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Abstract: This study retrospectively analyzed the performance of artificial neural networks (ANN) to
predict overall survival (OS) or locoregional failure (LRF) in HNSCC patients undergoing radiother-
apy, based on 2-[18F]FDG PET/CT and clinical covariates. We compared predictions relying on three
different sets of features, extracted from 230 patients. Specifically, (i) an automated feature selection
method independent of expert rating was compared with (ii) clinical variables with proven influence
on OS or LRF and (iii) clinical data plus expert-selected SUV metrics. The three sets were given as
input to an artificial neural network for outcome prediction, evaluated by Harrell’s concordance index
(HCI) and by testing stratification capability. For OS and LRF, the best performance was achieved
with expert-based PET-features (0.71 HCI) and clinical variables (0.70 HCI), respectively. For OS
stratification, all three feature sets were significant, whereas for LRF only expert-based PET-features
successfully classified low vs. high-risk patients. Based on 2-[18F]FDG PET/CT features, stratification
into risk groups using ANN for OS and LRF is possible. Differences in the results for different
feature sets confirm the relevance of feature selection, and the key importance of expert knowledge
vs. automated selection.

Keywords: HNSCC; artificial neural network; 2-[18F]FDG PET/CT; UMAP; feature extraction; Har-
rell’s concordance index

1. Introduction

Advances in radiation oncology and medical imaging are closely linked, as attested by
the widespread use of image guided radiotherapy (IGRT) and, more recently, the successful
implementation of MR guided radiotherapy [1,2]. The past decade has seen strong growth
in the extraction of quantitative features from medical imaging which can be used in
predictive models; a practice called radiomics [3]. The application of machine learning
provides the possibility of processing a high number of heterogeneous parameters obtained
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from clinical imaging data. Using artificial intelligence algorithms and specifically neural
networks for machine learning allows for processing large amounts of data for predictive
model building [4]. This development has the potential to translate into clinical practice by
guiding treatment decisions and therapy planning, especially in an imaging driven field
such as radiation oncology [5], where for instance several studies [6–8] showcased how
deep learning could be used for head and neck cancer outcome prediction based on pre-
treatment CTs. Imaging with PET/CT using 2-deoxy-2-[18F]fluoro-D-glucose (2-[18F]FDG)
is routinely part of pretreatment workup in several tumor entities such as squamous cell
carcinoma of the head and neck (HNSCC) and allows extraction of several features. It has
been shown that the diagnostic value of 2-[18F]FDG PET/CT has an impact on therapy
decisions in HNSCC [9–12]. The prognostic value of several first order PET features,
such as maximum of the standardized uptake value (SUVmax) or total lesion glycolysis
(TLG) [13–15], has been previously studied. In PET images, volumes of interests (VOIs) can
be defined semi-automatically based on the tracer-uptake, eliminating the need to manually
define VOIs for radiomics evaluation, allowing for high-throughput user-independent
evaluation.

Today the cornerstone of treatment decision making in radiation therapy of HNSCC
is the knowledge of risk factors that are well described in the literature. These risk factors
include clinical data (e.g., age, sex, smoking history), tumor classifications (e.g., TNM-
Stage), and histological features (e.g., grading, HPV-status) [16–18]. HPV expression has
been shown to be an independent prognostic factor for overall survival in patients with
oropharyngeal carcinoma [17]. However, even among HPV negative tumors a wide range
of different therapy responses are reported [19]. Therefore, means of further treatment
stratification and personalized tailoring of therapy strategies are needed. Artificial neural
networks (ANNs) [20] based on image features are a promising approach.

In this study, we investigated whether a neural network-based algorithm applied on
PET features along with clinical data can provide prognostic information for head and
neck cancer patients undergoing curative radiotherapy in terms of locoregional failure
(LRF) and overall survival (OS). This approach is novel since it relies entirely on features
extracted from semi-automatically generated PET VOIs, and is thus not relying on expert
segmentation. We specifically evaluated the impact of input feature selection on the neural
network’s performance.

2. Materials and Methods

Approval by the Institutional Ethics Committee of LMU Munich (protocol code No.
448-13 (date of approval 21 October 2013) for the retrospective data evaluation was available
in the context of the clinical cooperation group (KKG) “Personalized radiotherapy for head
and neck tumors”.

