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A very common and effective way for investigating future demographics is the study of stage 
structured models. The focus of this article is to propose a modified model to study the impact 
of population harvesting on their juvenile and adult stages, and analyze the dynamical properties 
from both qualitative and numerical perspective. It studies single species stage structured model 
with linear harvesting on juvenile group and Michaelis-Menten type harvesting on adult group. 
We exploit general ideas in mathematical modeling process to study the dynamical properties and 
their biological, ecological, and economic implications. It discusses that bi-stability phenomena 
may exist, global asymptotic stability at boundary equilibrium points and internal equilibrium 
points are investigated from construction of suitable Lyapunov and Dulac functions. It has been 
observed that a suitable linear harvesting on juvenile population can feasibly be carry out along 
with Michaelis-Menten type harvesting on adult population without endangering extinction of 
any group of population.

1. Introduction

Every species goes through numerous stages in their life cycle, such as the juvenile, adult, and old adult phases. At various levels, 
it displays various traits and the value of various utility. Recent studies on single species age-structured models have produced very 
insightful findings regarding the sustainability, coexistence, and danger of extinction. Many scholars have studied age structured 
models finding very useful results regarding extinction, permanence or coexistence, and global stability of models [1]. For example, 
Lei studied commensalism model for a species with two age structures for two species [2]. This model is as follows∶

⎧⎪⎨⎪⎩
𝑑𝑥1
𝑑𝑡

= 𝛼𝑥2 − 𝛽𝑥1 − 𝛿1𝑥1
𝑑𝑥2
𝑑𝑡

= 𝛽𝑥1 − 𝛿2𝑥2 − 𝛾𝑥22 + 𝑑𝑥2𝑦
𝑑𝑦

𝑑𝑡
= 𝑦(𝑏2 − 𝑎2𝑦)

(1.1)

where 𝑥1 and 𝑥2 in the system (1.1) denote the juvenile and adult population densities at time 𝑡 of the first species, 𝑦 denotes the 
population density of the second species, and the parameters 𝛼, 𝛽, 𝛿1, 𝛿2, 𝑑, 𝑎2 and 𝑏2 are all positive. He studied the stability of the 
equilibrium points. Their research findings demonstrates that one of the best strategies to stop endangered species from extinction is 
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fostering strong inter species cooperation. Since the juvenile species needs time to mature, the following stage-structure-prey-predator 
model in delay differential equation for two species was then suggested by Ma, Li, et al. [3–6].

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑥1
𝑑𝑡

= 𝑟1(𝑡)𝑥2(𝑡) − 𝑑11𝑥1(𝑡) − 𝑟1(𝑡− 𝜏1)𝑒−𝑑11𝜏1𝑥2(𝑡−𝜏1)
𝑑𝑥2
𝑑𝑡

= 𝑟1(𝑡− 𝜏1)𝑒−𝑑11𝜏1𝑥2(𝑡−𝜏1) − 𝑑12𝑥2(𝑡) − 𝑏1(𝑡)𝑥22(𝑡) − 𝑐1(𝑡)𝑥2(𝑡)𝑦2(𝑡)
𝑑𝑦1
𝑑𝑡

= 𝑟2(𝑡)𝑦2(𝑡) − 𝑑22𝑦1(𝑡) − 𝑟2(𝑡− 𝜏2)𝑒−𝑑22𝜏2)𝑦2(𝑡−𝜏2)
𝑑𝑦2
𝑑𝑡

= 𝑟2(𝑡− 𝜏2)𝑒−𝑑22𝜏2𝑦2(𝑡−𝜏2) − 𝑑21𝑦2(𝑡) − 𝑏2(𝑡)𝑦22(𝑡) − 𝑐2(𝑡)𝑦2(𝑡)𝑥2(𝑡)

(1.2)

They studied the stability of the equilibrium solution, conditions of extinction, and persistence of the species in the system (1.2). It 
was observed that in certain conditions on the parameter values, the predator population may survive even at the absence of the 
prey. i.e., under the right conditions, the system is persistent.

