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Abstract: The primary function of chemokines is to direct the migration of leukocytes to the site of
injury during inflammation. The effects of chemokines are modulated by several means, including
binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and
through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines
released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration
and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can
be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational
modifications of chemokines, such as nitration, which occurs due to the production of reactive species
during oxidative stress, can also alter their biological activity. This review describes the regulation
of chemokine function by GAG-binding ability and by post-translational nitration. These are both
aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like
CXCLS, to modulate inflammation is to be realised.
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1. Introduction

Chemokines are small cytokines (8-17 kDa) with chemoattractant properties that are involved in
processes ranging from homeostasis to development and tissue repair. They also play essential roles in
pathological conditions such as tumorigenesis, cancer metastasis and inflammatory or autoimmune
disorders where they mediate the migration of leukocytes to the site of injury [1-4]. Chemokine
biology also plays a role in generating immune tolerance [5]. Chemokines are classified into four
subfamilies; C, CC, CXC and CX3C in relation to the location/spacing of cysteine residues within the
N-terminal region.

The migration of immune cells is mediated through the formation of dynamic chemokine
gradients, which are achieved by the binding of chemokines on glycosaminoglycans (GAGs) present
on the surface of endothelial cells and in the extracellular matrix [6]. This creates an equilibrium
of free and bound monomer and dimer in the proximity of the injury, resulting in haptotactic and
chemotactic gradients. This allows directed movement of leukocytes from circulation to the site of
injury via chemokine signalling through the G-protein coupled receptors (GPCR) [7,8]. One of many
possible GAG-chemokine-receptor interaction scenarios is shown diagrammatically in Figure 1 below.
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Figure 1. Chemokine interactions with G-protein coupled receptors (GPCRs) and glycosaminoglycans
(GAGs). Chemokines bind to GAGs present on the surface of endothelial cells in a dynamic manner,
creating a localised chemokine gradient and facilitating the recruitment of leukocytes. Leukocyte
recruitment is a multistep process in which leukocytes tether to, roll along, and adhere to the
endothelium before transmigrating out of the blood vessels. On the right, magnified image indicating
specific chemokine regions involved in GPCR/GAG binding (shaded in orange), and potential
consequences of stress (i.e., production of reactive oxygen species/reactive nitrogen species (ROS/RNS
respectively)) on regulation of chemokine function. CXCLS is used as an example chemokine, with the
monomer shown in blue and the dimer depicted with one monomer in blue and the other in red.

Regulation of chemokine function is essential in order to prevent excessive inflammation and
allow healing after injury. This regulation can occur at many levels and can involve different aspects of
chemokine biology, including epigenetic modifications which can affect chemokine production [9],
the concentration and oligomeric state of the chemokine (monomer/dimer), the steepness of the
chemokine gradient [10,11], the ability of the chemokine to interact with GPCRs and GAGs [7,12], and
receptor signalling bias [13,14]. Post-translational modifications (PTMs) such as nitration, glycosylation,
phosphorylation, and citrullination also play a critical regulatory role on chemokine function.

In this review, we will describe how chemokine function can be regulated by GAG-binding and
post-translational nitration, primarily focusing on CXCL8 as a model CXC chemokine.

2. Chemokine and Chemokine Receptor Interactions

Chemokine receptors all share a similar structure; an extracellular N-terminal domain, seven
transmembrane-spanning segments, three extracellular loops, three cytoplasmic loops and a C-terminal
segment [15]. Binding of chemokine ligands to their receptors initiates a signalling cascade involving
the influx of calcium, which ultimately leads to chemotaxis [7].