2.1. Patients

We identified patients who underwent curative therapy according to international guide-
lines with either complete surgery with neck dissection and adjuvant (chemo)radiotherapy
(RCT) or definitive RCT for primary head and neck tumors between 06/08 and 02/20. Only
patients with pre-treatment 2-[18F]FDG PET/CT, older than 18 years, and with a follow-
up history of at least 1 year were included. Tumor stage was assessed using the UICC
7th edition classification [21]. Patient and tumor characteristics, as well as the treatment
modalities, were evaluated. A complete list of the clinical features is given in Table A1 in
the Appendix B.

Follow-up has been calculated from the first day of the definitive or adjuvant RCT. The
events of the survival endpoints were defined as follows: overall survival (OS)—time in
months from first day of radiotherapy until death, and locoregional failure (LRF)—defined
as local or regional recurrence histologically proven by needle biopsy or surgery.
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2.2. 2-[18F]FDG PET/CT Imaging Protocol

Whole-body PET/CT images were acquired on a Biograph mCT Flow 20-4R PET/CT
scanner (Siemens, Healthcare GmbH, Erlangen, Germany) and a GE Discovery 690 PET/CT
scanner (General Electric, Munich, Germany) as previously reported [22–24]. Patients
fasted at least 4 h prior to administration of approximately 250 MBq 2-deoxy-2-[18F]fluoro-
D-glucose (2-[18F]FDG), and emission scan acquisition of the immobilized head and neck,
thorax, abdomen, and pelvis started approximately 60 min after intravenous tracer admin-
istration. Unless contraindicated, iodine-containing contrast medium (Ultravist 300, Bayer
Vital GmbH, Leverkusen, Germany or Imeron 350, 2.5 mL/s, Bracco Imaging Deutschland
GmbH, Konstanz, Germany) was administered for diagnostic computed tomography (CT)
imaging (100–190 mAs, 120 kV; portal venous phase).

2.3. Feature Extraction

Delineation of the tumor region from which the features were extracted was performed
semi-automatically using the HERMES Browser (P5, Gold, Version 4,17; HERMES Medical
Solutions AB, Stockholm, Sweden) with the true attenuation corrected (AC) reconstruc-
tion. Firstly, a broad ROI was labeled by an expert physician. The SUVmax and SUVpeak

representing the mean SUV of the voxels within a 1 cm3 cubic VOI around SUVmax were
determined by the software. Then multiple volumes of interest (VOIs) of the area of the pri-
mary tumor covered with 25% (SUV25), 40% (SUV40), 50% (SUV50), 75% (SUV75), and 90%
(SUV90) of the SUVmax or more were automatically delineated. SUVmin and SUVmean were
determined, and the mean tumor volume (MTV) and total lesion glycolysis (TLG) were
calculated for every VOI. Additionally, SUVmean liver [25], SUVmean cervical spine [26],
and SUVmean aorta were defined via delineation and a set of ratios were calculated [27] as
follows.

SUVmax − Ratio (SURmax):
SUVmax was divided by SUVmean of liver, spine, and aorta respectively (referred to as

Organ in the following formulas) to assess the ratio SURmax of SUVmax of the tumor and
the corresponding organ.

SURmax Organ =
SUVmax Tumor
SUVmeanOrgan

(1)

SUVmean − Ratio (SURmean):
Tumor SUVmean values of SUV40, SUV50, SUV75, and SUV90 were divided by

SUVmean of liver, spine, and aorta respectively.

SURmeanOrgan =
SUVmean of SUV40, SUV50, SUV75 or SUV90

SUVmean Organ
(2)

TLG values of SUV40, SUV50, SUV75, and SUV90 were divided by SUVmean of spine,
liver, and aorta respectively.

