density trading

centers.

COBURN ET AL. [38] Lesotho Inverse distance weighted (IDW) mapping

combined with population density map to

display the number of HIV-positive persons

per km2.

7,099 Density of infection is significantly higher in

urban areas, but the majority of HIV-

positive people live dispersed in rural areas.

CUADROS &

ABU-RADDAD [17]

Cameroon, Ethiopia,

Kenya, Lesotho, Malawi,

Mali, Rwanda, Senegal,

Tanzania, Zimbabwe

IDW mapping for visualizing differences in

spatial distribution of HIV between time

periods.

10 countries HIV prevalence within high-prevalence

clusters either did not decline or increased,

even if national prevalence declined.

CUADROS ET AL. [37] Tanzania Kriging of HIV prevalence and male

circumcision rates to assess their spatial

correlation.

2003–04:

12,522

2007–08:

16,318

2011–12:

18,809

Areas of low male circumcision overlap with

areas high HIV prevalence, and vice versa.

CUADROS &

ABU-RADDAD [28]

Cameroon, Kenya, Lesotho,

Tanzania, Malawi, Zambia,

Zimbabwe

IDW mapping of HIV and sero-

discordancy prevalence to assess their

spatial correlation.

16,140 No spatial pattern for sero-discordancy

independent of HIV prevalence patterns.

KALIPENI & ZULU [34] Continental IDW and kriging interpolation of

international HIV prevalence for country-

level estimates. Model epidemic curves for

each country and project future trends.

1,442 sentinel

sites over 18

years

Differences between UNAIDS estimates vs.

kriging- and IDW-generated national

estimates were statistically insignificant.

Nearly all countries have reached maturity

level of epidemic curve.

KLEINSCHMIDT ET AL.

[36]

South Africa Bayesian kriging map of HIV prevalence

among youth.

11,758 Variation in HIV prevalence independent of

provincial boundaries, highest in the east

and for women.

LARMARANGE &

BENDAUD [33]

17 countries Kernel density estimation with adaptive

bandwidths (prevR) to generate sub-

national HIV estimates.

Continuity of HIV estimates across borders.

Certainty of estimates varied depending on

total sampling size, total number of

administrative units, distribution of survey

clusters across area.

MESSINA ET AL. [19] Democratic Republic of

Congo

IDW HIV prevalence maps by sex to create

regional-level estimates.

9,755 Spatial variation in HIV, distribution and

intensity varied by sex.

SARTORIUS ET AL. [40] South Africa Bayesian kriging of all-cause and cause-

specific child mortality risk.

46,675 Two geographic foci of high mortality,

matching areas of high HIV/TB mortality.

SARTORIUS ET AL. [39] South Africa Bayesian kriging of all-cause and cause-

specific adult mortality risk.

104,969 Five geographic foci of high mortality,

correlating to areas of high HIV/TB

mortality.

SARTORIUS [27] South Africa Bayesian kriging of age-specific all-cause

and HIV/TB mortality risk.

1,110,166

person-years

Spatial distribution of all-cause mortality risk

varied by age group, reflecting spatial trends

in HIV/TB mortality.

SCHAEFER ET AL. [24] Zimbabwe Kriging of HIV prevalence and uptake of

HIV testing and counseling (HTC).

8,092 HIV prevalence higher in two urban areas

for men and women, but HTC uptake lower

in those areas and in one other.

(Continued)
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because they accounted for underlying, unmeasured environmental, social, behavioral or

other confounding factors relevant to HIV prevalence that were geographically determined.

Seven studies used the results of spatial regression to map adjusted relative HIV risk over

geographic areas, controlling for other factors like age, sex and employment. Maps of adjusted

HIV risk visualized spatial patterns and heterogeneity, displaying relative risk by administra-

tive area [21, 47–50] or over smoothed, continuous surfaces [45, 46]. In Zambia, spatial pat-

terns of HIV changed after adjusting for age and spatial correlation so that the two highest-

prevalence districts were no longer among the areas at highest risk [49]. These results, together

with similar findings elsewhere [48–50], highlight the extent to which geographic location can

provide insights on complex or poorly understood risks for HIV that would not be captured in

a standard statistical model.

Joint spatial disease/risk factor modeling. Four studies examined how the relationship

between HIV and a risk factor or other sexually transmitted infection (STI) changed over geo-

graphic space (Table 3) [53–56]. Such spatial variation may have been due to unmeasured,

underlying modifying or cofounding factors that varied across space, such as attitudes, cultures

and preferences, or due to sampling variation [53]. Spatial analysis was used to evaluate and

display how different risk factors [53, 56] or other STIs [53–55] were more or less correlated

with HIV across different geographic areas. Joint spatial modeling was conducted with Win-

BUGS [54, 55], R [53]or a combination of ArcGIS and STATA software [56].