Targeting the interaction between chemokines and their receptors is one potential method
to regulate the recruitment of leukocytes and modulate inflammation. However, this is limited
by the high level of promiscuity displayed by chemokines and their receptors [16]. While some
receptor-ligand interactions are specific e.g., CX3CL1-CX3CR1 or CCL20-CCR6 [15], chemokines can
often bind multiple receptors, and receptors may in turn be activated by many chemokines, making
it difficult to achieve a selective and specific effect when targeting these interactions [17,18]. For
example, whereas CXCR1 binds CXCL8 with high affinity and CXCL6 with lower affinity, CXCR2
binds CXCL1/2/3/5/6/7/8 with high affinity [15,19,20]. In addition, there are atypical receptors
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(ACKR) such as ACKR1/Dé6 or ACKR2/DARC, that bind chemokines but do not induce G-protein
signalling [21]. They act as chemokine scavengers and are thought to be involved in the regulation of
the immune response. For instance, DARC present on erythrocytes is known to induce clearance of
circulating CXCLS, affecting the chemokine’s ability to stimulate neutrophil recruitment [22], hence
having a significant role limiting the inflammatory response.

3. Chemokines and GAG Interactions

GAGs such as heparan sulphate (HS), are long linear polysaccharides consisting of a repeating
disaccharide unit [23] frequently covalently attached to a core protein forming proteoglycans. The
main classes of proteoglycans are defined according to their distribution, homologies, and function.
Common examples of HS proteoglycans are glypican, syndecan and perlecan. GAGs display varying
patterns of sulphation, which in addition to carboxyl groups, confer a negative charge which is
a critical determinant of chemokine binding [24]. GAGs are located primarily on the surface of
endothelial cells, as macromolecular complexes with matrix proteins in the extracellular matrix (ECM),
and are also secreted/shed during active inflammation [25]. They can be divided into four groups:
heparin/heparan sulphate, chondroitin sulphate/dermatan sulphate, keratan sulphate, and hyaluronic
acid (a non-sulphated GAG, non-covalently attached to proteins) shown in Figure 2.
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Figure 2. Structure and composition of GAGs. Linkages are shown in red, and sites of sulphation
indicated by yellow triangles. The backbone is made up of repeating disaccharide blocks composed of
uronic acid (glucuronic acid (GlcA) or iduronic acid (IdoA)), or galactose (Gal) and an amino sugar
(N-acetyl-galactosamine (GalNAc) or N-acetyl-glucosamine (GlcNAc)).

Although chemokines are promiscuous to a degree in terms of receptor binding, data on GAG
binding is beginning to show that chemokines interact with GAGs differently, and must be studied
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individually [26-28]. GAGs have the potential to modulate chemokine heterodimer formation and
function, receptor binding and enhance stability [29-31]. GAG binding has been identified as
essential for regulating chemotaxis in vivo [12], and could, therefore, be an aspect of chemokine
biology to be targeted to modulate function. However, the system is intricate and complex, with the
diversity of GAGs (which vary greatly in length, composition and sulphation pattern as shown in
Figure 2), the oligomerisation state of the chemokine and the tissue microenvironment all affecting
the chemokine-GAG interactions, and increasing the challenge of targeting this aspect of chemokine
biology [32,33]. The presence/composition of other molecules beside GAGs also influences binding,
for example, studies have shown that sialic acid and mannose-containing glycans are responsible
(in addition to GAGs) for the binding of CCL5 to both CCR5+ and CCR5— cells [34]. Furthermore,
data are beginning to show that chemokine residues that are involved in receptor interactions are
also involved in GAG binding, suggesting GAG-bound chemokines may be unable to bind their
receptors [27,29,35,36]. The affinity of the chemokine for different GAGs also changes depending
upon whether the chemokine is in the monomer/dimer state, with dimers generally being the higher
affinity GAG ligands [37-39]. The ratio of bound to free chemokine is therefore fine-tuned to modulate
cellular recruitment.

The highly sulphated and acidic GAGs bind to basic residues within chemokines through
electrostatic and H-bonding interactions. This usually involves residues such as arginine, lysine
or histidine, which typically form the BBXB or (B)BXX(X/B)BXXB(B) peptide signature, where B is
a basic amino acid residue and X a non-conserved amino acid, present in virtually all chemokines.
Earlier studies revealed BBXB or (B)BXX(X/B)BXXB(B) as common heparin binding sequences for
several chemokines, however, with the characterisation of more GAG-binding regions, it is suggested
that GAG-binding motifs can be defined as sequential distant residues that form an optimal binding
surface due to spatial orientation in the folded state [40]. This binding regulates the steepness and
duration of chemokine gradients, which in turn regulates leukocyte adhesion and infiltration [41,42].
GAG binding has been identified as essential for the induction of chemotaxis, as chemokine mutants
that bind receptor but not GAGs have impaired ability to recruit immune cells in vivo [12]. GAG
binding could, therefore, be an aspect of chemokine biology to be targeted to modulate function.