SURTLG Organ =
TLG of SUV40, 50, 75 or 90

SUVmean Organ
(3)

2.4. Data Preprocessing

Our input covariates comprised both numerical (e.g., age, SUV values, etc.) and
categorical (e.g., sex, tumor site, etc.) data. Missing observations for the numerical values
(2.6% on average, range 0.4% to 7.0%, excluding all covariates where no observation was
missing) were replaced with the median value for that covariate while missing observations
for categorical values (2.8% on average, range 0.4% to 8.7%, excluding all covariates where
no observation was missing, grading and HPV-status, see below) were replaced with the
most common class for that covariate. Z-score normalization was applied to the numerical
variables to have zero mean and unit variance. The standardization was fitted on the
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training data and then applied without changes to both training and testing numerical
covariates (see Model Optimization and Details subsection for the adopted training and
testing data subdivision). The categorical variables were one-hot encoded, meaning that,
e.g., for the sex variable, a male was represented as a 2D-vector with a one in the first
entry and a zero in the second entry and a female was represented as a 2D-vector with
a zero in the first entry and a one in the second entry of the vector. For the grading and
HPV-status categorical variables, the number of missing observations was particularly
high, amounting to 13.9% and 41.3% of all patients. Therefore, instead of replacing missing
observations with the most common category, we considered ‘unknown status’ as an extra
category for the one-hot encoding procedure.

2.5. Feature Selection

Within this study, three different feature selection methods were used. To build the
first set of input variables, an advanced dimensionality reduction algorithm called Uniform
Manifold Approximation and Projection (UMAP) [28] was leveraged to automatically
extract as much information as possible from all the available covariates. The UMAP
algorithm constructs an abstract high-dimensional representation of the input data and
then optimizes a low-dimensional representation to be as structurally similar as possible
to the high-dimensional one. In other words, the UMAP algorithm can convert a high
number of initial (and potentially redundant) features into a small number of new features
(embedding), trying to preserve all information contained in the initial set. We fitted the
UMAP algorithm on the training data and then applied it to both training and testing data
to generate the embeddings. To compare the predictive performance of a model using an
automatically extracted embedding of features as input, we built two additional models
based on two different sets of features selected from all the available covariates by an expert
radiation oncologist.

The first physician-selected feature set comprises classical clinical covariates which
have been shown to be predictive in previous studies and which would be available without
2-[18F]FDG PET/CT [19]. We called this set of input variables Literature Only (LO) features
and used it as baseline to evaluate whether additional PET features could improve the
results. The selected variables are described in Table 1.

Table 1. Selected features for LO and LP.

Literature Only (LO) Literature + PET (LP)

Clinical values

Age at diagnosis Age at diagnosis
Gender Gender
T-Stage T-Stage
N-Stage N-Stage

Tumor grading Tumor grading
HPV-status HPV-status

Smoking status Smoking status

PET values none

SUV40max
SUV40peak
SUV40TLG

SURmax Liver
SURmax Spine
SURmax Aorta
SUVmean Liver
SUVmean Spine
SUVmean Aorta

The second physician-selected feature set comprises the same LO features plus some
expert-selected PET features that are easily extractable from every diagnostic PET software
and with a focus on SURmax, SURmean, and SURTLG. We called this set of variables
Literature and PET (LP) features. The selected PET features are listed in Table 1. While
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final physician feature selection is presented in the results section, this was done only once
prior to model optimization.

2.6. Artificial Neural Network

In this work, we used Nnet-survival [29], a non-linear adaptation of the Cox propor-
tional hazards model, to extend a binary classification ANN to a survival analysis one. Our
ANN can thus incorporate censoring information and outputs survival curves/recurrence-
free probability curves as a function of time for every patient.

2.7. Model Optimization and Details

The overall workflow used in this study is shown in Figure A1. The training/validation
data and the testing data were obtained by randomly taking 75% and 25% out of the entire
dataset of 230 patients. This procedure was done only once, prior to all trainings. The
172 training and validation patients were used to find the best hyper-parameters of the
models. Specifically, for each ANN applied to a different embedding, we performed an
automatic grid search over all 18 combinations of the learning rate (1 × 10−4, 5 × 10−4 and
1 × 10−3), the number of hidden layers (1, 2), and the number of neurons in the hidden
layer (5, 10, 15). When the ANN was applied to the expert knowledge features, the grid
search was performed only once over the 18 above-mentioned combinations. On the other
hand, the algorithmic UMAP dimensionality reduction has its own parameters: specifically,
we decided to vary the number of nearest neighbors (5, 15, 25, 50), which controls how
UMAP balances local versus global structure of the data and the number of features of the
embedding (5, 15, 25, 50). Thus, when performing the grid search for the UMAP + ANN
model we looked at all 18 combinations for the ANN and at all 16 combinations for the
UMAP at the same time, leading to a grid search over 288 different combinations. For
each of the combinations a 3-fold cross-validation was used and the hyper-parameters,
which led to the best validation performance when averaged over the three sub-folds were
selected for the final ANN. As we had three different feature sets as input to the ANN, three
different sets of hyper-parameters were found per endpoint. Table 2 shows a summary of
the best hyper-parameters, which were consequently used for the testing phase.