As human being consumes and utilizes a species from the ecosystem, it’s necessary to find a balanced harvesting strategy from 
different age groups of a single species without affecting the ecosystem badly [7–11]. As a matter of fact, models with harvesting 
strategies have captivated the interest of many researchers in order to ensure the long-term progression of the ecosystem while 
optimizing economic benefits and sustainability of the ecosystem. There are two prominent harvesting functions proposed and 
studied by May at al. [12]. Constant and linear harvesting have certain limitations in them [13,14]. Constant harvesting of a 
population is independent of its density while the linear harvesting is proportional to the population densities. For instance, Lei, and 
Xiao [13] studied the following single species age structured model (1.3) with linear harvesting strategies for both adult and juvenile 
populations. It turns out that the dynamics of the model is very simple with only two cases- Globally asymptotically stable boundary 
(0, 0) equilibrium under certain parameters values and globally asymptotically stable internal equilibrium (𝑥∗, 𝑦∗) under some others 
parameters values.{

𝑑𝑥

𝑑𝑡
= 𝛼𝑦− 𝛽𝑥− 𝛿1𝑥− 𝑞1𝐸𝑚𝑥

𝑑𝑦

𝑑𝑡
= 𝛽𝑥− 𝛿2𝑦− 𝛾𝑦2 − 𝑞2𝐸𝑚𝑦

(1.3)

To resolve the shortcomings in constant and linear harvesting, the researchers consider harvesting strategies with non-linear functions 
[15–17].

Among the non-linear harvesting strategies, Michaelis-Menten type harvesting model proved to be more realistic biologically and 
overall economic perspectives [18]. Michaelis-Menten type harvesting strategies are realized using the non-linear functions of the 
form ℎ = 𝑎𝑥

𝑏+𝑐𝑥 for some suitable parameters 𝑎, 𝑏, 𝑐. In comparison to the model with constant and linear harvesting, this non-linear 
type of harvesting models shows complicated and more realistically important and useful dynamical properties. Hu and Cao studied 
a prey-predator model with Michaelis-Menten type harvesting strategies exhibiting rich bifurcations [19]. Many scholars studied age 
structured models with Michaelis-Menten type harvesting strategies. For instance, Liu, Huang, Deng, et al. [20] studied the following 
amensalism model (1.4) with cover harvesting only from the Juvenile population.{

𝑑𝑥

𝑑𝑡
= 𝑎1𝑥− 𝑏1𝑥

2 − 𝑐1(1 − 𝑘)𝑥𝑦− 𝑞𝐸(1−𝑘)𝑥
𝑚1𝐸+𝑚2(1−𝑘)𝑥

𝑑𝑦

𝑑𝑡
= 𝑎2𝑦− 𝑏2𝑦

2
(1.4)

The studies show that this model exhibits rich bifurcation phenomenons- saddle and transcritical bifurcations. Under certain condi-

tions of parameters values, it is possible to obtain the threshold value for the optimal harvesting.

Yu, Zhu, and Chen studied single species stage structured model (1.5) with harvesting function in the form of Michaelis-Menten type 
for the juvenile population [21]. They observed practically useful dynamics.{

𝑑𝑥

𝑑𝑡
= 𝛼𝑦− 𝛽𝑥− 𝛿1𝑥−

ℎ𝐸𝑥

𝑚𝐸+𝑛𝑥
𝑑𝑦

𝑑𝑡
= 𝛽𝑥− 𝛿2𝑦− 𝛾𝑦2

(1.5)

From fisheries production perspective, Zhu Lia et al. [16] proposed and studied the following model (1.6) with harvesting strategies 
in the form of Michaelis-Menten type function on the adult population, as in most cases only adult population is harvested. They 
found sufficient conditions on the model parameters for the existence of globally stable boundary and internal equilibrium. They also 
demonstrated interesting bifurcation phenomena.{

𝑑𝑥

𝑑𝑡
= 𝛼𝑦− 𝛽𝑥− 𝛿1𝑥

𝑑𝑦

𝑑𝑡
= 𝛽𝑥− 𝛿2𝑦− 𝛾𝑦2 − ℎ𝐸𝑦

𝑚𝐸+𝑛𝑦

(1.6)

From the fisheries production perspective, it may also be significantly important to harvest the juvenile population of a fishery for 
cultivation in other fisheries. For example, in Bangladesh, we harvest the juvenile population of Ruhu Fish (Labeo rohita) from the 
river Halda to cultivate them in lakes and ponds across the country commercially. We harvest the Adult fish from the Halda too. 
In addition, the higher density of the juvenile population may hinder their growth and the adult population as well necessitating 
their harvesting. As far as we are informed, no author has studied single species age structured model with harvesting strategies that 
combines linear harvesting on the juvenile population and Michaelis-Menten type harvesting strategies on the adult population. We 
2

propose and investigate the following single species stage structured model (1.7).
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𝑑𝑥