Common GAGs: Heparan Sulphate and Heparin

Heparan Sulphate (HS) is an anionic GAG component of the glycocalyx, and the most abundant
GAG on the surface of endothelial cells [43]. HS is initially synthesised as a repeating disaccharide
composed of the monomeric units N-acetyl-glucosamine (GIcNAc) and glucuronic acid. These units
may or may not then be modified by a series of biosynthetic reactions within the Golgi. These give
rise to N-, 6-O, or (albeit rarely) 3-O-sulphation of the glucosamine (GIcNS), as well as epimerisation
and subsequent 2-O-sulphation of the glucuronic acid. The family of enzymes responsible for these
modifications includes N-deacetylase/N-sulphotranferases (NDSTs 1/2/3/4), 2-O-sulphotransferases
(HS2ST), 6-O-sulphotransferases (HS6ST), and 3-O-sulphotransferases (HS3ST) [44,45]. Mature HS
can also be modified on the cell surface glycocalyx by specific sulphatases (SULF1 and SULF2).
Additionally, heparanase, an endo-glycosidase, can cleave the HS polymer releasing smaller fragments
from the HS proteoglycan complex.

HS serves homeostatic functions, including maintenance of the endothelial barrier permeability
and the activation of antithrombin III. During disease or stress, HS can present inflammatory molecules
such as chemokines to leukocytes, facilitating selectin-mediated rolling along the endothelial surface,
potentially leading to increased integrin adhesion, intravascular arrest and diapedesis [46] (Figure 1).

In the short term, inflammation such as ischaemia-reperfusion injury can induce the shedding
of some HS proteoglycans from the endothelial cell surface, which can then bind and sequester
chemokines in the blood and reduce leukocyte migration [47-49]. Upon regeneration of the glycocalyx,
upregulation of the expression of NDST enzymes increases the extent of N-sulphation, which in turn
enhances the potential of the endothelium to bind and present pro-inflammatory chemokines [50].
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This highlights the flexibility and varied regulation of endothelial GAGs and their ability to modulate
chemokine binding and subsequent leukocyte migration.

Heparin, a soluble GAG produced by mast cells [51], has essentially the same backbone structure
as HS but a different (more uniform) sulphation pattern [52]. Due to heparin’s uniform sulphation
pattern, and the commercial availability of size-fractionated oligosaccharides of many different sizes,
heparin is commonly used for structure—function and chemokine-GAG interaction studies.

4. Post-Translational Modification of Chemokines

The regulation of chemokines through post-translational modification can affect both receptor
and GAG binding, and impact upon chemokine function and biological activity [53]. Many forms of
modification can occur, such as cleavages by matrix metalloproteinases and other enzymes, as well as
modifications of individual residues by citrullination or nitration [54-57].

The heterogeneous nature of post-translational modifications emphasises the need for better
understanding, with some modifications enhancing or abrogating function, and others preventing
detection using conventional methods [58,59]. This review article will focus on nitration, which
occurs naturally during any situation that involves oxidative stress, such as myocardial infarction or
organ transplantation.

5. Nitration of Chemokines

The reactive nitrogen species (RNS) peroxynitrite (ONOO™) is formed from the reaction between
nitric oxide (NO) with the superoxide anion (O, ™) [60,61]. ONOO™ has a very short half-life of around
10 ms at physiological pH, and can affect molecules within a 20 pm range of its production [62]. Effects
of ONOO™ include protein nitration, lipid peroxidation, DNA strand breakage and the inhibition of
cell signalling and metabolism [63].