Table 2. Sets of best hyper-parameters found for the different models by performing 3-fold cross
validation with several different hyper-parameter combinations.

Endpoint Model

UMAP ANN

Nearest
Neighbors

Number
of

Features

Learning
Rate

Number
of Hidden

Layers

Neurons
per

Hidden
Layer

OS UMAP +
ANN 5 50 1 × 10−3 2 10

LO + ANN - - 1 × 10−4 2 10
LP + ANN - - 1 × 10−3 2 5

LRF UMAP +
ANN 50 15 1 × 10−4 1 10

LO + ANN - - 5 × 10−4 2 10
LP + ANN - - 1 × 10−4 2 15

After the best set of hyper-parameters was found for each model, we repeated the
3-fold cross-validation once with the best set of hyper-parameters, leading to three different
trained architectures per model (one for each cross-validation fold). To obtain a single
testing set prediction out of the three networks, we performed model averaging, i.e., we
applied all three models to the testing set and then averaged over their predictions before
computing the evaluation metrics.
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All code, from data pre-processing to model building, was written in Python 3.8. The
networks were optimized using the high-level API Keras 2.4.3 with Tensorflow 2.3.0 as
backend. Training and testing were carried out on an NVIDIA Titan V with 12 GB of
memory. We used a fixed weight decay [30] of 1 × 10−4 and a dropout rate [31] of 25% to
avoid overfitting. The exponential linear unit [32] was used as activation function and the
Adam algorithm [33] to optimize the network weights. We set the number of neurons in
the output layer to six and chose a time-gap of half a year between the different output
time-points. Therefore, our ANN outputs time-to-event curves for a duration of three years
(see Figure 1, on the right). For all ANNs a batch size of 32 and 3000 epochs were used
for training. Keras early stopping callbacks with a patience of 1000 epochs were used to
terminate training if no improvement in performance was observed.
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2.8. Statistical Analysis

The performance of the models was evaluated in two ways. First, we measured
discriminative performance by using Harrell’s concordance index (HCI) [34]. HCI is com-
monly used in survival analysis as it quantifies for how many pairs of patients the predicted
risk and the ground truth time-to-event or last follow-up time are concordant. HCI is nor-
malized and amounts to 1.0 if all possible pairs are concordant and to 0.5 if we would assign
random risks to the patients. Our model outputs time-to-event curves, so to compute HCI
we have chosen the survival probability and additionally recurrence-free probability after
two years as risk value. To obtain confidence intervals for the testing set HCI we used
bootstrap re-sampling [34], i.e., we repeatedly took samples with replacement from the
original testing set with 58 patients to generate many testing set variants. Specifically, we
applied our models to 1000 bootstrap sets, therefore obtaining for each model 1000 HCIs.
From these, we computed the median HCI with 83% confidence intervals (see Discussion
for details on the choice of using 83% intervals).

In addition to HCI, we quantified the model’s capability of stratification into high-
and low-risk testing patient groups. For this purpose, we first found a threshold during
cross-validation by averaging over the risk of all patients with event, then averaging over
the risk of all patients without event and finally taking the mean of these two values to set
a threshold for all three cross-validation models, thus obtaining a single model averaged
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threshold. We then used this threshold to split the testing set into high-risk and low-risk
patients and applied the log-rank test to infer whether the difference in the two groups was
significant. Results with p-values < 0.05 were considered significant. To visualize patient
stratification, Kaplan-Meier curves were used.

