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Subcutaneous immunotherapy is the only treatment that improves the natural
progression of allergic rhinitis and maintains long-term outcomes after discontinuation
of the drug. Metabolomics is increasingly applied in the study of allergic diseases,
including allergic rhinitis. However, little is known about the discovery of metabolites
that can evaluate clinical efficacy and possible mechanisms of Artemisia sieversiana
pollen subcutaneous immunotherapy. Thirty-three patients with Artemisia sieversiana
pollen allergic rhinitis significantly improved after 1-year subcutaneous immunotherapy
treatment, while ten patients were ineffective. Pre- and post-treatment serum samples
from these patients were analyzed by metabolomics based on the combined
detection of liquid chromatography-mass spectrometry and gas chromatography-
mass spectrometry. As a result, L-Tyrosine can be a potential biomarker because of
its opposite trend in effective patients and ineffective patients. And mechanism of
immunotherapy may be closely related to NO and nitric oxide synthase. The discovery of
potential biomarkers and metabolic pathways has contributed to the in-depth study of
mechanisms of subcutaneous immunotherapy treatment of Artemisia sieversiana pollen
allergic rhinitis.

Keywords: subcutaneous immunotherapy, clinical efficacy, seasonal allergic rhinitis, metabolomics, LC-MS,
GC-MS

INTRODUCTION

Allergic rhinitis is a type I allergic disease of the nasal mucosa, characterized by paroxysmal
repetitive sneezing, watery rhinorrhea, and nasal blockage (Okubo et al., 2017). Allergic rhinitis
affects all age groups, increasing in prevalence globally (Wang et al., 2016). Recent studies
showed that allergic rhinitis was thought to affect up to 10–40% of the worldwide population

Abbreviations: AIT, allergen-specific immunotherapy; FC, fold change; KEGG, Kyoto Encyclopedia of Genes and Genomes;
OSC, orthogonal signal correction; OSC-PLS-DA, orthogonal signal correction partial least-squares discriminant analysis;
PCA, principal component analysis; PLS-DA, partial least-squares discriminant analysis; RQLQ, rhinoconjunctivitis quality
of life questionnaires; SCIT, subcutaneous immunotherapy; SIT, specific immunotherapy; TNSS, total nasal symptom scores.
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(Ma et al., 2014; Song et al., 2015; Bachmann and Kündig,
2017; Wang et al., 2017, 2018). The prevalence of allergic
rhinitis in the United States was 19.9% (Wallace and Dykewicz,
2017), while that in adults in Europe ranged from 17 to 28.5%
(Brożek et al., 2017; Zheng et al., 2018). The results of a latest
meta-analysis indicated that the incidences of allergic rhinitis
were 15.79% in Chinese children and 13.26% in Chinese adult
(Hu S. J. et al., 2017).

Allergic rhinitis is classified into perennial and seasonal
allergic rhinitis. Pollinosis is seasonal allergic rhinitis caused by
pollen antigens, frequently complicated by allergic conjunctivitis
(Okubo et al., 2017). Artemisia sieversiana (Artemisia siversiana
Ehrh. ex Willd.) pollen is one of the most common outdoor
allergens in China, especially in the north of China. It is also one
of the main causes of seasonal allergic rhinitis (Tang et al., 2015;
Hu W. H. et al., 2017; Wang et al., 2018). Artemisia sieversiana
pollen accounted for 36.7%∼50.5% of the pollen content from
August to September in Beijing (Wang et al., 2017). A cross-
sectional study has shown that about 11.3% of patients in China
with respiratory allergies were sensitized to Artemisia sieversiana
pollen (Gao et al., 2019). This value was much higher in Northern
China (78.6%) (Cui and Yin, 2018).

During the summer and autumn pollen season of Artemisia
sieversiana, seasonal allergic rhinitis of Artemisia sieversiana
pollen brings inconvenience to patients, such as nasal itching,
sneezing, rhinorrhea, nasal congestion, even inducing asthma
(Brożek et al., 2017). Currently, the clinical treatment of
seasonal allergic rhinitis includes non-specific therapy and SIT.
Non-specific therapy mainly refers to drug treatment, such as
antihistamines (H2 receptor antagonists), leukotriene receptor
blockers, corticosteroids and so on (Greiner et al., 2011). There
are two main forms of SIT: SCIT and sublingual allergen-
specific immunotherapy (SLIT). However, it is difficult to
improve the quality of life of patients and keep therapeutic
control (Wallace and Dykewicz, 2017) for lifelong time through
drug treatment. Only immunotherapy with individually targeted
allergens can alter the natural history of allergic rhinitis
(Jacobsen et al., 2007), improve symptom and eliminate the
causes of disease, especially suitable for patients with severe
or moderate seasonal allergic rhinitis (Cox et al., 2011;
Greenhawt et al., 2017).