NO is produced by nitric oxide synthase enzymes present in many cell types and in all
tissues [64—66]. O, is produced by a range of enzymes present in many cell types, including
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase within the mitochondria [67-69].
Production of both NO [70] and O, [71,72] increases during inflammation and strategies to reduce
production are protective in pre-clincial models of injury [73-75] and in human disease [76].

ONOO™ nitrates tyrosine residues to form 3-nitrotyrosine (3-NT), and also modifies tryptophan,
cysteine, methionine, lysine and histidine, examples of which are shown in Figure 3 [77,78]. ONOO~
has been implicated in the pathology of many diseases [79], including myocardial reperfusion
injury [80], cardiac allograft rejection [81], Fabry disease [82] and kidney diseases including acute
tubular necrosis and diabetic nephropathy [83]. An increase in 3-NT was also detected in plasma and
synovial fluid in osteoarthritis patients [84], in plasma from patients with interstitial lung disease [85]
and type II diabetes mellitus [86].

One way that nitration could be affecting disease progression is through its effect on chemokines
and leukocyte recruitment. Chemokine nitration usually results in a decrease in function [59] but for
some proteins nitration can enhance function [87].

5.1. Effects of Nitration: Detection of Chemokines

Studies have shown that nitration may alter the ability of antibodies to detect proteins, presumably
due to epitope modification by the addition of the NO; groups. This has been shown for nitrated CCL2
and CXCL12 [54,88]. This may limit the biological relevance of measuring chemokine concentrations
as disease biomarkers if only unmodified chemokine is detected. The amount of unmodified
chemokine may be a less informative indicator of disease activity than the ratio of modified to
unmodified chemokine.



Int. J. Mol. Sci. 2017, 18, 1692 6of 17

Unmodified Amino Acid ONOO- -Modified Amino Acid
Tyrosine 3-Nitrotyrosine
)l()/O/Ti:L HO -
Tryptophan 6-Nitrotryptophan Dihydroxytryptophan
o \//n o \/()H o
“/ \(\
| on on / V4 OH
INT NH; \ L o = NH,
Methionine Methionine Sulphoxide
. “ 0
(H/ OoH (_”‘/'\ OH
NH, NS
Cysteine Nitrosylated Cysteine Oxidized Cysteine
0 Qo [¢]
| ;
SH OH AN /ﬁ/‘k 0=—Ss OH
S OH
NH, NH,
NH, 2
Lysine Ne-(Carboxymethyl)Lysine

O
0
- Jk/q
OH HO oH
NH,

Figure 3. Some examples of amino acid modifications by peroxynitrite (ONOO™). Modifications

involving oxidation are shown in blue, and modifications involving nitration are shown in red.

5.2. Effects of Nitration: Chemotaxis

Nitration affects the chemotactic function of several chemokines but the biological significance of
this is not fully understood. Incubation of chemokine with ONOO™ inhibits monocyte chemotaxis
in response to CCL2 and eosinophil chemotaxis in response to CCL5 [89]. Another study found that
CCL2 nitrated by intratumoural RNS was unable to induce CD8+ T cell recruitment to the tumour,
but could still induce some recruitment of myeloid cells at high concentrations [88]. Nitration of
tyrosine 7 in CXCL12 rendered the chemokine unable to induce lymphocyte chemotaxis both in vitro
and in vivo [90]. Nitration could therefore be a negative regulator of inflammation; reducing the
chemotactic functions of chemokines and thereby reducing leukocyte infiltration.

5.3. Effects of Nitration: Receptor Binding

The effect that nitration has on the ability of a chemokine to bind/signal through its receptor(s)
is complex. Nitrated CCL2 was shown to have a reduced affinity for its receptor CCR2, which may
explain its failure to induce chemotaxis of CD8+ T cells (as these cells express low levels of the CCR2
receptor), but retained ability to induce migration of myeloid cells (which express very high levels of
CCR?2) [88]. Nitration of CXCL12 does not affect its ability to bind the CXCR4 receptor, but does impair
its ability to signal through this receptor [90]. In cases where nitration reduces receptor activation
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capacity, this could influence the receptor signaling bias mentioned previously, and increase the
specificity of signaling in situations where many chemokines can bind to the same receptor.