3. Results
3.1. Patients

We included 230 patients, with a median age of 64 (range 28–93), 167 (72.6%) male,
and 63 (27.4%) female. Regarding UICC stage, 5 (2.2%) were staged UICC I, 25 (10.9%)
UICC II, 45 (19.6%) UICC III, and 155 (67.4) UICC IV. A comprehensive analysis of pa-
tient characteristics and the allocation between training and testing cohort can be seen in
Table A1 (Appendix B). Median follow up was 31 months (range 1–175 months), 55 patients
experienced a loco-regional recurrence, and 123 patients died, leading to a mean OS of 40.5
months (range 0.3–151.1 months) and a mean LRC of 26.2 months (range 3.1–118.6 months).
Forty-one patients received surgery with adjuvant RT and 32 patients received surgery with
adjuvant RCT with a median overall dose of 64 Gy (range 61.4–70.0 Gy) to the tumor bed.
Definitive RCT was received by 157 patients with a median overall dose to the tumor of
69.96 Gy (range 63–70.4 Gy) applied via 3D conformal or intensity-modulated radiotherapy
(IMRT). Patients with extracapsular extension of the involved lymph nodes (ECE+), close or
incomplete resection status additionally received chemotherapy. Subsequent chemotherapy
was administered to 189 patients: Cisplatin/5-Fluorouracil (CDDP/5-FU in accordance
with the ARO 96-3 Study), 5-Fluorouracil/MMC (Mitomycin C (MMC) 10 mg/m2 d1,
d29; 5-FU 600 mg/m2 d1–5), Cisplatin mono (40 mg/m2 weekly) or Cetuximab mono
(Cetuximab 250 mg/m2 weekly with 400 mg/m2 loading dose).

3.2. Feature Extraction

For each of the 230 patients, 102 covariates were extracted in total. Out of these, 24
were clinical variables and 78 were PET-based variables. The size of the data matrix prior
to the preprocessing step therefore equals 172 × 102 for cross-validation and 58 × 102 for
testing. All PET-based variables are listed in Table A2 (Appendix B).

3.3. Data Preprocessing

After preprocessing, the size of the data matrix was 172 × 206 for the cross-validation
set and 58 × 206 for the testing set due to the one-hot encoding procedure which increased
the dimension of categorical variables.

3.4. Feature Selection

The size of the cross-validation and testing input feature matrix after UMAP was
172 × 50 and 58 × 50 for the OS endpoint and 172 × 15 and 58 × 15 for the LRF endpoint.
The final number of features (50 for OS and 15 for LRF) is a hyper-parameter of the UMAP
algorithm, so it was automatically determined during optimization. For the LO set, seven
clinical variables were chosen by the expert physician, that is ‘Gender’, ‘Age at diagnosis’,
‘Tumor localization’, ‘T Stage’, ‘N Stage’, ‘Tumor grading’, and ‘HPV-p16 status’. After
preprocessing, this yields an input data matrix of 172 × 43 for cross-validation and 58
× 43 for testing. For the LP set, we used the LO features plus nine expert selected PET
variables, which are shown in Table 1. Therefore, 16 covariates in total were used. After
preprocessing, this yields an input data matrix of 172 × 52 for cross-validation and 58 × 52
for testing.

3.5. Model Optimization and Details

The hyper-parameters found via cross-validation for the UMAP algorithm and the
ANN are shown in Table 2. A 3-fold cross-validation took on average 2 min.
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3.6. HCI Comparisons

With an HCI of 0.71 (0.64–0.78), the best performing model for OS was the ANN
applied to literature and PET (LP) features selected by an expert physician. However, it
should be noted that LP + ANN was slightly, yet not significantly, better than the other
two models, as the confidence intervals overlapped. For LRF, we found the literature only
based ANN, with an HCI of 0.70 (0.56–0.80), to be slightly better than the LP + ANN model;
the UMAP + ANN model was inferior. The differences were again not significant in terms
of confidence intervals (Table 3).

Table 3. Cross-validation and testing results for the different models and endpoints. HCIs shown for
the cross validation are the values obtained on each of the sub-folds while for testing we showed the
median HCI with confidence intervals obtained from bootstrapping the testing set 1000 times.