Subcutaneous immunotherapy was the first applied treatment
method of SIT (Cox et al., 2011). During the clinical application
for more than one century, SCIT has proved to be well safety
under standardized regimens and the professional operation of
professionals (Passalacqua et al., 2016). By repeatedly injecting
a specific allergen extraction subcutaneously, the patient can
reduce or eliminate allergic rhinitis symptoms, and has long-
term effects after stopping the drug. SCIT acts by deeply
affecting the immunologic allergen-oriented response at various
levels (Noon, 1911). SCIT generally takes 3 years and can
produce significant and stable symptom improvement after 1-
year treatment (Yukselen et al., 2012). The current indicators for
the evaluation of SCIT efficacy are subjective indicators. Lack
of recognized objective indicators makes the evaluation of SCIT
efficacy have certain limitations. Simultaneously, the detailed
mechanisms are not clear (Polosa et al., 2004).

Metabolomics is a powerful exploratory tool for discovering
interactions between different biochemical molecules and
pathways of disease or drugs (Omabe et al., 2018), advancing
our understanding of disease progression and drug effects. It
was also widely used for the study of allergic diseases. Chen
et al. (2019) found that baicalin has protective effects on allergic
rhinitis rats by inhibiting the release of immunoglobulin E,
histamine, interleukin (IL)-1β, IL-4, and IL-6 by metabolomics
studies. Zhuang et al. (2018) found that the potential metabolic
pathways of Xanthii Fructus in treating allergic rhinitis in
mice include glycerophospholipid metabolism and branched-
chain amino acid metabolism. Immunotherapy often affects
human metabolism, leading to metabolic disorders (Johnson
et al., 2016). However, there are few reports identifying the
potential mechanism of SCIT in the treatment of allergic
rhinitis by metabolomics. In the present study, we tried
to investigate metabolite changes and metabolic activities of
Artemisia sieversiana pollen allergic rhinitis patients after SCIT
and speculate related cellular signaling pathways and epigenetics
by metabolomics.

MATERIALS AND METHODS

Patients and Study Design
Seventy-eight patients with Artemisia sieversiana pollen allergic
rhinitis were recruited in Beijing Shijitan Hospital, Affiliated
to Capital Medical University, from July 28 to 31, 2016.
Inclusion criteria: course of disease more than 1 year. Typical
symptoms appear in the summer and autumn pollen season,
and asymptomatic or mild symptoms in the non-pollen
season (non-pollen season VAS < 3). Results of intradermal
test of Artemisia sieversiana pollen allergen ≥+++, and
sIgE ≥ II (Uni-CAP allergen-specific IgE detection system).
Other types of allergen skin test negative, or “+” and above
(including “+”) but specific IgE < II level (cat and dog
allergens, even if the skin test and specific IgE do not
meet the above conditions, as long as the family does not
keep pets Can also be selected). Other sage pollen allergen-
specific IgE is 2 or higher than wormwood pollen. Patients
received SCIT treatment with standardized Artemisia sieversiana
pollen allergen extraction purchased from Beijing Macro-
Union Pharmaceutical Limited Corporation, Beijing, China
(batch number: S20130001, total protein content 1.75 mg/5mL).
Standard extraction process for allergens: buffered saline
extract and raw materials are mixed to extract allergens,
filtered by pH, filtered, prepared, packaged, and tested to
obtain the finished allergen extract prickly liquid. The main
component of the pricking liquid is a soluble protein mixture
in the pollen of Artemisia sieversiana. All the patients
received standardized regimens and protocols, under operation
of professionals in hospital. Patients’ diaries were regularly
completed, including TNSS, RQLQ, VAS scores, olfactory
function grades and allergic conjunctivitis symptoms scores. The
SCIT treatment lasted 1 year.

Thirty-two people fell off during the treatment. The
remaining patients (n = 46) were evaluated for 1-year efficacy

Frontiers in Pharmacology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 305

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-11-00305 March 16, 2020 Time: 15:33 # 3

Shi et al. SCIT Metabolomics

based on comprehensive objective indicator. The curative
effect was evaluated by symptoms and sign scores. The
curative effect index (%) = (pre-treatment total score − post-
treatment total score)/pre-treatment total score × 100%
(Gu and Dong, 2005). Patients with effective therapeutic
index (≥66%, significantly improved, n = 33) were included
the effective group. Patients with ineffective therapeutic
index (≤25%, n = 10) were included the ineffective group
and admitted as negative control. The remaining patients
(>25%, <66%, not significantly effective or ineffective, n = 3)
were not included in the analysis because their treatment
results were not clear.