To date, all research on nitration in chemokine biology appears to focus upon nitration of the
chemokines themselves. The effect that nitration of the chemokine receptors may have is unknown.
The Y188A CXCR1 mutant displayed a decreased affinity for CXCL8 compared with the wild type
receptor, indicating the importance of this tyrosine residue in receptor-ligand interactions. As tyrosine
is a potential target for nitration by ONOO™, nitration of CXCR1 as well as CXCL8 could affect
receptor-ligand interactions [91].

5.4. Effects of Nitration: GAG Binding

Whether or not nitration affects GAG-binding depends upon the chemokine in question. For
example, nitrated CXCL12 binds GAGs with a similar affinity as wild type CXCL12 [90], but nitrated
CCL2 has been shown to have reduced ability to bind both heparin and heparan sulphate when
compared to wild type CCL2 [92].

It is worth noting that soluble/immobilized chemokines can initiate different downstream
pathways affecting cell migration, as is the case of the CCR7-CCL19/CCL21 axis. This means that
in cases where nitration affects GAG binding (i.e., ability of the chemokine to be immobilized), this
can in turn affect receptor signaling and therefore regulation of receptor binding, GAG binding and
post-translational modifications are all likely to be linked and influence each other [93].

6. GAGs, Nitration and CXCLS8 Function

CXCLS is a potent neutrophil chemoattractant protein released by many cell types in response to
a wide range of stimuli including cytokines, microbial products and hypoxia [94,95]. CXCLS has also
been shown to act on other cell types such as lymphocytes and fibroblasts, and is known to promote
angiogenesis [96] and leukocyte degranulation. CXCLS is therefore implicated in both acute and
chronic inflammation [97]. Its modulation could influence the pathology of a wide range of diseases
and at multiple disease stages [98].

6.1. Targeting CXCL8-GAG Interactions

Studies have shown that while the CXCL8 monomer is the higher affinity receptor ligand, the
CXCLS8 dimer (which is the higher affinity GAG ligand) is far less competent at CXCR1 receptor
activation (although quite active for CXCR2 [99]). This suggests that CXCL8, when GAG-bound,
cannot access the receptor [36,100,101]. The C-terminal alpha helix of CXCLS, in addition to some basic
residues located within the N-loop, is critical for GAG binding [102,103] due to its positive electrostatic
charge. This binding is mediated by basic amino acids (Arg, Lys, His) core residues and by other
secondary residues across its sequence (as shown in Figure 4) [41,104]. Targeted substitution of these
basic residues for alanine residues reduced in vivo neutrophil recruitment to the peritoneum [8,32],
but increased recruitment to the lungs [32,105]. These different recruitment patterns of neutrophils in
response to CXCLS8 in the mouse peritoneum compared to lung could be attributed to differences in
chemokine gradients caused by different GAG structures and compositions between these tissues, and
by differences in binding kinetics or diffusion rates, adding further complexity to this topic [32].



Int. ]. Mol. Sci. 2017, 18, 1692 8 of 17

A)

N-loop C-terminal a-helix

15 18 20 23 42 47 54 60 64 6768
CXCL8 SAKELRCQCIKTYSKPFHPKFIKELRVIESGPHCANTEIIVKLSDGRELCLDPKENWVQRVVEKFLKRAENS

GAG-binding

Receptor-binding

Both GAG and receptor-binding

BXXXBXXBB motif: motif associated with GAG-binding, where B is basic aa

B)
% -
%_ i
X \‘?P % ")
Figure 4. CXCLS8 sequence and structure. (A) Diagrammatic representation of CXCL8 (72 amino acids
long), showing the amino acid sequence. Purple: Receptor-binding residues. Green: GAG-binding

residues. Red: residues implicated in both GAG and receptor binding; (B) CXCL8 in monomeric form
(IKL, PDB) on the left, and dimeric form on the right (ICXCLS8, PDB).