These studies aimed to assist resource allocation decisions by identifying opportunities for

geographic targeting of HIV prevention interventions [53, 56]. They searched for geographic

areas where particular risk factors were more relevant to HIV outcomes, for instance finding

regions where age at first sex had a stronger association with HIV prevalence [53]. However,

models that allowed the effect of each risk factor to differ by spatial location were not consis-

tently better or worse fitting than models that held relationships constant over space [53, 56].

There was some evidence that the impact of social risk factors relating to sexual habits varied

more over space than the impact of demographic risk factors in a South African analysis [56].

Table 2. (Continued)

AUTHOR COUNTRY TYPE OF SPATIAL PREDICTION SIZE KEY FINDINGS

SUBNATIONAL

ESTIMATES WORKING

GROUP [32]

Tanzania, Kenya, Malawi Comparison of six methods.

Pixel-level estimates:

- Kernel density estimation with adaptive

bandwidths (prevR)

- Bayesian model-based geostatistics

- Kriging of each covariate with regression

to combine of layers

Administrative unit-level estimates:

- Shared spatial component model

- Regression kriging at aggregated scale

- Bayesian geo-additive mixed model.

All methods revealed within-country

variations and were similar in accuracy, but

Bayesian geostatistical approach slightly

better.

TANSER ET AL. [23] South Africa Kernel density smoothing to estimate

spatial distribution of HIV.

12,221 Spatial variation in HIV prevalence with

highest prevalence in urban settlements near

the National Road.

ZULU ET AL. [29] Malawi IDW HIV prevalence maps for eight years

to compare trends over time.

19 ANCs for

time trends

Spatial variation independent of district

boundaries, shifting spatial patterns over

time.

GONESE ET AL. [44] Zimbabwe Compare ANC surveillance with

geographically proximate DHS data.

7,202 (ANC)

13,049 (DHS)

ANC and DHS similar for most populations,

but ANC estimates were lower for women

within 30km of ANC site.

MUSINGUZI ET AL. [43] Uganda Compare HIV prevalence rates between

ANC surveillance sites and national

population survey clusters within 30km.

16,936

(UHSBS);

9,668 (ANC)

Overall estimate similar. ANC-based was

higher in ages 15–19, lower for those aged 30

+, and in urban areas.

https://doi.org/10.1371/journal.pone.0216388.t002
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Table 3. Studies performing spatial regressions, regressions with spatially varying coefficients, and joint spatial modeling.

AUTHOR COUNTRY METHODOLOGY SIZE OUTCOME OF

INTEREST

UNIT Spatial

effects

KEY FINDINGS

SPATIAL REGRESSIONS

BARANKANIRA

ET AL [18]

Burundi Bayesian spatial logistic regression 8,086 Factors associated

with HIV after

controlling for spatial

heterogeneity

Province-level After controlling for spatial

variation, HIV associated with

female sex, older age, marital status,

higher wealth index, sexual history,

12-month STI history, and higher

education level.

CHIMOYI AND

MUSENGE [21]

Uganda Bayesian spatial binomial logistic

regression compared with non-

spatial regression

7,518 Factors associated

with HIV before and

after controlling for

spatial heterogeneity

Region-level Spatial effects influenced

distribution of HIV after adjusting

for demographic and social/

behavioral factors. Factors that

influenced HIV in the non-spatial

model were not significant after

adjusting for spatial variation.

DOCQUIER ET

AL [52]

44

countries

Dynamic Spatial Error and Spatial

Auto-Regressive models

44 Spread of HIV across

country borders

Country-level Emigration to high-prevalence

destinations associated with origin

country’s HIV prevalence.

Insignificant spatial correlation

suggests that emigration accounts

for spatial variation.

KANDALA ET

AL [49]

Zambia Bayesian geo-additive spatial

regression

3,950 Geographic

distribution of HIV

Province-level After controlling for spatial

variation and age, the two highest

prevalence provinces were no

longer among the areas with

highest HIV.

KANDALA ET

AL [50]

Zambia Bayesian geo-additive spatial

regression

5000

(2001),

11,138

(2007)

Change in geographic

distribution of HIV

over 6 years

Province-level Two regions changed from low to

high-risk or high to low-risk over 6

years. Adjusting for spatial

variation changed the HIV risk of

two provinces in each time period.

KANDALA ET

AL [48]

Botswana Bayesian geo-additive spatial

regression

15,878 Geographic

distribution of HIV

District-level Highest HIV prevalence along the

Zimbabwe border after controlling

for demographic and social/

behavioral factors

MUSENGE ET

AL [46]

South

Africa

Bayesian spatial zero inflated

negative binomial regression

16,844 Risk factors for child

HIV/TB mortality

Household-level Three mortality hotspots. Nine

significant demographic and social

factors after controlling for spatial

variation.