Ethics Statement
The study protocol was in accordance with the ethical
standards of the Declarations of Helsinki. The protocol
of this study was approved by the Institutional Review
Board of Beijing Shijitan Hospital, Affiliated to Capital
Medical University, Beijing, China (Z161100000516006,
November 2, 2015), and written informed consent was obtained
from all subjects.

Serum Sample Collection
Serum samples pre-treatment and post-treatment were collected
from both effective group (n = 33) and ineffective group patients
(n = 10). Approximately 4 mL of peripheral venous blood of
the patients was collected with EDTA anticoagulation tubes and
immediately centrifuged at 1,500 rpm (10 min, 4◦C). Serum
was separated by centrifugation, dispensed at 200 µL/tube,
and stored at −70◦C until serum metabolomics analysis. The
samples needed to be processed within 1 h after separation
from human body.

Sample Preparation of Liquid
Chromatography-Mass Spectrometry
(LC-MS)
Take 20 µL of serum, add 225 µL of ice methanol, vortex for
10 s. Add 750 µL ice methyl tert-butyl ether (MTBE), vortex
for 10 s. Shake at 4◦C for 10 min. Add 188 µL of ultrapure
water, vortex for 20 s. Centrifuge at 14,000 rpm for 2 min at
4◦C. 350 µL of the supernatant was pipetted into a 1.5 mL
centrifuge tube, spin dried, and placed at −20◦C for testing.
The remaining liquid was centrifuged for 2 min again, 125 µL
of the lower layer was aspirated, evaporated, and placed at
−20◦C for testing. Add the upper layer of the sample to 110 µL
of methanol: toluene (9:1). Vortex for 10 min, sonicate for
10 min, centrifuge at 18,000 rpm for 10 min. The lower layer
of the dried sample was vortexed with 60 µL of acetonitrile:
water (4:1) for 10 min, sonicated for 10 min, centrifuged at
14,000 rpm for 10 min. The positive ion mobile phase was A
(acetonitrile: water = 60:40, 10 mmol ammonium formate, 0.1%
formic acid) and B (isopropanol: acetonitrile = 70:30, 10 mmol
of ammonium formate, 0.1% formic acid). The anion mobile
phase was A (acetonitrile: water = 60:40, 10 mmol ammonium
acetate) and B (isopropanol: acetonitrile = 90:10, 10 mmol
ammonium acetate).

Sample Preparation of Gas
Chromatography-Mass Spectrometry
(GC-MS)
Add 30 µL heptadecanoic acid (0.3 mg/mL) and 400 µL
methanol to 50 µL serum, followed by vortexing and
centrifugation at 13,000 rpm for 10 min. 300 µL of the
supernatant was taken and dried with nitrogen. Add 500 µL
of methoxyamine pyridine solution (15 mg/mL), react at 60◦C
for 2 h. Add 60 µL N,O-Bis(trimethylsilyl)trifluoroacetamide
(BSTFA) with 1% trimethylchlorosilane (TMCS), react at
70◦C for 1 h. The mixture was centrifuged at 13,000 rpm
for 10 min at 4◦C, and then the supernatant was taken for
injection measurement.

Data Pre-processing
LC-MS and GC-MS spectra were manually phased, baseline-
corrected and referenced to TSP at 0.0 ppm, using Bruker
Topspin 3.0 software (Bruker GmbH, Karlsruhe, Germany) (Li
et al., 2017; Hong et al., 2018). Then they were automatically
exported to ASCII files using MestReNova (Version 8.0.1,
Mestrelab Research SL), which were then imported into “R”
software1 to do further phase and baseline correction and peak
alignment with an in-house developed R-script (Li et al., 2017;
Lv et al., 2017; Zhang et al., 2017). The one-dimensional (1D)
spectra were automatically binned between 0.2 and 10 ppm
using a dynamic adaptive binning approach for subsequent
statistical analysis (Wan et al., 2017). Exclude the regions of the
residual water and affected signals. The remaining regions of each
spectrum were normalized and mean-centered and Pareto-scaled
before further multivariate statistical analysis (Chen et al., 2017).