𝑑𝑡
= 𝛼𝑦− 𝛽𝑥− 𝛿1𝑥− 𝛿3𝑥

𝑑𝑦

𝑑𝑡
= 𝛽𝑥− 𝛿2𝑦− 𝛾𝑦2 − ℎ𝐸𝑦

𝑚𝐸+𝑛𝑦

(1.7)

where 𝑥 denotes the density of the juvenile population, 𝑦 denotes the density of adult population, 𝛼 denotes the intrinsic growth rate 
of juvenile population, 𝛽 denotes the rate at which juvenile population survive to adulthood, 𝛿1 denotes the death rate of the juvenile 
group, 𝛿2 denotes the death rate of the adult group of the population, 𝛿3 is the linear harvesting rate of the juvenile population, 𝛾 is 
the intra-specific competition coefficients in the adult population, ℎ is the catchability coefficient, 𝐸 is the coefficient of combined 
external effort to harvest the adult and juvenile population. All parameters including 𝑚, 𝑛 are assumed to be non-negative. Consider 
the following transformations

�̄� = 𝛾

𝛼
𝑥, �̄� = 𝛾

𝛿2
𝑦, 𝑡 = 𝛿2𝑡

which transform the system into{
𝑑�̄�

𝑑𝑡
= �̄�− 𝑎�̄�− 𝑏�̄�

𝑑�̄�

𝑑𝑡
= 𝑒�̄�− �̄�(1 + �̄�) − 𝑑�̄�

𝑓+�̄�

(1.8)

where,

𝑎 =
𝛽 + 𝛿1
𝛿2

, 𝑑 = ℎ𝐸𝛾

𝑛𝛿22

, 𝑏 =
𝛿3
𝛿2

, 𝑓 = 𝑚𝐸𝛾

𝑛𝛿2
, 𝑒 = 𝛼𝛽

𝛿22

.

For biological feasible consequences, we consider the model in the system in the first quadrant in the �̄��̄�−plane with any arbitrary 
initial conditions �̄�(0) = �̄�0 > 0, and �̄�(0) = �̄�0 > 0. For notational convenience, we will write 𝑥, 𝑦, and 𝑡 instead of �̄�, �̄�, and 𝑡 in the model 
(1.8).

2. Stability analysis of equilibria

2.1. Boundary equilibria

The model (1.8) has a solitary boundary equilibrium 𝐸0(0, 0). Rewrite the model (1.8) in 𝑥, 𝑦, and 𝑡 as{
𝑑𝑥

𝑑𝑡
= 𝑦− 𝑎𝑥− 𝑏𝑥

𝑑𝑦

𝑑𝑡
= 𝑒𝑥− 𝑦(1 + 𝑦) − 𝑑𝑦

𝑓+𝑦

(2.1)

The Jacobian matrix for the system (2.1) is

𝐽 =

(
−(𝑎+ 𝑏) 1

𝑒 −1 − 2𝑦− 𝑑𝑓

(𝑓+𝑦)2

)
.

The determinant and trace of the Jacobian matrix are

𝐷𝑒𝑡𝐽 = −(𝑎+ 𝑏)
(
−1 − 2𝑦− 𝑑𝑓

(𝑓 + 𝑦)2

)
− 𝑒 (2.2)

and

𝑡𝑟𝐽 = −(𝑎+ 𝑏) +
(
−1 − 2𝑦− 𝑑𝑓

(𝑓 + 𝑦)2

)
< 0. (2.3)

If at an equilibrium point 𝐷𝑒𝑡𝐽 ≠ 0 is called an elementary equilibrium. An equilibrium point is saddle when 𝐷𝑒𝑡𝐽 < 0 at the point, 
and at a degenerate equilibrium point 𝐷𝑒𝑡(𝐽 ) = 0 [22,23]. The condition at which 𝐽 (0, 0) vanishes is useful for further analysis is 
given by

𝑎+ 𝑎𝑑

𝑓
+ 𝑏+ 𝑏𝑑

𝑓
= 𝑒 (2.4)

Note that, the trajectories of the juvenile and the adult populations starting in a neighborhood of an elementary equilibrium point are 
attracted in it, or move away from the equilibrium point. For a saddle, the trajectories move away from the equilibrium point along 
hyperbolic curves. However, only for certain initial conditions, the trajectories approach the equilibrium point. In case of degenerate 
equilibria, any initial adult and juvenile populations will remain fixed forever, or either the juvenile or the adult population remains 
constant while the other goes in or away from the equilibrium point.

Lemma 1. [24] Consider the following system of differential equations{
𝑑𝑥

𝑑𝑡
= 𝑃2(𝑥, 𝑦)

𝑑𝑦
(2.5)
3

𝑑𝑡
= 𝑦+𝑄2(𝑥, 𝑦)
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where 𝑃2 and 𝑄2 in the system (2.5) are analytic functions of degree at least two in a neighborhood 𝑆𝛿() of the isolated singular point 
(0, 0). For a small enough 𝛿, there exists some analytic function 𝜙(𝑥) satisfying

𝜙(𝑥) + 𝑃2(𝑥,𝜙(𝑥)) = 0, for |𝛿| < 𝑥.