Endpoint Model 3-Fold Cross-Validation
HCI

Median Testing HCI
(83% Confidence Interval)

OS UMAP + ANN 0.63; 0.59; 0.64 0.64 (0.56–0.72)
LO + ANN 0.59; 0.65; 0.66 0.67 (0.58–0.75)
LP + ANN 0.58; 0.66; 0.59 0.71 (0.64–0.78)

LRF UMAP + ANN 0.55; 0.76, 0.62 0.62 (0.50–0.75)
LO + ANN 0.55; 0.59; 0.64 0.70 (0.56–0.80)
LP + ANN 0.56; 0.55; 0.64 0.65 (0.54–0.76)

3.7. Risk Group Stratification

For OS, all three models achieved a significant stratification (UMAP + ANN p = 0.01;
LO + ANN p = 0.01) although the separation of the two groups was more evident for the
LP + ANN model (p < 0.001). For LRF, the LP + ANN model was the only one able to
significantly divide the testing patients into high-risk and low-risk groups (p = 0.03). The
UMAP + ANN model (p = 0.8) and LO + ANN (p = 0.4) showed worse performance in
stratifying patients (Figure 1).

4. Discussion

Our results show that risk stratification for patients undergoing curative treatment for
HNSCC using an ANN is feasible. By testing three different feature selection approaches,
we were able to show that adding 2-[18F]FDG PET/CT features enhances the performance
of the stratification process, however the differences were not statistically significant.

Generally, due to the ANN’s black-box nature it is not possible to determine which
covariates were used to perform the prediction, so it could not be explicitly inferred
whether the additional usage of PET features is needed for the algorithm. Theoretically,
an ANN based solely on clinical data could have been enough to achieve high prognosis
performance on both endpoints. However, when looking at risk group stratification for
OS, the use of additional PET features (LP + ANN) led to better results than without the
PET data (LO + ANN). In fact, for LRF the LP + ANN model was the only one able to
significantly stratify the testing patients in high-risk and low-risk groups. For OS, all three
models achieved a significant stratification. However, we noted that the separation of
the two groups was more evident for the LP + ANN models, making it the best model in
this analysis and thus confirming the added value of the initial 2-[18F]FDG PET/CT. A
similar result was reported in another study by Bogowicz et al. [35], where the additional
information derived from 2-[18F]FDG PET/CT led to superior results for local tumor control
modeling than standard CT.

However, this seems to be in contrast with the result that the UMAP + ANN model,
to which all PET covariates were available, showed the worst performance. As visible from
the results, UMAP found some relevant information from all available covariates, but this
information could not be translated by the ANN into the best performing model. Similar
results were described by Ger et al. when they tested radiomics features for their additional
value in initial PET and CT images of HNSCC patients. They reported a worsening of the
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AUC by adding radiomics features to volume of the tumor alone, showing that radiomics
features are not automatically associated with survival and in general that using more
features as input to a predictive model does not necessarily lead to improved results [36].
A similar potential explanation could therefore be that most of the covariates we extracted
have no or only poor association with the selected endpoints, making it difficult for the
UMAP + ANN to find predictive patterns. On the other hand, the finding that the LP +
ANN model containing some of the PET covariates performed better than the clinical data
alone (LO), suggested that at least some of the PET covariates do have an impact on the
endpoints. This suggests that state-of-the-art dimensionality reduction algorithms may not
be sufficient if too much unselected data is given as input.

Several studies have underlined the importance of the feature selection step prior to
classification [37,38]. The superior performance of the expert knowledge features based
ANNs (LO + ANN and LP + ANN) compared to the automatically extracted feature-based
ANN (UMAP + ANN) suggests that not only feature selection is crucial, but also that expert
knowledge can play a key role in the process. Under a clinical point of view, this result
is of relevance as only a small number of known covariates would have to be collected
for every patient. Within this study, 83% confidence intervals have been used for HCI
as it can be shown [39,40] that if two 83% confidence intervals do not overlap, then the
two-corresponding means/medians differ significantly with a significance level of 0.05,
which corresponds to the statistical confidence usually reported in literature.

It has been underlined [41] how standardization of the different steps of radiomics
model development will play a key role for the field to move forward. Although the
Image Biomarker Standardization Initiative [42] represents a fundamental step in the
standardization of feature calculation, better interpretability of the extracted features and
standardization of the segmentation of the VOI from which the features are calculated
remain challenging. In fact, in most radiomics studies the VOI is manually delineated by
an expert radiologist or radiation oncologist [43], which introduces reproducibility issues
and requires additional time if the segmentation is not part of the treatment workflow.