Multivariate Analysis
In order to filter out irrelevant effects and maximize the
discrimination between intergroup differences, unsupervised
PCA and supervised OSC-PLS-DA were applied for multivariate
statistical analysis (Xing et al., 2018). The OSC was a technique
that applied prior to PLS-DA to filter out unrelated variables that
were not concerning the class discrimination so as to minimize
the influence of unrelated signals (Chen et al., 2017). To assess the
validity of the established OSC-PLS-DA model, a repeated two-
fold cross-validation method and permutation test (n = 2000)
were applied. The validity of the models against over fitting was
assessed by the parameters R2Y, and the predictive ability was
described by Q2Y (Li et al., 2017). Color-coded loadings plot and
S-plot were constructed to reveal variables that contributed to the
group separation. The observed statistic p-values via permutation
testing which were less than 0.05 confirmed the significance of the
OPLS-DA model at a 95% confidence level.

Univariate Analysis
Parametric Student’s t-test and non-parametric Mann–
Whitney test were performed to evaluate the differences of
metabolites between groups. The FC values of the identified
metabolites between groups as well as their associated p-values

1http://cran.r-project.org/
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FIGURE 1 | PCA and OPLS-DA analyses of LC-MS for negative ion data from serum of effective patients. (A) PCA Score plot; (B) OPLS-DA Score plot; (C) the
corresponding S-plot, points represented differential variables (metabolites): the further away from the center of a variable, the more contribution of the variable to the
grouping; (D,E) the color-coded loading plots according to the correlation coefficients, from blue to red, the relativity gradually enhanced. EG, effective group.

adjusted by Benjamini and Hochberg method were calculated
(Xu et al., 2017).

Pathway Analysis
MetPA2 and KEGG3 were used for pathway analysis to
identify biologically meaningful metabolic patterns and relevant
pathways based on significant differential metabolites. Significant
differential metabolites were selected based on OSC-PLS-DA
loading/S-plots and FC plots. KEGG enrichment were analyzed
in order to detect the functions and pathways of differentially
metabolites (Madhu et al., 2018).

RESULTS

Metabolites Identification
The results of LC-MS and GC-MS were identified with
metabolomics database. LC-MS detected 98 negative icon
compounds and 128 positive icon compounds, while GC-MS
detected 131 compounds. The results of detection and metabolite

2http://www.metaboanalyst.ca
3http://www.genome.jp/kegg/

identification for both effective group and ineffective group
are listed in Supplementary Tables S1–S3. The combined
detection range of the two methods, LC-MS and GC-
MS, can reflect the level of metabolites in human body
comprehensively. Metabolites were identified by querying public
metabolomics databases, such as KEGG (see footnote 3)
and HMDB4.

Multivariate Analysis
Results of LC-MS and GC-MS from effective patients (n = 33)
were taken for a multivariate analysis. For both LC-MS negative
ions and positive ions, the PCA score plots exhibited a
severe overlap between pre-treatment (Pre) and post-treatment
(Post) (Figures 1A, 2A). Applying supervised OSC-PLS-DA
eliminated the variations that were unrelated with the grouping
discrimination and achieved better separation between Pre
and Post groups (Figures 1B, 2B). In the PCA (Figure 3A)
and OPLS-DA score plots (Figure 3B) of GC-MS, the Pre
and Post groups were satisfactory separated. In the S-plots
(Figures 1C, 2C, 3C), points in different shapes represented
differential variables (metabolites): the further away from the

4http://www.hmdb.ca/
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FIGURE 2 | PCA and OPLS-DA analyses of LC-MS for positive ion data from serum of effective patients. (A) PCA Score plot; (B) OPLS-DA Score plot; (C) the
corresponding S-plot, points represented differential variables (metabolites): the further away from the center of a variable, the more contribution of the variable to the
grouping; (D,E) the color-coded loading plots according to the correlation coefficients, from blue to red, the relativity gradually enhanced. EG, effective group.

center of a variable, the more contribution of the variable to
the grouping. The loading plots (Figures 1D,E, 2D,E, 3D,E)
were color coded according to the correlation coefficients, from
blue to red, the relativity gradually enhanced. They revealed
the variation of metabolites in Post group compared with
Pre group in serum.

Results of LC-MS and GC-MS from ineffective patients
(n = 10) were taken for a multivariate analysis using the same
method. Supervised OSC-PLS-DA were applied and achieved
better separation between Pre and Post groups (Supplementary
Figures S1B, S2B, S3B), compared with PCA score plots
(Supplementary Figures S1A, S2A, S3A). The color-coded
S-plots (Supplementary Figures S1C, S2C, S3C) and loading
plots (Supplementary Figures S1D,E, S2D,E, S3D,E) for OPLS-
DA revealed the variation of metabolites in Post group, compared
with Pre group in serum.