Suppose 𝜓(𝑥) =
(
𝑃2(𝑥), 𝜙(𝑥)

)
= 𝑎𝑚𝑥

𝑚 + [𝑥]𝑚+1, where 𝑚 ≥ 2 and 𝑎𝑚 ≠ 0, then

i. (0, 0) is a unstable node if 𝑎𝑚 > 0 and 𝑚 is an odd integer.

ii. (0, 0) is a saddle if 𝑎𝑚 < 0 and 𝑚 is an odd integer.

iii. (0, 0) is a saddle node if 𝑚 is an even integer.

The stability of the boundary equilibrium 𝐸0(0, 0) can be determined from the trace and determinant of the Jacobian matrix 
𝐽 (0, 0).

Theorem 1. The boundary equilibrium point 𝐸0 = (0, 0) of the model (2.1) is

i. a saddle when 𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
< 𝑒.

ii. a stable node when 𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
> 𝑒.

iii. a saddle node when 𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
− 𝑒 = 0.

Proof. At the boundary equilibrium point 𝐸0(0, 0), we get from (2.2),

𝐷𝑒𝑡𝐽
(
𝐸0

)
= 𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
− 𝑒.

Since 𝑡𝑟𝐽 (𝐸0) < 0, then if 𝐷𝑒𝑡𝐽
(
𝐸0

)
> 0, i.e., 𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
> 𝑒, 𝐸0 is a stable node, and it is a saddle point when 𝐷𝑒𝑡𝐽

(
𝐸0

)
< 0, i.e.,

𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
< 𝑒. Moreover, 𝐸0 is a degenerate equilibrium if 𝐷𝑒𝑡𝐽

(
𝐸0

)
= 0, i.e., 𝑎+ 𝑏+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
= 𝑒 (equation (2.4)). To explain 

the characteristic of 𝐸0, we use the following transformation 𝑑𝜏 = 𝑑𝑡

𝑓+𝑦 . From (2.1), we have

𝑑𝑥

𝑑𝜏
= −𝑎𝑓𝑥− 𝑏𝑓𝑥+ 𝑓𝑦− 𝑎𝑥𝑦− 𝑏𝑥𝑦+ 𝑦2

𝑑𝑦

𝑑𝜏
= 𝑒𝑥𝑓 + 𝑒𝑥𝑦− 𝑓𝑦− 𝑓𝑦2 − 𝑦2 − 𝑦3 − 𝑑𝑦.

We make a transformation as follows[
𝑢

𝑣

]
= 1

𝛼𝜅 − 𝛽𝛾

[
𝜅𝑥− 𝛽𝑦

−𝛾𝑥+ 𝛼𝑦

]
. (2.6)

Then from the system of equations (2.6), we obtain 𝑢 = 1
𝑝
(𝜅𝑥 − 𝛽𝑦) and 𝑣 = 1

𝑝
(−𝛾𝑥 + 𝛼𝑦), where 𝑝 = 𝛼𝜅 − 𝛽𝛾 and the values of 𝛼, 𝛽, 𝛾

and 𝜅 are as follows.

𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,

𝜅 = − 𝑑 + 𝑓

(𝑑 + (1 + 𝑎+ 𝑏)𝑓 )2𝛼
, (2.7)

𝛾 = (𝑎+ 𝑏)𝛼, 𝑎𝑛𝑑 (2.8)

𝛽 = (𝑎+ 𝑏)
𝐺1

(2.9)

where,

𝐺1 =𝑑𝑒+ ((𝑎+ 𝑎3 + 𝑏+ 3𝑎2𝑏+ 3𝑎𝑏2 + 𝑏3 + 2𝑎𝑒)𝛼+

(2𝑏𝑒+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
)𝛼.

Differentiating 𝑢 and 𝑣, we get

𝑢′ = 1
𝑝
(𝜅𝑥′ − 𝛽𝑦′), 𝑣′ = 1

𝑝
(−𝛾𝑥′ + 𝛼𝑦′)

We compute 𝑑𝑢
𝑑𝜏

and 𝑑𝑣
𝑑𝜏

in terms of 𝑢 and 𝑣 by substituting the values of 𝑒 = 𝑎 + 𝑎𝑑

𝑓
and 𝜅, 𝛽 and 𝛾 from equations (2.7), (2.8), and 

(2.9), and make the transformation 𝑑𝑠
𝑑𝜏

= 𝛼𝜅 − 𝛾𝛽. We get,

𝑑𝑢

𝑑𝑠
= 𝑠01𝑢

3 + 𝑠02𝑢
2 + 𝑠03𝑢𝑣+ 𝑠04𝑣

2 + 𝑟1(𝑢, 𝑣), (2.10)
4

where
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𝑠01 =
𝑏4𝛼2 + 4𝑎𝑏3𝛼2 + 6𝑎2𝑏2𝛼2 + 4𝑎3𝑏𝛼2 + 𝑎4𝛼2