6.2. Competitive Displacement of Chemokines

The administration of a GAG, usually heparin, is a method that has been employed in pre-clinical
models to modulate inflammation, and is thought to act through disruption of pre-formed chemokine
gradients present on cell surface GAGs. Heparin in various forms inhibits leukocyte recruitment to
mouse models of arthritis, traumatic brain injury and lipopolysaccharide (LPS) treatment [106-108],
although its effectiveness depends upon the dose given and the duration of inflammation [109]. These
studies show potential role of GAG mimetics on chemokine-mediated immunomodulation when
administered, either local or systemically, however it should be noted that administered heparin is
likely to interact with all cytokines due to its highly negative charge, and a more chemokine-specific
gradient disruption method could be more beneficial.

Chemokine-GAG interactions also play an essential role in the antiviral immune response. Viruses
can evade the chemokine-mediated immune response by expression of viral chemokine binding
proteins (vCKBP), which interfere with the GAG binding, GPCR-binding, or both, thus modulating
chemokine-mediated migration of leukocytes to the site of infection or tissue damage in vitro and
in vivo [110].

6.3. Mutants with Altered GAG Binding

Substitution of basic residues for alanine residues in the GAG binding domain generates a
non-GAG binding mutant. These mutant chemokines bind their cognate receptors normally and
competitively inhibit binding of their wild type counterparts. Occupation of chemokine receptors
by non-GAG binding chemokine variants prevents migration along a gradient and therefore inhibits
chemotaxis, as has been shown with CCL5, CCL7 and CXCL12 amongst others [111,112]. Studies
have shown that CXCL8 mutants with reduced GAG-binding abilities induced lower recruitment of
neutrophils than wild type CXCLS8 in the peritoneum but not the lung in vivo [32,105]. This work
could be developed in order to create a non-GAG binding CXCL8 mutant with further impaired
recruitment capabilities, although clearly biological activity effects in different tissues would need to be
fully characterized. Studies conducted on CXCL11, however, showed that a mutant with reduced GAG
binding in vitro could still induce cell migration in vivo, highlighting the need for each chemokine to
be studied individually [113].

A variant of CXCL8 which has no ability to bind GPCRs but with increased GAG binding
affinity inhibits trans-endothelial migration of neutrophils by displacing CXCLS from the surface of
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endothelial cells [114]. A similar study by our group showed that a non-GPCR binding, increased-GAG
binding CXCL12 variant showed a reduction in cell migration [115]. A CCL2 mutant with increased
GAG binding was shown to displace multiple chemokines which could overcome the issues of
redundancy [116], however high concentrations of chemokine may be required to occupy binding
sites on all GAGs [43,117]. This approach represents another potential method of regulating
chemokine function.

6.4. Using Peptides to Block Chemokine-GAG Binding

In addition to whole chemokine mutants, small peptide fragments of chemokines, for example,
a CXCL9 C-terminal peptide was successfully able to compete with CXCL8, CXCL11 and CCL2 for
binding to heparin, HS or other GAGs [118]. This illustrates the therapeutic potential of peptides to
inhibit chemokine function by disrupting the interaction between chemokines and GAGs. In addition,
these short chemokine fragments might occur naturally, due to cleavage by proteases such as matrix
metalloproteinases (MMPs). Unpublished data from our group suggests that both a synthesised wild
type (KENWVQRVVEKFLKRAENS) and mutant E70K CXCLS8 peptide (KENWVQRVVEKFLKRAKNS)
can successfully inhibit the action of the full length wild type protein, and thereby reduce adhesion of
leukocytes to an endothelial cell monolayer under physiological flow conditions.

6.5. Nitration and CXCL8 Function

Neutrophils recruited by CXCL8 produce NO and reactive species generating ONOO™. Therefore
nitration of CXCLS is likely to occur at sites of inflammation. This could be a mechanism by which
neutrophils limit further chemo-attraction to prevent tissue injury [119]. Unpublished data from
our group suggests that nitration significantly reduces the ability of CXCLS8 to induce neutrophil
chemotaxis in vitro.