MUSENGE ET

AL [45]

South

Africa

Bayesian spatial logit regression 6,692 Geographic

distribution of child

HIV/TB mortality

Household-level High mortality hotspot with higher

maternal deaths, male child

mortality and lack of health facility

access.

NGESA ET AL

[47]

Kenya Bayesian geo-additive spatial

regression

3,662 Geographic

distribution of HIV

County-level Highest HIV prevalence in the

western part of Kenya around Lake

Victoria after controlling for

demographic and social/behavioral

factors.

SARTORIUS

ET AL [40]

South

Africa

Bayesian spatial Cox proportional

hazards regression

46,675 Space-time variation

in child mortality

Village level Main cause of mortality is HIV/TB

and mortality increased over time.

Two hotspots of mortality

identified. Multiple individual- and

household-level risk factors after

controlling for spatial variation.

(Continued)
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Three studies compared spatial patterns of HIV and another STI, either HSV-2 [53, 55] or

syphilis [54], in order to address questions of population-level ecological associations between

STIs. These studies examined the extent to which these STIs were spatially correlated, whether

because the infections were mutual risk factors or because they had similar underlying, poten-

tially unmeasured causes in Africa [53–55]. Joint spatial modeling revealed that syphilis preva-

lence did not predict HIV prevalence in South Africa, given their low degree of spatial

correlation, and as such would not be suitable as a proxy measure to examine ecological differ-

ences in risky sexual behavior resulting in HIV infection [54].

Geography of HIV risk factors. GIS enabled the systematic measurement of spatial risk

factors (Table 4). For example, GIS technology allowed for the characterization of a defined

area around a study participant’s community, such as the risk of schistosomiasis [57] or the

Table 3. (Continued)

AUTHOR COUNTRY METHODOLOGY SIZE OUTCOME OF

INTEREST

UNIT Spatial

effects

KEY FINDINGS

SARTORIUS

ET AL [39]

South

Africa

Bayesian spatial Weibull parametric

regression

104,969 Space-time variation

in adult mortality

Village-level Main cause of mortality is HIV/TB.

Five hotspots of mortality

identified. Mortality increased over

time until 2008 with numerous

individual-, household-, and

community-level risk factors after

controlling for spatial variation.

SARTORIUS

[27]

South

Africa

Bayesian spatial negative binomial

and Weibull parametric regressions

1,110,166

person-

years

Space-time variation

in age-specific

mortality

Village-level Multiple, differing hotspots of

mortality, temporal trends and

social/behavioral risk factors

identified for each age group after

controlling for spatial variation.

WIRTH ET AL

[51]

Botswana Pairwise composite likelihood

approach for spatially-correlated

binary data

6,745 Geographic

distribution of HIV

Sextile bands of

geographic

distance from

HIV hotspot

HIV prevalence significantly lower

in 3rd, 4th and 6th sextile of

distance away from HIV hotspot.

SPATIALLY VARYING COEFFICIENTS AND JOINT DISEASE MODELLING

MANDA ET AL

[54]

South

Africa

Bayesian spatial joint modeling

regression

101,472 Geographic

distribution and

correlation of HIV

and syphilis

District-level HIV and syphilis negatively

correlated across space. Geographic

concentrations of each disease

more apparent after controlling for

risk factors.

OKANGO ET

AL [55]

Kenya Non-spatial regression, Bayesian

spatial joint modeling regressions

4,864 Geographic

distribution and

correlation of HIV

and HSV-2

County-level Spatial model had best fit. HIV and

HSV-2 significantly spatially

correlated, with higher risk of both

infections in regions around Lake

Victoria in the west of the country.

OKANGO ET

AL [53]

Kenya Bayesian spatially varying

coefficients regression

4,864 Geographic variation

in the effect of risk

factors on HIV and

HSV-2

County-level Risk factor variation across space

was significant for HSV-2 but not

for HIV. Visually, the effects of

some demographic and social

factors for HIV were stronger in

some counties than others.

WABIRI ET AL

[56]

South

Africa

Non-spatial regressions (with

Moran’s I for residuals) and

geographically weighted regressions

(GWR) for demographic and for

social covariates

15,000 Geographic variation

in the effect of risk

factors on HIV

District-level GWR model was a better fit and

non-spatial regressions had

significant spatial correlation in

residuals. Hyper-epidemic districts

have homogenous populations of

black Africans, high proportion

single or with partner 5+ years

older.

https://doi.org/10.1371/journal.pone.0216388.t003
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Table 4. Geography of risk.