𝐺2
,

𝑠02 =
𝑏3𝑓𝛼 + 3𝑎𝑏2𝑓𝛼 + 3𝑎2𝑏𝑓𝛼 + 𝑎3𝑓𝛼

𝐺3
+ 𝑏3𝑑𝛼 + 3𝑎𝑏2𝑑𝛼 + 3𝑎2𝑏𝑑𝛼 + 𝑎3𝑑𝛼

𝐺4
,

𝐺2 =𝑑𝑒((𝑎+ 𝑎3 + 𝑏+ 3𝑎2𝑏+ 3𝑎𝑏2 + 𝑏3 + 2𝑎𝑒)𝑓+

(2𝑏𝑒+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
)𝑓,

𝐺3 =𝑑𝑒+ (𝑎+ 𝑎3 + 𝑏+ 3𝑎2𝑏+ 3𝑎𝑏2 + 𝑏3 + 2𝑎𝑒)𝑓+

(2𝑏𝑒+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
)𝑓, 𝑎𝑛𝑑

𝐺4 =𝑓𝑑𝑒+ 𝑓 2(𝑎+ 𝑎3 + 𝑏+ 3𝑎2𝑏+ 3𝑎𝑏2 + 𝑏3 + 2𝑎𝑒)+

(2𝑏𝑒+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
)𝑓 2.

We omit 𝑠03 and 𝑠04 as it is not used further. Next, the value of 𝑑𝑣
𝑑𝑠

is

𝑑𝑣

𝑑𝑠
= 𝑡01𝑣+ 𝑡02𝑢

2 + 𝑡03𝑣
2 + 𝑡04𝑢𝑣+ 𝑡05𝑢

3 + 𝑟2(𝑢, 𝑣), (2.11)

where,

𝑡01 =
𝑑2 + 2𝑑𝑓 + 𝑎𝑑𝑓 + 𝑏𝑑𝑓 + 𝑓 2 + 𝑎𝑓 2 + 𝑏𝑓 2

(𝑑 + (1 + 𝑎+ 𝑏)𝑓 )2
+

𝐺5
𝐺6

,

𝑡02 =
𝑎2𝑑𝛼3 + 2𝑎𝑏𝑑𝛼3 − 𝑏2𝑑𝛼3

𝑓
− 𝑎2𝑓𝛼3 − 2𝑎𝑏𝑓𝛼3 − 𝑏2𝑓𝛼3,

𝐺5 = 𝑑𝑎2 + 𝑑𝑏2 + 2𝑎𝑏𝑑 + 𝑎2𝑓 + 𝑎3𝑓 + 2𝑎𝑏𝑓 + 3𝑎2𝑏𝑓 + 𝑏2𝑓 + 3𝑎𝑏2𝑓 + 𝑏3𝑓, 𝑎𝑛𝑑

𝐺6 =𝑑𝑒+ ((𝑎+ 𝑎3 + 𝑏+ 3𝑎2𝑏+ 3𝑎𝑏2 + 𝑏3 + 2𝑎𝑒)𝑓+

(2𝑏𝑒+ 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
)𝑓.

We omit 𝑡03, 𝑡04, and 𝑡05 as they are not used further.

Define 𝐻(𝑢, 𝑣) = 𝑡01𝑣 + 𝑡02𝑢
2 + 𝑡03𝑣

2 + 𝑡04𝑢𝑣 + 𝑡05𝑢
3 + 𝑟2(𝑢, 𝑣) from equation (2.11). Since 𝜕𝐻

𝜕𝑣
≠ 0, by implicit function theorem, there 

exists a function 𝑣 =𝑤1(𝑢), such that 𝑤(0) = 0 and 𝑞(𝑢, 𝑤(𝑢)) = 0. The function 𝑣 =𝑤(𝑢) may be approximated iteratively as follows

𝑣1 =𝑤1(𝑢) = 0,

𝑣2 = −𝑡02𝑢2 − 𝑡05𝑢
3,

𝑣3 = 𝑣2 −𝐻(𝑢, 𝑣2)

= −𝑡02𝑢2 − 𝑡05𝑢
3 − (−𝑡01𝑡02𝑢2 − 𝑡01𝑡05𝑢

3 + 𝑡02𝑢
2) + 𝑡03(−𝑡02𝑢2 − 𝑡05𝑢

3)2

= 𝑡01𝑡02𝑢
2 + (𝑡01𝑡05 − 𝑡05)𝑢3.