An advantage of our approach compared to traditional radiomics is that no manual
contouring of VOIs is needed. Another advantage is that by using solely semi-automatically
collected features with a commercial diagnostic software, reproducibility issues are mini-
mized. Furthermore, the fact that neither additional software for recognizing or extracting
features nor time to delineate VOIs is needed, fosters use in clinical routine.

ANNs have been successfully used for binary outcome prediction of cancer in multiple
studies [44–47]. However, several authors [29,48,49] have underlined the importance
of incorporating censoring information in the model optimization. In fact, in a binary
classification model this information is simply discarded, and each patient’s outcome is
either labeled as ‘event’ or ‘no-event’. On the other hand, a survival model (or for other
endpoints than OS, a so-called time-to-event model) is built not only using the information
on whether an event occurred or not, but also the information on when it occurred or if
follow-up was interrupted at a certain time point (i.e., right-censoring). A standard method
used for survival analysis and to predict the risk of an event is the Cox proportional hazards
model [48]. In this work, we used Nnet-survival [29] to extend a binary classification ANN
to a time-to-event model, therefore incorporating censoring information in our model.

The main limitation of this study is that we only included patients from a single
center. However, the patient cohort consists of 230 patients including UICC Stages I-IV
and patients undergoing adjuvant or definitive RCT. We therefore believe the cohort is
representative and well suited for training and testing an ANN. An external validation is
planned in the future and might serve not only to test the model’s reliability on patients
from different centers, but also to reduce the large confidence intervals which were observed
when measuring the model’s performance using HCI on the bootstrapped test set (as the
number of testing patients would be larger).
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5. Conclusions

This study could demonstrate the potential of ANNs by stratifying HNSCC patients
in high and low risk groups and PET-features by further enhancing the stratification per-
formance. Since the best results were obtained by expert feature preselection, we conclude
that an arbitrarily large number of different input variables does not automatically lead to
the best result, even when using a state-of-the-art dimensionality reduction technique such
as UMAP. Further work is needed to confirm these results with external validation and to
implement models like this one in prospective trials.
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Figure A1. Workflow of the proposed models. The input covariates are first split randomly into training and testing data
and preprocessed. Then, three different feature selection methods are used, one algorithmic (UMAP) and two based on
expert knowledge (LO and LP). An ANN extended with a previously published survival model is applied on the three
different embeddings to predict time-to-event curves for each patient, as shown exemplarily for one patient.
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Appendix B

Table A1. Clinical features.

Training Cohort Testing Cohort Proportion of Training and
Testing Cohort

Patients Percentage
[%] Patients Percentage

[%]
Training

Cohort [%]
Testing

Cohort [%]

Age at Diagnosis *

<45 9 5.20 4 7.00 69.2 30.8

45–65 90 52.00 28 49.10 76.3 23.7

>65 74 42.80 25 43.90 74.7 25.3

Gender *
male 127 73.4 40 70.2 76.0 24.0

female 46 26.6 17 29.8 73.0 27.0

Tumor localization

Nasopharynx 11 6.4 4 7.0 73.3 26.7

Oropharynx 58 33.5 22 38.6 72.5 27.5

Oral Cavity 52 30.1 21 36.8 71.2 28.8

Hypopharynx 27 15.6 4 7.0 87.1 12.9

Larynx 25 14.5 6 10.5 80.6 19.4

UICC Stage

I 5 2.9 0 0.0 100.0 0.0

II 17 9.8 8 14.0 68.0 32.0

III 35 20.2 10 17.5 77.8 22.2

IV 116 67.1 39 68.4 74.8 25.2

T Stage *

T1 17 9.8 5 8.8 77.3 22.7

T2 41 23.7 16 28.1 71.9 28.1

T3 57 32.9 9 15.8 86.4 13.6

T4 58 33.5 27 47.4 68.2 31.8

N Stage *

N0 40 23.1 10 17.5 80.0 20.0

N1 24 13.9 12 21.1 66.7 33.3

N2 97 56.1 30 52.6 76.4 23.6

N3 12 6.9 5 8.8 70.6 29.4

M Stage

M0 161 93.1 51 89.5 75.9 24.1

M1 8 4.6 4 7.0 66.7 33.3

Mx 4 2.3 2 3.5 66.7 33.3

Resection status

R0 17 9.8 8 14.0 68.0 32.0

R0 (CM) 15 8.7 6 10.5 71.4 28.6

R1 14 8.1 3 5.3 82.4 17.6

R2 5 2.9 2 3.5 71.4 28.6

No
surgery/unknwon 122 70.5 38 66.7 76.3 23.8
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Table A1. Cont.