AUTHOR COUNTRY RISK FACTOR METHODOLOGY SIZE KEY FINDINGS

COVARIATE(S) MEASURED WITH GIS

BRDAR ET AL

[42]

Côte d’Ivoire Mobile phone usage data

relating to social

connectivity, spatial

location, migration and

movement, and activity.

Predictive Ridge and Support Vector

regression models

5 million

mobile phone

users

Night-time connectivity and

activity, area covered by users and

overall migrations are strongly

linked to HIV prevalence. Models

based on spatial features were

highly predictive of HIV.

BRODISH AND

SINGH [57]

Mozambique S. haematobium exposure

(distance to high-endemic

areas)

Regression analysis 8,847 Exposure to S. haematobium

increased the odds of HIV by three

times, controlling for demographic

and sexual risk factors.

CARREL ET AL

[35]

Democratic

Republic of Congo

Distance to the nearest city Poisson mixed effects regression

comparing two time periods

9275 (2007),

18,257 (2013)

Urban HIV prevalence decreased

and rural HIV increased between

2007 and 2013. Protective effect of

distance to city disappeared.

MESSINA ET AL

[19]

Democratic

Republic of Congo

Distance to cities, rivers,

refugee camps, conflict

sites

Regression analysis 9,755 Proximity to city and distance to

river (for women) associated with

HIV.

TANSER ET AL

[58]

South Africa Mean distance from

household to major road

Regression analysis 16,583 Distance to major road strongly

correlated with HIV prevalence.

ZULU ET AL [29] Malawi Distance/time to roads,

public transport and

health facilities, proximity

to cities, and elevation

Regression analysis and mapping of

clusters and outliers of selected risk

factors relative to HIV prevalence

(local Moran’s I and Getis-Ord Gi�)

54 ANCs for

risk analysis

Mean travel time to public

transport for ages 30–44 associated

with HIV. Distance to main road

protective. Hotspots and coldspots

of relationship between risk factors

and HIV identified in different

areas.

SPATIAL ANALYSIS OF RISK FACTORS

ABIODUN ET AL

[64]

Nigeria Early sexual debut Bayesian spatial Cox hazards model

for spatial analysis of early sexual

debut.

4,301 Northern states significantly earlier

sexual debut after controlling for

other factors.

AKULLIAN ET AL

[65]

Kenya HIV stigma Describe spatial patterns of HIV

stigma using difference of K-function

cluster analysis and spatial regression.

373 Spatial trend and clustering in

external stigma (blame) but not

internal stigma (shame).

AKULLIAN ET AL

[60]

Kenya Male circumcision Smoothed map of circumcision in

2008 and 2014.

484 (2008);

1649 (2014)

Clear boundary in circumcision

prevalence between traditionally

circumcising areas in 2008,

diminished in 2014 after VMMC

program implementation.

CUADROS ET AL

[63]

Kenya, Malawi,

Tanzania

Malaria Smoothed map (model-based

geostatistics) of malaria prevalence to

calculate covariate in logistic

regression.

19,735 People living in high malaria

prevalence areas were nearly twice

as likely to be HIV positive as those

living in low malaria areas.

CUADROS ET AL

[37]

Tanzania Male circumcision Compare Kuldorff clusters and LISA

hotspots of male circumcision (MC)

and HIV. Compare HIV incidence by

gender inside and outside MC cold

spots.

2003–04:

12,522; 2007–

08: 16,318;

2011–12:

18,809

Outside of low-MC clusters,

females at greater risk than males,

but inside low-MC clusters, males

and females at equal risk.

CUADROS AND

ABU-RADDAD

[28]

Cameroon, Kenya,

Lesotho, Tanzania,

Malawi, Zambia,

Zimbabwe

Sero-discordant

partnerships

Compare Kuldorff clusters of sero-

discordant couples and HIV

prevalence. Compare epidemiologic

measures of discordancy inside and

outside clusters.

16,140 No spatial pattern for sero-

discordancy independent of HIV

prevalence patterns. HIV

prevalence correlated with

proportion of couples that were

sero-discordant.

(Continued)
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density of refugee camps within a 25km radius [19]. Similarly, GIS tools were used to measure

distances between a household’s location and the nearest city [19, 35], major road [19, 58],

body of water or refugee camp [19]. One study used geo-referenced mobile phone data from a

cell service provider in Côte d’Ivoire to develop a predictive model of area HIV prevalence

based on residents’ travel and communication patterns [42].

Local cluster detection methods were used to identify clusters of HIV risk factors, for

instance of condom non-use [59]. These risk factor clusters anticipated areas that might bene-

fit from prevention services, and were compared to mapped clusters of HIV to display the

overlap between risk and outcome [29, 37]. Two studies compared incidence of new HIV

infections inside and outside of risk factor clusters [28, 37]. Three of the studies that identified

clusters of high HIV prevalence [23, 28] or mortality [27] also compared characteristics inside

and outside of these clusters to identify associated risk factors.