Therefore, we have

𝑣 =𝑤1(𝑢) = 𝑡01𝑡02𝑢
2 + (𝑡01𝑡05 − 𝑡05)𝑢3 +… . (2.12)

We substitute this value of 𝑣 from equation (2.12) into the equation (2.10) to get

𝑑𝑢

𝑑𝑠
= 𝑠01𝑢

3 + 𝑠02𝑢
2 + 𝑠03𝑢𝑣+ 𝑠04𝑣

2 + 𝑟1(𝑢, 𝑣)

= 𝑠01𝑢
3 + 𝑠02𝑢

2 + 𝑠03𝑢(𝑡01𝑡02𝑢2 + (𝑡01𝑡05 − 𝑡05)𝑢3)

= 𝑠01𝑢
3 + 𝑠02𝑢

2 + 𝑠03𝑡01𝑡02𝑢
3

= 𝑠02𝑢
2 + (𝑠03𝑡01𝑡02 + 𝑠01)𝑢3.

From Lemma 1, since 𝑠01 ≠ 0, i.e., 𝑏4𝛼2+4𝑎𝑏3𝛼2+6𝑎2𝑏2𝛼2+4𝑎3𝑏𝛼2+𝑎4𝛼2
𝐺2

≠ 0 and 𝑚 = 2, 𝐸0 is a saddle node. However, due to the transforma-

tion, 𝑑𝑠 = (𝛼𝜅 − 𝛾𝛽) d𝜏 , it turns into a stable node when 𝛼𝜅 − 𝛾𝛽 < 0. This completes the proof. □

2.2. Internal equilibria

Our next target is to analyze the internal equilibrium of the system (2.1). Stationary points are the solution of the system{
𝑦− 𝑎𝑥− 𝑏𝑥 = 0

𝑑𝑦 (2.13)
5

𝑒𝑥− 𝑦(1 + 𝑦) −
𝑓+𝑦 = 0
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From (2.13), we get from the first equation 𝑥 = 𝑦

𝑎+𝑏 . Substituting 𝑥 in the second equation of (2.13), and since 𝑦 ≠ 0, we get 
(𝑎𝑑 + 𝑏𝑑 + 𝑎𝑓 + 𝑏𝑓 − 𝑒𝑓 + 𝑎𝑦 + 𝑏𝑦 − 𝑒𝑦 + 𝑎𝑓𝑦 + 𝑏𝑓𝑦 + 𝑎𝑦2 + 𝑏𝑦2) = 0. The real positive roots of the equation are given by

𝑦1 =
1

2(𝑎+ 𝑏)
(−𝑎− 𝑏+ 𝑒− 𝑎𝑓 − 𝑏𝑓 )−

1
2(𝑎+ 𝑏)

(√
(𝑎+ 𝑏− 𝑒+ 𝑎𝑓 + 𝑏𝑓 )2 − 4(𝑎+ 𝑏)(𝑎𝑑 + 𝑏𝑑 + 𝑎𝑓 + 𝑏𝑓 − 𝑒𝑓 )

)
𝑦2 =

1
2(𝑎+ 𝑏)

(−𝑎− 𝑏+ 𝑒− 𝑎𝑓 − 𝑏𝑓 )+

1
2(𝑎+ 𝑏)

(√
(𝑎+ 𝑏− 𝑒+ 𝑎𝑓 + 𝑏𝑓 )2 − 4(𝑎+ 𝑏)(𝑎𝑑 + 𝑏𝑑 + 𝑎𝑓 + 𝑏𝑓 − 𝑒𝑓 )

)
We consider the following two cases:

Case-I. It can be shown that 𝑦1 and 𝑦2 are positive real when 𝑎 > 0, 𝑏 > 0, 𝑒 > 𝑎 + 𝑏, 0 < 𝑓 <
−(𝑎+𝑏−𝑒)

𝑎+𝑏 and −(𝑎+𝑏−𝑒)𝑓
𝑎+𝑏 < 𝑑 <

(−𝑎−𝑏+𝑒+𝑎𝑓+𝑏𝑓 )2
4(𝑎+𝑏)2 . In this case, we have two internal equilibria.

We substitute 𝑦1, under the conditions in Case-I, into the equations (2.2) and (2.3) for the determinant and trace of the Jacobian 
matrix at (𝑥1, 𝑦1). It can be shown that 𝑑𝑒𝑡(𝐽 )(𝑥1, 𝑦1) and 𝑡𝑟(𝐽 )(𝑥1, 𝑦1) are both less than zero. Therefore the internal equilibrium 
𝐸1 = (𝑥1, 𝑦1) is a saddle point.