Univariate Analysis and Comparison
Between Effective Group and Ineffective
Group
Univariate analysis was also carried out to calculate the
relative content of each metabolite in Pre group and Post

group among effective patients (n = 33) and ineffective
patients (n = 10) by using R language, and the absolute
value of the change rate of each metabolite was obtained.
FC was calculated to indicate the degree of variation of
differential metabolites.

Among effective patients (n = 33), as can be seen in
Supplementary Tables S1, S2, LC-MS detected 43 negative
ion differential metabolites (P < 0.05) and 12 positive
ion differential metabolites (P < 0.05). In Supplementary
Table S3, 108 differential metabolites were detected by
GC-MS (P < 0.05). Among ineffective patients (n = 10),
143 different compounds (P < 0.05) were detected by
LC-MS and GC-MS. The FC values (Pre vs. Post) of the
detected metabolites as well as their associated P-values
were summarized in Supplementary Tables S1–S3. Red
indicates more pre- than post-treatment, meaning the
patient’s level of metabolite decreased at the end of SCIT
treatment. Blue indicates less pre- than post-treatment,
meaning the patient’s metabolite level rose at the end of this
treatment. The darker the red or blue color, the greater the
drop or increase.

Through the above results, patients in the effective group
and the ineffective group had different metabolic level changes
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FIGURE 3 | PCA and OPLS-DA analyses of GC-MS data from serum of effective patients. (A) PCA Score plot; (B) OPLS-DA Score plot; (C) the corresponding
S-plot, points represented differential variables (metabolites): the further away from the center of a variable, the more contribution of the variable to the grouping;
(D,E) the color-coded loading plots according to the correlation coefficients, from blue to red, the relativity gradually enhanced. EG, effective group.

after 1-year SCIT treatment. The results of the ineffective group
were taken as negative control, compounds with significant
changes in the effective group (P < 0.05) but no changes
(P ≥ 0.05) in the ineffective group or with opposite trends
were listed separately in Table 1. There existed 54 compounds
changing significantly pre-and-post among effective patients
while unchanging among ineffective patients. In particular,
metabolism level of L-tyrosine among effective patients was

increased after 1-year SCIT treatment, while it was decreased in
ineffective patients after treatment.

Metabolite Pathway Analysis of Effective
Group
Based on the above results, significant metabolites in effective
group were subjected to pathway analysis using MetPA to explore
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TABLE 1 | Comparison of potential marker metabolites between effective group and ineffective group.