Smoothed maps of risk factors showed geographic variation independent of administrative

boundaries enabling new insights [28, 37, 60–62]. Smoothed mapping of malaria endemicity

enabled the estimation of malaria prevalence at every point where HIV prevalence had been

measured [63]. Studies compared the spatial distribution of a risk factor to the spatial distribu-

tion of HIV to assess evidence of geographic concurrence [28, 37, 57, 61]. Geographic overlap

of particular risk factors and HIV enabled a community- or population-level analysis of their

relationship, rather than individual-level analysis, and highlighted the extent to which location

influences the HIV epidemic.

Table 4. (Continued)

AUTHOR COUNTRY RISK FACTOR METHODOLOGY SIZE KEY FINDINGS

PALK AND

BLOWER [62]

Lesotho Couples with one member

temporarily living away

from home

Kriging maps of divided household by

absent member (husband vs. wife)

and their temporary residence (within

country vs. South Africa). Regression

on HIV status and extramarital

partnerships.

2,026 couples Spatial patterns of divided

households differed based on where

the absent partner was. No

significant association between

divided household and HIV.

Absent wives increased the risk of

extramarital partners for men.

SARTORIUS [27] South Africa Clusters of age-specific

mortality

Comparing Kuldorff clusters of high

and low mortality rates

1,110,166

person-years

Multiple social and demographic

characteristics identified that

significantly differed between high

and low mortality clusters

TANSER ET AL

[23]

South Africa Clusters of high and low

HIV

Compare characteristics of high and

low HIV clusters.

12,221 High prevalence clusters have high

education, household wealth,

employment, lower marriage and

migrants.

WAND AND

RAMJEE [61]

South Africa Education, age at sexual

debut, cohabitation with

partner, number of recent

partners, transactional sex

Geo-additive spatial regression of risk

factors and HIV risk at two clinics.

3,462 Women at Botha’s Hill clinic had

higher education, more sexual

partners and less marriage. Total

risk score showed higher impact on

Botha’s Hill women than

Umkomaas.

WESTERCAMP

ET AL [59]

Kenya Sexual behaviors and STI

history

Kuldorff cluster detection for STIs

and sexual behaviors among young

men

649 No clusters detected other than

condom use.

ZULU ET AL [29] Malawi Distance to main roads,

travel time to public

transport, ever having

tested for HIV, education,

syphilis

Mapping of clusters and outliers of

selected risk factors relative to HIV

prevalence (local Moran’s I and Getis-

Ord Gi�)

19 ANCs for

time trends; 54

ANCs for risk

analysis

Hotspots and coldspots of each

explanatory variable relative to HIV

identified in different areas.

https://doi.org/10.1371/journal.pone.0216388.t004
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Risk factors were also examined with spatial regression methods, such as early sexual initia-

tion [64] or HIV stigma [65]. In Nigeria, for example, controlling for spatial correlations,

demographic and knowledge covariates, and the non-linear effect of age revealed a clear

North-South dichotomy in early sexual initiation [64]. Studies analyzing the geography of risk

factors often used GIS software like ArcGIS [19, 28, 29, 63], Idrisi [58], and SaTScan [23, 59] to

extract spatial data about the risk factor that was then incorporated into an analysis in statisti-

cal software like R, STATA, SPSS, and others. Alternatively, some analyses were conducted

entirely in R [35, 60–62, 65], BayesX [64] or STATA, using thefunctions in these software

applications to handle both spatial and statistical analyses, such as the geonear function in

STATA [57].

HIV services implementation

Twenty-three articles contributed to understanding relationships between geography and

implementation of HIV services. Two subcategories were the (i) effect of distance to HIV ser-

vices on health outcomes, and (ii) planning and evaluating HIV service provision.

Effect of distance. GIS technology allowed for measurement of geographic distances and

distribution of services and enabled analysis of the effect of distance on health outcomes and

service uptake (Table 5). For example, GIS tools enabled the calculation of distances between

points, including both Euclidean straight-line distance [29, 40, 58, 66–72] and road distance

[73–76] between households and clinics, providing objective measures of geographic burdens

to health care access. Evidence was mixed on whether these measures were [77] or were not

[66, 75, 78] correlated with self-reported measures of health care barriers. Studies also exam-

ined the impact of proximity to health care on presence of HIV risk hotspots [45, 69] and HIV

clusters [24, 70, 72, 79].

Studies identified in this review analyzed the effect of distance to care on nearly all stages of

the HIV treatment cascade, including knowledge about HIV [72], follow-up visits for male cir-

cumcision prevention services [67], HIV testing and counseling [24, 70, 73, 79], healthcare

attendance [66, 74, 78], ARV uptake [68, 71, 75, 76] and adherence [77, 80], PMTCT uptake

[69], and HIV mortality [29, 40, 45]. The majority of studies found that proximity to health

care was associated with positive health outcomes at each step of the cascade [45, 66–72, 76,

78, 79], though these findings were not universal [24, 40, 71, 74, 75, 77].