Training Cohort Testing Cohort Proportion of Training and
Testing Cohort

Patients Percentage
[%] Patients Percentage

[%]
Training

Cohort [%]
Testing

Cohort [%]

Lymphovascular
invasion

L0 29 16.8 15 26.3 65.9 34.1

L1 18 10.4 1 1.8 94.7 5.3

No
surgery/unknwon 126 72.8 41 71.9 75.4 24.6

Venous tumor
invasion

V0 38 22.0 16 28.1 70.4 29.6

V1 7 4.0 1 1.8 87.5 12.5

No
surgery/unknwon 128 74.0 40 70.2 76.2 23.8

Perineural invasion

Pn0 26 15.0 11 19.3 70.3 29.7

Pn1 9 5.2 3 5.3 75.0 25.0

No
surgery/unknwon 138 79.8 43 75.4 76.2 23.8

Tumor grading *

G1 8 4.6 0 0.0 100.0 0.0

G2 77 44.5 25 43.9 75.5 24.5

G3 67 38.7 21 36.8 76.1 23.9

No
surgery/unknwon 21 12.1 11 19.3 65.6 34.4

Extracapsular
enhancement

ECE neg 44 25.4 19 33.3 69.8 30.2

ECE pos. 16 9.2 3 5.3 84.2 15.8

No
surgery/unknwon 113 65.3 35 61.4 76.4 23.6

HPV-P16 status *

HPV neg 73 42.2 17 29.8 81.1 18.9

HPV pos 26 15.0 19 33.3 57.8 42.2

unknown/ not
applicable 74 42.8 21 36.8 77.9 22.1

Smoking status *

Nonsmoker 0 0.0 0 0.0 0.0 0.0

Smoker 158 91.3 52 91.2 75.2 24.8

unknown 15 8.7 5 8.8 75.0 25.0

Therapy regime

OP + RT 27 15.6 14 24.6 65.9 34.1

OP + RCT 25 14.5 7 12.3 78.1 21.9

RCT 121 69.9 36 63.2 77.1 22.9

Death
No 79 45.7 28 49.1 73.8 26.2

Yes 94 54.3 29 50.9 76.4 23.6

Patient characteristics * Values used for LO and LP set.
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Table A2. Collected PET values.

SUV Values Tumor SUV Ratio (SUR) SUV Values Organ

SUV40

mean

SUV40

SURmax Liver *

Spine

SUVmean *

min SURmean Liver SUVmin

max * SURTLG Liver SUVmax

median SURmax Spine * SUVmedian

peak * SURmean Spine MTV

MTV SURTLG Spine TLG

TLG * SURmax Aorta *

Aorta

SUVmean *

SUV50

mean SURmean Aorta SUVmin

min SURTLG Aorta SUVmax

max

SUV50

SURmax Liver SUVmedian

median SURmean Liver MTV

peak SURTLG Liver TLG

MTV SURmax Spine

Liver

SUVmean *

TLG SURmean Spine SUVmin

SUV75

mean SURTLG Spine SUVmax

min SURmax Aorta SUVmedian

max SURmean Aorta MTV

median SURTLG Aorta TLG

peak

SUV75

SURmax Liver

MTV SURmean Liver

TLG SURTLG Liver

SUV90

mean SURmax Spine

min SURmean Spine

max SURTLG Spine

median SURmax Aorta

peak SURmean Aorta

MTV SURTLG Aorta

TLG

SUV90

SURmax Liver

SURmean Liver

SURTLG Liver

SURmax Spine

SURmean Spine

SURTLG Spine

SURmax Aorta

SURmean Aorta

SURTLG Aorta
* Values used for LO and LP set.
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