No. Compound EG IG No. Compound EG IG

1 OxFA 18:1+2O; [M−H]− *** 29 PE 38:5e; PE 18:1e/20:4; [M−H]− **

2 PI 36:4; PI 16:0-20:4; [M−H]− * 30 PE 36:3e; PE 18:1e/18:2; [M−H]− **

3 PE 38:6; PE 16:0-22:6; [M−H]− *** 31 PE 36:2e; PE 18:0e/18:2; [M−H]− *

4 PI 34:1; PI 16:0-18:1; [M−H]− * 32 PE 36:2e; PE 18:1e/18:1; [M−H]− **

5 PI 38:4; PI 18:0-20:4; [M−H]− * 33 ACar 8:1; [M]+ **

6 PE 38:6; PE 16:0-22:6; [M−H]− ** 34 ACar 22:6; [M]+ **

7 PI 36:2; PI 18:0-18:2; [M−H]− * 35 ACar 14:2; [M]+ **

8 PE 38:7e; PE 16:1e/22:6; [M−H]− ** 36 LPE 18:2; [M+H]+ **

9 PE 36:4; PE 16:0-20:4; [M−H]− ** 37 ACar 20:4; [M]+ *

10 PE 38:7e; PE 16:1e/22:6; [M−H]− * 38 LPC 16:0; [M+H]+ *

11 PE 38:6e; PE 18:2e/20:4; [M−H]− ** 39 LPE 18:0; [M+H]+ *

12 PE 34:2; PE 16:0-18:2; [M−H]− ** 40 ACar 18:0; [M]+ *

13 PE 36:5e; PE 16:1e/20:4; [M−H]− ** 41 PC 18:2e; PC 16:2e/2:0; [M+H]+ *

14 PE 38:7e; PE 16:1e/22:6; [M−H]− * 42 PC 20:4e; PC 18:4e/2:0; [M+H]+ *

15 PE 40:8e; PE 18:2e/22:6; [M−H]− ** 43 Para-cymene *** *

16 PE 36:4e; PE 16:0e/20:4; [M−H]− ** 44 gamma-Linolenic acid **

17 PE 36:5e; PE 16:1e/20:4; [M−H]− * 45 Hypotaurine ***

18 PE 38:4; PE 18:0-20:4; [M−H]− * 46 L-Valine *

19 PE 34:3e; PE 16:1e/18:2; [M−H]− ** 47 3-Methyladenine *

20 PE 38:6e; PE 18:2e/20:4; [M−H]− * 48 Ferulic acid, cis- *** *

21 PE 40:7e; PE 18:1e/22:6; [M−H]− * 49 D-Ribulose ***

22 PE 38:6e; PE 18:1e/20:5; [M−H]− * 50 Succinic semialdehyde ***

23 PE 36:4e; PE 18:2e/18:2; [M−H]− ** 51 4-Methylbenzoic acid ***

24 PE 38:4; PE 18:0-20:4; [M−H]− ** 52 DL-Threo-b-hydroxyaspartic acid **

25 PE 38:5e; PE 18:1e/20:4; [M−H]− * 53 5-Aminovaleric acid ***

26 PE 40:7e; PE 18:1e/22:6; [M−H]− ** 54 L-Pyroglutamic acid **

27 PE 36:2; PE 18:0-18:2; [M−H]− ** 55 L-Tyrosine ** *

28 PE 40:7e; PE 18:1e/22:6; [M−H]− **

EG, effective group. IG, ineffective group. Color coded according to log2(FC) using color bar , red represents increased and blue represents decreased
concentrations of metabolites. P-values corrected by Benjamini and Hochberg method were calculated based on a parametric Student’s t-test or a non-parametric
Mann–Whitney test (dependent on the conformity to normal distribution). *P < 0.05, **P < 0.01 and ***P < 0.001. Compounds were identified by querying KEGG
(http://www.genome.jp/kegg/) and HMDB (http://www.hmdb.ca/).

the most impacted pathways in patients who received 1-year
SCIT and achieved effective result.

Bubble plot (Figure 4) shown the related metabolic pathways
in effective group. There are 11 main metabolic pathways
(P < 0.05) involved, shown in Table 2 with their related
compounds. For pathway enrichment analysis we used the
databases provided by KEGG, identified 30 compounds that
were significantly enriched (P < 0.05), spanning 22 pathways
(Figure 5). Red circles refer to KEGG pathways, related modules,
enzymes, reactions and compounds were also analyzed.

DISCUSSION

Allergic rhinitis caused by pollen is usually seasonal allergic
rhinitis with obvious seasonal characteristics. Allergic symptoms
occur in the pollen season, but no symptoms appear in the
non-pollen seasons, which is thought to be related to pollen
exposure and pollen concentration in the air (Wakamiya
et al., 2019; Xie et al., 2019). SIT is considered as the
only way to eradicate for allergic rhinitis. However, its

clinical application still has some shortcomings: there are
no convincing objective indicators to evaluate the clinical
efficacy; the mechanism of action is too complex and unclear.
Metabolites reflect the changes of cell function after disease
or external stimulation, especially the related enzymatic or
chemical reactions (Schrimpe-Rutledge et al., 2016; Zampieri
et al., 2017). Therefore, metabolomics is widely used in
complex diseases, such as cancer, cardiovascular disease and
diabetes mellitus. It is often used to diagnose diseases,
understand disease mechanisms, identify new drug targets,
customize drug treatment and monitor therapeutic effects
(Wishart, 2016; Newgard, 2017). Allergic diseases are also
complex and heterogeneous diseases suitable for metabolomics
research (Bunyavanich and Schadt, 2015). Metabolomics has
been extensively studied on the effects of metabolism on
the progression of allergic diseases, especially asthma (Kelly
et al., 2017; Reinke et al., 2017). It has the potential of
diagnosis and treatment, and is considered to be an effective
method to find biomarkers of allergic diseases (Villaseñor et al.,
2017). Up to now, the research on the therapeutic methods
of allergic rhinitis based on metabonomics is limited. There
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FIGURE 4 | Pathway analysis of significant metabolites in serum of effective
patients between Pre and Post groups. Bubble plot of the altered metabolic
pathways in the serum of pre group compared with post group. Bubble area
is proportional to the impact of each pathway, with color denoting the
significance from highest in red to lowest in white. The labels in the figures
correspond to KEGG ID.

were two animal level studies that have found the metabolic
mechanism of drug treatment for allergic rhinitis (Zhuang et al.,
2018; Chen et al., 2019). However, there is a blank in the
metabolomics study of SCIT.