In some studies, access for HIV patients appeared to be mediated through the public trans-

portation network more than through road access [29, 71, 75], particularly for patients who

were further away from the clinic [71]. This relationship may reflect the positive correlation

between road transportation and HIV transmission observed in some settings [29, 58]. There

was furthermore evidence that the effect of distance on service access differed between those

accessing mobile care compared with those attending static clinics [67, 73]. HIV-positive

patients did not necessarily transfer to a closer clinic when given the chance [66, 76], and post-

partum women who switched clinics returned to care faster and with better outcomes when

they transferred to distant clinics than when they re-entered nearby clinics [80].

Distance measures were extracted with GIS software like ArcGIS [26, 29, 60, 67, 70, 72–74,

76, 77, 79, 81], ArcMap [80], MapInfo [68], Google Earth [71], Idrisi [23] and associations

were analyzed in a standard statistical software such as STATA, R and SPSS (see S1 Table for

more details).

Service provision. GIS technology was used to examine the extent to which health care

service expansion [60, 70, 82] and outreach to communities [68, 73, 76] increased access and

uptake (Table 6). Decentralization of HIV services was found to dramatically decrease the

average distance traveled for ART among people living with HIV [68, 76] and to diminish the
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Table 5. Studies regarding the effect of distance to health care.

AUTHOR COUNTRY ACCESS BARRIERS OUTCOME SIZE TYPE OF ANALYSIS FINDINGS

AKULLIAN ET

AL. [66]

Uganda Distance, time, cost of

travel to facility

Healthcare access 379 Regression PLHIV travel further for care than

non-PLHIV.

BASSETT ET

AL. [73]

South Africa Distance to testing site HIV testing 4,701 Compare testing for HIV at

mobile vs clinic-based sites

Mobile testers more likely to test <1km

or >5km from home than fixed-site

testers.

BUEHLER ET

AL. [72]

Mozambique Distance to ARV clinic HIV knowledge 3749 Clusters of high or low

knowledge (Getis-Ord

statistic) relative to clinic

locations. Regression.

Clustering of higher HIV knowledge

closer to facilities. Distance negatively

associated with outcome.

CARLUCCI ET

AL. [77]

Zambia Distance, road distance,

travel time to clinic

ARV adherence 424 Regression Measures of distance correlated with

each other but not associated with

outcome.

CLOUSE ET AL.

[80]

South Africa Distance between clinic

where woman initiated

ART and clinic where she

re-entered care

Time to re-entry,

CD4 count at re-

entry

300 Comparison of median and

IQR values between women

re-entering care in the same

province vs. a different

province

Post-partum women who re-entered

care in a different province had a

higher median distance to their new

facility, re-entered care faster and had

better CD4 count outcomes.

COOKE ET AL.

[68]

South Africa Distance to clinic ARV initiation 1,660 Regression Distance negatively associated with

outcome.

ESCAMILLA ET

AL. [69]

Zambia Distance to clinic PMTCT uptake 254 Uptake density (kernel

density estimates) in relation

to clinic locations. Regression.

Areas with high-density uptake were

located near health centers. Distance

negatively associated with outcome,

with a 1.9km threshold.

GOLUB ET AL.

[67]

Kenya Distance to male

circumcision facility

Male circumcision

follow-up

1437 Regression Distance negatively associated with

outcome for fixed facilities but not

mobile facilities.

HOUBEN ET

AL. [76]

Malawi Travel time to ART clinic

based on smoothed map of

least travel time from each

point

Accessing ART at

nearest clinic;

transferring clinics

5,411 Comparison of estimated and

actual travel time between two

time periods. Regression.

Travel time and transfers declined,

uptake increased as ART clinics

opened. Proportion of patients not

attending nearest clinic increased

slightly.

JOHNSON ET

AL. [71]

Malawi Distance from

neighborhood to clinic

Timely ARV

initiation

15,734 Regression Distance negatively associated with

outcome for one clinic but not the

other, located next to central transport

hub.

MEE ET AL.

[74]

South Africa Distance to clinic Biomedical vs

traditional health

use

2,833 Visual analysis of outcome in

relation to clinics. Regression.

No spatial patterns or significant

association.

MUSENGE ET

AL. [45]

South Africa Health facility presence,

minimum distance to

clinic

HIV/TB mortality 6,692 Bayesian spatial regression

with visual analysis of odds

ratio map in relation to clinic

locations.

Odds ratio hotspot is area furthest from

clinics. Distance covariate not

significant.