We substitute 𝑦2, under the conditions in Case-I, into the equations (2.2) and (2.3) for the determinant and trace of the Jacobian 
matrix at (𝑥2, 𝑦2). It can be shown that 𝑑𝑒𝑡(𝐽 )(𝑥2, 𝑦2) > 0 and 𝑡𝑟(𝐽 )(𝑥2, 𝑦2) < 0. Therefore the internal equilibrium 𝐸2 = (𝑥2, 𝑦2) is a 
stable point.

Case-II. It can also be shown that 𝑦2 is the only positive solution when 𝑎 > 0, 𝑏 > 0, 𝑒 > 𝑎 + 𝑏, 0 < 𝑑 <
−(𝑎+𝑏−𝑒)𝑓

𝑎+𝑏 , 𝑓 ≠
−(𝑎+𝑏−𝑒)

𝑎+𝑏 . In 
this case, we have only one internal equilibrium.

We substitute 𝑦2, under the conditions in Case-II, into the equations (2.2) and (2.3) for the determinant and trace of the Jacobian 
matrix at (𝑥2, 𝑦2). It can be shown that 𝑑𝑒𝑡(𝐽 )(𝑥2, 𝑦2) > 0 and 𝑡𝑟(𝐽 )(𝑥2, 𝑦2) < 0. Therefore the only internal equilibrium 𝐸 = (𝑥2, 𝑦2) is a 
stable point. Moreover, there is no degenerate equilibrium point.

2.3. Global stability analysis

Theorem 2. If 𝑎 + 𝑏 > 𝑒 or, equivalently 𝛼 <

(
𝛿1+𝛿3

𝛽
+ 1

)
𝛿2, then the boundary equilibrium 𝐸0(0, 0) is asymptotically stable globally.

Proof. We recall our proposed model (2.1){
𝑑𝑥

𝑑𝑡
= 𝑦− 𝑎𝑥− 𝑏𝑥

𝑑𝑦

𝑑𝑡
= 𝑒𝑥− 𝑦(1 + 𝑦) − 𝑑𝑦

𝑓+𝑦 .

Consider 𝐿(𝑥, 𝑦) = 𝑥 + 𝑦 as a Lyapunov function. The function 𝐿 clearly vanishes at 𝐸0(0, 0), and 𝐿 is strictly greater than zero when 
𝑥 > 0 and 𝑦 > 0. Then

𝐷+𝐿(𝑥, 𝑦) = 𝑥′ + 𝑦′

= 𝑦− 𝑎𝑥− 𝑏𝑥+ 𝑒𝑥− 𝑦(1 + 𝑦) − 𝑑𝑦

𝑓 + 𝑦

= −(𝑎+ 𝑏− 𝑒)𝑥− 𝑑𝑦

𝑓 + 𝑦
− 𝑦2.

Notice, when 𝑎 + 𝑏 > 𝑒 then 𝐷+𝐿(𝑥, 𝑦) ≤ 0, and 𝐷+𝐿(𝑥, 𝑦) = 0 iff (𝑥, 𝑦) = (0, 0). Therefore, 𝐿(𝑥, 𝑦) is a suitable function that satisfies the 
asymptotic stability theorem of Lyapunov and implies the global asymptotic stability of 𝐸0(0, 0). □

Therefore, when the intrinsic growth rate of the juvenile population is sufficiently small, i.e. 𝛼 <
(
𝛿1+𝛿3

𝛽
+ 1

)
𝛿2, both juvenile and 

adult population will extinct eventually.

Theorem 3. When 𝑎 + 𝑏 + 𝑎𝑑

𝑓
+ 𝑏𝑑

𝑓
< 𝑒 and 𝑒 > 𝑎 + 𝑏 holds, or equivalently 𝛼 >

(
ℎ

𝑚
+ 𝛿2

)(
𝛿1+𝛿3

𝛽
+ 1

)
𝛿2, the internal equilibrium point 𝐸1 is 
6

globally asymptotically stable.
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Fig. 1. The coexistence of juvenile and adult species for stable point for case-I.

Proof. To prove this, suppose 𝐷(𝑥, 𝑦) = 1. Let 𝑃 (𝑥, 𝑦) = 𝑦 − 𝑎𝑥 − 𝑏𝑥, and 𝑄(𝑥, 𝑦) = 𝑒𝑥 − 𝑦(1 + 𝑦) − 𝑑𝑦

𝑓+𝑦 . We have

𝜕(𝐷𝑃 )
𝜕𝑥

+ 𝜕(𝐷𝑄)
𝜕𝑦

= 𝜕

𝜕𝑥
(𝑦− 𝑎𝑥− 𝑏𝑥) + 𝜕

𝜕𝑦
(𝑒𝑥− 𝑦(1 + 𝑦) − 𝑑𝑦

𝑓 + 𝑦
)

= −𝑎− 𝑏− 1 − 2𝑦− (𝑓𝑑 + 𝑦𝑑 − 𝑑𝑦)
(𝑓 + 𝑦)2

= −𝑎− 𝑏− 1 − 2𝑦− 𝑓𝑑

𝑓 + 𝑦
< 0.