In our study, we recruited 78 allergic rhinitis patients with
Artemisia sieversiana pollen allergy during the pollen season,
and finally 43 were included in the analysis. They were all
treated with SCIT for 1 year. In addition to the detailed
inclusion criteria in the method above, other covariates, such as
genders and fasting or not, were not taken into account, since
the current study on human does not indicate the impact of
other covariates on the results (Adamko et al., 2018; Ma et al.,
2019). Through metabolomics detection and analysis of serum
from these patients before and after treatment, we studied the
difference of metabolic levels in Artemisia sieversiana pollen
allergic rhinitis patients before and after 1-year of SCIT treatment
by metabonomic method, and combined with the physiological
and biochemical significance of different metabolites and related
metabolic pathways, we made some positive discoveries.

Firstly, SCIT currently has no objective clinical evaluation
indicators or biomarkers. Only subjective indicators such as
therapeutic index can be used for the evaluation of curative
effect, which makes the clinical evaluation of this therapy lack
scientific to a certain extent. Therefore, in our study, by using
ineffective patients as negative control, we found metabolites
that changed significantly in the effective patients but remained
unchanged or opposite in the ineffective patients. Among them,
L-tyrosine was increased in the effective patients and decreased
in the ineffective patients, which is an opposite trend (Table 1).

TABLE 2 | Pathway analysis and related significant metabolites of effective group.

No. Pathways Compounds KEGG ID P

1 Alanine,
aspartate and
glutamate
metabolism

L-Asparagine C00152 ***

Fumaric acid C00122

N-Carbamoyl-L-aspartate C00438

Succinic semialdehyde C00232

Succinic acid C00042

2 Tyrosine
metabolism

L-Tyrosine C00082 **

4-Hydroxyphenethyl alcohol C06044

3,4-Dihydroxy-L-phenylalanine C00355

Homogentisate C00544

Dopamine C03758

Fumaric acid C00122

3 Galactose
metabolism

Glycerol C00116 **

D-(-)-Sorbitol C00794

Alpha-Lactose C00243

Galactitol C01697

Myo-Inositol C00137

4 Phenylalanine,
tyrosine and
tryptophan
biosynthesis

Phosphoenolpyruvic acid C00074 **

3,4-Dihydroxybenzoic acid C00230

L-Tyrosine C00082

L-Tryptophane C00078

5 Citrate cycle
(TCA cycle)

Succinic acid C00042 *

Fumaric acid C00122

Phosphoenolpyruvic acid C00074

6 Taurine and
hypotaurine
metabolism

L-Cysteic acid C00506 *

Hypotaurine C00519

Taurine C00245

7 Aminoacyl-
tRNA
biosynthesis

L-Asparagine C00152 *

L-Valine C00183

L-Leucine C00123

L-Tryptophane C00078

L-Tyrosine C00082

L-Proline C00148

8 Arginine and
proline
metabolism

Fumaric acid C00122 *

L-Proline C00148

Urea C00086

Putrescine C00134

Creatinine C00791

5-Aminovaleric acid C00431

9 Nitrogen
metabolism

L-Tyrosine C00082 *

L-Tryptophane C00078

Taurine C00245

L-Asparagine C00152

10 Butanoate
metabolism

Succinic semialdehyde C00232 *

Succinic acid C00042

Fumaric acid C00122

DL-beta-Hydroxybutyric acid C01089

11 Phenylalanine
metabolism

L-Tyrosine C00082 *

Fumaric acid C00122

Succinic acid C00042

3-Phenylpropionic acid C05629

P-values corrected by Benjamini and Hochberg method were calculated based on
a parametric Student’s t-test or a non-parametric Mann–Whitney test (dependent
on the conformity to normal distribution). *P < 0.05, **P < 0.01 and ***P < 0.001.
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FIGURE 5 | KEGG enrichment of metabolites in serum of effective patients between Pre and Post groups. The labels in the figure corresponds to KEGG ID.

At the same time, this compound was involved in five metabolic
pathways related in effective patients (Table 2). L-Tyrosine is
one of the ingredients of MPL adjuvant of allergy vaccine, which
assists in redressing a healthy balance between TH1- and TH2-
type activities and enhances production of allergen-specific IgG
(Patel et al., 2014). Combined with our findings, we can infer that
L-tyrosine metabolism in patients may affect the treatment effect,
and be a key factor that leads to effective or ineffective treatment
result. These phenomena showed that L-tyrosine could be used as
a biomarker to evaluate clinical efficacy of SCIT.

On the other hand, through metabolomics analysis of patients
who were effective in 1-year SCIT treatment, we found that the
levels of various metabolites in the body changed significantly
after patients received SCIT (Supplementary Tables S1–S3),

involving 11 metabolic pathways (Table 2). These changes are
likely to reveal the impact of SCIT treatment on patients and may
be related to the mechanism of SCIT.