SIEDNER ET

AL. [78]

Uganda Distance and route

distance, travel time and

cost to clinic

HIV clinic

attendance

188 Regression GPS distances negatively associated

with outcome, self-reported measures

not associated.

SARTORIUS ET

AL. [40]

South Africa Distance to clinic All-cause and HIV/

TB mortality

46,675 Regression Distance not significantly associated

with outcome.

SCHAEFER ET

AL. [24]

Zimbabwe Distance to clinic HIV testing 8,092 Compared distance and

uptake inside and outside

high and low clusters of HIV

prevalence (Kuldorff spatial

scan)

Distance not associated with outcome.

Those living in high-prevalence clusters

had better access but lower uptake of

HIV testing.

TANSER ET AL.

[58]

South Africa Distance to road HIV prevalence 2,013 Regression Distance negatively associated with

outcome.

(Continued)
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variation in service uptake over space [60, 70]. For example, as HIV testing became more

widely available in Mozambique, clusters of high or low rates of testing disappeared, indicating

that the geographic barriers to testing became less relevant [70].

Two studies used GIS tools to target HIV services and improve their efficiency [38, 82].

One study mapped the density of HIV infection in Lesotho in order to calculate the geographic

variation of coverage if the country was to optimize efficiency in treating 70% of its HIV-posi-

tive population [38]. In rural areas where most of the HIV-positive population lives, the

authors found, coverage would be as low as 4%, whereas the densely populated urban areas

Table 5. (Continued)

AUTHOR COUNTRY ACCESS BARRIERS OUTCOME SIZE TYPE OF ANALYSIS FINDINGS

YAO ET AL.

[70]

Mozambique Distance to clinic, # clinics

within distance radii

HIV testing 1025 Clusters of high and low

testing (Kuldorff spatial scan)

in relation to clinic locations

at three time periods.

Regression.

Clusters of high testing tended to be

near testing clinics and clusters of low

testing tended to be far. Distance to

testing clinic negatively associated with

outcome.

YAO ET AL.

[79]

Mozambique Distance to clinic HIV testing 1680 Clustering (K-function,

Kuldorff spatial scan) and

spatial dependence (Moran’s

I, LISA) of testing. Regression.

Clustering and spatial dependence

observed but no patterns relative to

clinics. Distance to clinic negatively

associated with outcome.

ZACHARIAH

ET AL. [75]

Malawi Road distance, transport

costs to hospital

ARV initiation 740 Regression Cost negatively associated with

outcome, road distance not associated.

ZULU ET AL.

[29]

Malawi Distance to clinic, distance

to road, time to public

transportation

HIV prevalence 54

ANCs

Regression Distance to road negatively associated

with outcome, time to public

transportation for ages 30–44 positively

associated.

https://doi.org/10.1371/journal.pone.0216388.t005

Table 6. Studies relating to service provision.

AUTHOR COUNTRY OBJECTIVES SIZE KEY FINDINGS

AKULLIAN ET

AL. [60]

Kenya Smoothed map of circumcision in 2008 and 2014. 484 (2008);

1649 (2014)

Clear boundary in circumcision prevalence between

traditionally circumcising areas in 2008, diminished in 2014

after VMMC program implementation.

BASSETT ET

AL. [73]

South Africa Compare the yield, geographic distribution and

demographics of mobile vs clinic-based HIV testing

services.

5327 Mobile testers differed from clinic testers in age, gender,

and distance travelled to test. HIV prevalence at mobile sites

differed by type of venue.

COBURN ET

AL. [38]

Lesotho Map the density of HIV infection to compare coverage

across districts under efficient vs. equitable resource

allocation.

7099 Majority of HIV-positive people live in low-density rural

areas that would receive low coverage in optimally efficient

resource allocation. Coverage would range from 4% to 94%

if areas with 5 infected people per km2 (70% national

coverage) were prioritized.

COOKE ET AL.

[68]

South Africa Comparison of median distance traveled for ART over

time.

7576 Median distance decreased from 34.2km to 3.1km when

treatment was made available through all primary

healthcare facilities.

HOUBEN ET

AL. [76]

Malawi Track changes in travel time to the nearest clinic

providing ART and clinic actually attended as services

expanded between 2005 and 2009.

5411 Median travel time to the nearest and attended clinics fell,

uptake increased, and the proportion not attending their

nearest ART clinic increased slightly.

YAO AND

MURRAY [82]

Mozambique Compare current and optimized allocation of HIV

testing sites to minimize population-weighted travel

distances. Evaluate efficiency gains of adding or

relocating services to new locations.

53 clinics Optimization of 2009 services would improve average

access distance by 24.4%. Clinics chosen for expanded or

relocated services in areas of low testing rates. Optimization

would relocate 12 clinics or expand to 11 new clinics.