According to Bendixson-Dulac discriminant [25], when 𝑥 > 0 and 𝑦 > 0, the model (2.1) does not possess any limit cycle. And 
when 𝑎 + 𝑏 < 𝑒, 𝐸0(0, 0) is a saddle. Therefore, the Poincare-Bendixson theorem implies global asymptotic stability of the internal 
equilibrium point 𝐸1. □

Therefore, when the intrinsic growth rate of the juvenile population is sufficiently large, i.e. 𝛼 >

(
ℎ

𝑚
+ 𝛿2

)(
𝛿1+𝛿3

𝛽
+ 1

)
𝛿2, both 

juvenile and adult population will coexist despite their combined harvesting.

3. Graphical and numerical analysis

To demonstrate the result of case-I, we choose the parameter values 𝑎 = 1
2 , 𝑑 = 33

16 , 𝑒 = 3, 𝑓 = 1, 𝑏 = 1
2 so that the conditions 

in case-I hold. Then we have, boundary equilibrium point 𝐸0 = (0, 0), two internal equilibrium points 𝐸1(0.066987, 0.066987) and 
𝐸2(0.93301, 0.93301) which are saddle and stable (Fig. 1) respectively. Notice that the trajectories move in the direction of the 
internal equilibrium point 𝐸2, which implies that adult and juvenile population will stably coexist at the point 𝐸2.

Now for conditions in case-II, we choose parameter values 𝑎 = 1
2 , 𝑑 = 1

2 , 𝑒 = 2, 𝑓 = 3
4 , 𝑏 = 1

2 then we obtain a boundary equilibrium 
point 𝐸0 and only one internal equilibrium point 𝐸(0.64039, 0.64039) which is stable (Fig. 2). Therefore, adult and juvenile population 
will coexist stably at the point 𝐸. The stabilities of the equilibrium points 𝐸2 in case I and 𝐸 in case II have also been presented in 
Figure 3 and Figure 4 respectively from numerical simulations.

4. Conclusion

We have considered a stage structured model for a single species with a linear harvesting strategy on the Juvenile population and 
Michaelis-Menten form of harvesting on the adult population of the species. The study shows that if the growth rate of the juvenile 
population is sufficiently small i.e. 𝛼 <

(
1 + 𝛿1+𝛿3

𝛽

)
𝛿2, the unique boundary equilibrium is globally asymptotically stable. In the case 

with no linear harvesting term in the system (1.6), this happens when 𝛼 <

(
1 + 𝛿1

𝛽

)
𝛿2. Therefore harvesting the juvenile population 

enhances the possibility of the extinction of the both groups of population. When 𝛼 >

(
ℎ

𝑚
+ 𝛿2

)(
1 + 𝛿1+𝛿3

𝛽

)
𝛿2, there exists unique 

globally asymptotically stable internal equilibrium. In the case with no linear harvesting term in the system (1.6), this happens when 
𝛼 >

(
ℎ

𝑚
+ 𝛿2

)(
1 + 𝛿1

𝛽

)
𝛿2. Therefore the persistence of the both groups of population is achieved for larger growthrate of the juvenile 
7

population. Harvesting the juvenile population linearly may be the possibility of the extinction of the both groups of population. 
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Fig. 2. The coexistence of juvenile and adult species for stable point for case-II.

Fig. 3. Numerical simulation of juvenile species 𝑥 and adult species 𝑦 at the stable node 𝐸2 for Case-I.
8

Fig. 4. Numerical simulation of juvenile species 𝑥 and adult species 𝑦 at the stable node 𝐸 for Case-II.



Heliyon 9 (2023) e15709S. Akter, Md.S. Islam and T. Hossain

Overall, introduction of a linear harvesting strategy in the juvenile population keeps the dynamics of the system more or less similar 
in comparison to the dynamics of the model with Michaelis-Menten harvesting on adult group and no harvesting in the juvenile 
group in the system (1.6). It may be economically beneficial to transfer over production of juvenile group to other habitats and grow 
them there, or they may be used to supplement as a source of protein. Our study shows that it is possible to harvest both stage groups 
without endangering any of them to extinction. Therefore the introduction of a linear harvesting term on the juvenile population 
made the dynamics of the system (1.6) simple and realistic where both stage structured population coexist.
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