This study found that there were significant disorders in
nitric oxide (NO) related metabolism before and after treatment,
including arginine and proline metabolism, tyrosine metabolism,
and nitrogen metabolism. NO acts as an inflammatory mediator
in the airway (Kim et al., 2016). NO imbalance is considered to
play an important role in the pathogenesis of allergic rhinitis,
and nasal NO has been proved to be the best biomarker
for distinguishing AR from non-AR (Takeno et al., 2014).
NO is synthesized from L-arginine by nitric oxide synthase,
which also plays an important role in the pathophysiology of
rhinitis, especially in the glandular function of allergic nasal

Frontiers in Pharmacology | www.frontiersin.org 9 March 2020 | Volume 11 | Article 305

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


fphar-11-00305 March 16, 2020 Time: 15:33 # 10

Shi et al. SCIT Metabolomics

mucosa (Kang et al., 2000). Nitric oxide synthase is expressed
in many cell types, such as epithelial cells, inflammatory cells
(macrophages, neutrophils, and mast cells), airway nerves and
vascular endothelial cells (Kim et al., 2016). The recruitment
of eosinophils is accompanied by an increase in NO in the
nasal cavity, which leads to oxidative stress (Hanazawa et al.,
2000). Eosinophils are considered to be responsible for allergic-
related inflammatory diseases. Peripheral blood eosinophils are
biomarkers of allergic airway inflammation (Amin et al., 2016).
Studies have found that fractional exhaled NO and blood
eosinophil levels are significantly correlated with index%Tfh2
cells per% Breg cells (Kamekura et al., 2015). High-dose allergen
administered resulting in immune deviation from a Th2 to a Th1-
driven response is considered to be one of the mechanisms of
immunological and clinical tolerance in SIT (Jasper et al., 2017).
In perennial allergic rhinitis, inducible nitric oxide synthase in
nasal mucosa is up-regulated, and NO in nasal cavity decreases
after treatment with topical corticosteroids (Hanazawa et al.,
2000). These evidences suggest that SCIT treatment of rhinitis
may play a role in the production and activity of NO, thereby
improving the symptoms and diseases of patients with rhinitis.

In addition, arginine is a substrate for nitric oxide synthase
and arginase. Arginase expression is strongly induced by
cytokines, in particular IL-4 and IL-13, which are produced
at elevated level in airways and which activate inflammatory
pathways. Arginase provides a precursor for polyamines and
proline by modulating nitric oxide synthase activity, which
stimulate cell growth and collagen synthesis (Lewandowicz and
Pawliczak, 2007). Arginase competes with nitric oxide synthase
for L-arginine, which catalyzes the hydrolysis of arginine to urea
and ornithine (Yasar et al., 2011). Therefore, an increase in
serum arginase activity may limit the formation of NO catalyzed
by inducible nitric oxide synthase, resulting in allergic rhinitis
(Maarsingh et al., 2006). The metabolic disorders of arginine and
proline metabolism in this study may be closely related to the
effective treatment of SCIT.

In our study, taurine and taurine metabolic levels increased
significantly in patients with allergic rhinitis after 1 year of
treatment. Taurine and taurine metabolism were also found to
increase after asthma treatment (Comhair et al., 2015; Quan-
Jun et al., 2017), which may be related to taurine inhibiting the
production of inflammatory cytokines, reducing nasal friction
and histamine (Nam et al., 2017). TCA cycle (Quan-Jun et al.,
2017; Khoo et al., 2018; Chen et al., 2019) and phenylalanine,
tyrosine, and tryptophan biosynthesis (Zinkeviciene et al., 2016)
has also been found to be of some significance in the study
of metabolomics of many allergies. These findings have certain
indications and auxiliary effects for researchers to further
discover the mechanism of SCIT for allergic rhinitis.

CONCLUSION

Our metabolomics studies have found some differential
metabolites associated with the SCIT treatment of Artemisia
sieversiana pollen allergic rhinitis. We found that L-tyrosine
could be used as a biomarker to evaluate clinical efficacy of SCIT,

because of its opposite trend in effective patients and ineffective
patients. At the same time, the metabolic pathways related to NO
production and metabolism in vivo were obviously disordered
after 1 year of treatment for allergic rhinitis. We can infer that the
mechanism of immunotherapy may be closely related to NO and
nitric oxide synthase. However, further replication studies are
necessary to validate our inference. These studies may provide a
new perspective with which to find potential biomarkers of and
understand the mechanism of SCIT, as well as a new reference
for personalized treatment.
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