YAO ET AL.

[70]

Mozambique Assess impact of expanding HIV services on access to

and use of HIV testing with regression analysis and

Kuldorff cluster detection.

1025 Decentralization of services reduced variation in testing

rates

https://doi.org/10.1371/journal.pone.0216388.t006
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would receive up to 94% coverage. Yao and Murray [82] used GIS technology along with opti-

mization software Gurobi to optimize the location of HIV testing and counseling sites, so that

the overall distance traveled by the entire population to their nearest testing site would be as

short as possible. Software like ArcGIS [38, 70, 73, 76], ArcView [60]and MapInfo [68]was

used for visualization and extraction of distance data to be analyzed in statistical software like

STATA and R.

Discussion

The review demonstrates the wide applications of GIS and spatial analysis to understanding

HIV and supporting HIV care and prevention services in Africa. Most of the literature was

published recently and rapid growth in the evidence-base was clear. We expect that GIS use

and spatial analysis methodologies will continue to expand as more researchers and imple-

menters develop knowledge and capacity in this growing field and increasingly recognize its

usefulness.

For example, in this review GIS tools were regularly used to display HIV prevalence, inci-

dence or mortality data in order to communicate complex information about the epidemic in

a clear and accessible way. The ability to identify spatial clusters and generate smoothed maps

revealed variations within and across administrative regions, the boundaries of which often

have little bearing on disease prevalence.

In the context of HIV risk factor analysis, spatial analysis reflected the likelihood that people

living close to each other share common exposures and disease outcomes and that location

was critical in including in HIV risk factor analyses. The findings that spatial regressions of

HIV which accounted for geographic correlation in the data had better fit than non-spatial

regressions highlight the benefit of adding spatial data to certain analyses.

Another recurring theme was the critical role of geography in informing access to HIV-

related health services in low-income settings with poor existing health care infrastructure.

GIS and spatial analysis may allow for more efficient allocation of resources and appropriate

response targeting in many African settings.

Of note, while this review was focused on more technologically and methodologically

sophisticated applications, several articles not included in this review demonstrated the utility

of simply visually displaying mapped data points, such as for plotting the locations of HIV ser-

vices [83] and risky sexual behaviors [84–88]. Mapping the overlap of service provision and

demand was useful for selecting priority areas for programmatic expansion [81, 89, 90]. Pro-

gram implementation could benefit from dynamic, interactive and iteratively updated maps

with verified health facility coordinates and infrastructure data [91] and simple mapping may

be good entry point for more advanced geospatial techniques.

A number of gaps in the literature were also found by this review. West African countries

were less represented, perhaps because they have lower HIV prevalence rates and less HIV

research capacity. Central African and Horn countries were similarly less represented. Coun-

tries that did not include both HIV biomarkers and geographical coordinates in their DHS

surveys also may be less likely to feature in spatial analysis studies because these were charac-

teristics that determined inclusion in certain studies. Some important HIV related outcomes

had minimal or no found spatial studies such as HIV medication shortages or stock-outs.

Adherence and retention outcomes were also not substantially considered in relation to spatial

factors. Finally, there was limited literature on HIV resistance and spatial analysis, potentially

because these data are too sparse.

Interesting directions and issues in spatial research were also found. The novel use of cell

phone technology in some studies points to an important future area of spatial research. Data
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independent of national boundaries/national data collection practices to facilitate cross-coun-

try comparisons and multi-country analyses would be a helpful future direction given the

mobility of persons and complexity of social networks. Privacy concerns continue to be an

important area of consideration as GIS tools become easier to use and more broadly

implemented.

Limitations

Our search strategy may have missed studies relating to GIS or spatial analysis and HIV, par-

ticularly as the vocabulary for GIS is dispersed and evolving. There is some risk of publication

bias, potentially favoring articles that detect spatial heterogeneity over those that do not, or

favoring particular spatial analysis methods over others. This review was not intended to assess

the quality, methodological rigor or risk of bias within studies included for review, nor did we

attempt to conduct a meta-analysis. In part, this decision reflects the wide diversity of contexts,

approaches, and methodologies that emerged through the review, which were difficult to syn-

thesize. There are not currently any best practice or guidelines for reporting of geospatial stud-

ies, and this may be an area for future development.

Conclusions

This systematic review searched for and summarized evidence on the use of GIS and spatial

analysis techniques for HIV in Africa. Our findings demonstrate the wide array of spatial

approaches to HIV-related data. These applications include characterizing geographic distri-

bution of HIV, evaluating HIV epidemiologic risk factors, and assessing and improving imple-

mentation of HIV services. The rapid growth and diversity of applications of GIS and spatial

analysis to the field of HIV yields great potential for future insights and progress.
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