How nitration may affect the function of CXCLS is as yet undetermined. Y13 is a residue in the
N-loop that is known to be important for receptor signaling and a target for ONOO™. Nitration alters
the pK, making tyrosine residues more acidic, increases the mass of the protein by 45 Da per residue
nitrated [54], and is also likely to cause some steric hindrance through increasing the surface area of
tyrosine’s phenolic ring [120]. The nitration of tyrosine also affects its hydrophobicity, although there
are conflicting reports in the literature as to whether this makes the residue more hydrophilic [70] or
hydrophobic [120]. It is possible that the hydrophobicity of tyrosine is important in the function of
CXCLS8 in particular, as a Y13L mutant (which maintains hydrophobicity) showed similar if not slightly
increased activity when compared to the wild type [121], but Y13E (hydrophilic) and Y13T (neutral)
mutants both showed a decrease in receptor affinity [122]. As the core and secondary GAG-binding
residues of CXCLS8 described previously include histidines and lysines, which are potential targets
of ONOOT, it is likely that modification of CXCL8 by ONOO™ could also affect its GAG binding
properties [123].

Tyrosine has also been shown to be an important residue within the receptor CXCR1, as a YI88A
mutant version showed decreased affinity for CXCL8 in comparison to the wild type receptor [91].
Therefore nitration of the receptors as well as the ligands (particularly tyrosine residues) could affect
chemokine-mediated signal transduction and leukocyte chemotaxis. It is possible that the location and
function of the aforementioned residues within any given chemokine (and/or receptor) will determine
the specific effects of nitration on each one in turn, highlighting the need for further study.

7. Future Research Directions

Factors such as chemokine-GAG binding and post-translational protein modification are
increasingly recognised as important determinants of chemokine function in vivo. How these factors
affect chemokine function is only starting to emerge and the challenge is now to understand their
effects at a whole organ/organism level during both normal tissue homeostasis and in disease. This is
not only of biological interest but it may identify new treatment targets.
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In this review we have discussed the importance of chemokine-GAG interactions and how this
could be modified by soluble GAGs, mutant chemokines or peptide fragments. There is increasing
evidence that this can be done in vitro and in pre-clinical disease models. However, we still do not
know what the effect of disrupting chemokine gradients in injured tissues would be nor how this
could be applied in the clinic. These are all important areas of future research.

The capacity to mount an effective inflammatory response is paramount. However, to maintain
tissue integrity, this response has to be regulated. If we understand the natural mechanisms employed
to control inflammation we may be able to exploit this to modify disease. One example discussed in
this review is the nitration of chemokines, with resultant loss of activity. Currently, the best methods
for detecting chemokine nitration involve NMR analysis or Nano-HPLC, however the development
of antibodies specific for nitrated chemokines would better facilitate their study; something our
group is currently investigating for nitrated CXCL8. This and similar chemokine modifications
could be biological ‘off switches’, limiting unopposed leukocyte accumulation and tissue damage.
Studies are beginning to find links between these different regulatory aspects of chemokine biology,
and clearly further study is required to discover how post-translational modifications may affect
GAG and GPCR binding in order to contribute to a more complete understanding of the biology of
chemokine regulation.
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Abbreviations

ACKR Atypical chemokine receptor
ECM Extracellular matrix

GAG Glycosaminoglycan

Gal Galactose

GalNAc N-acetyl-galactosamine

GlcA Glucuronic acid

GlcNAc N-acetyl-glucosamine

GIeNS Glucosamine

GPCR G-protein coupled receptor

HS Heparan sulphate

HS2ST 2-O-sulphotransferases

HS6ST 6-O-sulphotransferases

HS3ST 3-O-sulphotransferases

IdoA Iduronic acid

LPS Lipopolysaccharide

MMPs Matrix metalloproteinases
NADPH Nicotinamide adenine dinucleotide phosphate
NDSTs+ N-deacetylase/N-sulphotranferases
NO Nitric oxide

Oy~ Superoxide anion

ONOO™ Peroxynitrite

PTM Post-translational modifications
RNS Reactive nitrogen species
SULF1/2 Sulphatases

vCKBP Viral chemokine binding proteins

3-NT 3-Nitrotyrosine
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