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A B S T R A C T

RNA sequencing (RNA-seq) has become a cornerstone of transcriptomics, providing detailed insights into gene 
expression across diverse biological conditions and sample types. However, RNA-seq data are often confounded 
by batch effects, systematic non-biological variations that compromise data reliability and obscure true bio
logical differences. To address these challenges, we introduce ComBat-ref, a refined batch effect correction 
method designed to enhance the statistical power and reliability of differential expression analysis in RNA-seq 
data. Building on the principles of ComBat-seq, ComBat-ref employs a negative binomial model for count data 
adjustment but innovates by selecting a reference batch with the smallest dispersion, preserving count data for 
the reference batch, and adjusting other batches towards the reference batch. Our method demonstrated superior 
performance in both simulated environments and real-world datasets, including the growth factor receptor 
network (GFRN) data and NASA GeneLab transcriptomic datasets, significantly improving sensitivity and 
specificity compared to existing methods. By effectively mitigating batch effects while maintaining high detec
tion power, ComBat-ref provides a robust solution for improving the accuracy and interpretability of RNA-seq 
data analyses.

1. Introduction

RNA sequencing (RNA-seq) has emerged as a cornerstone technology 
in transcriptomics, providing unparallel insights into gene expression 
profiles across various biological conditions and sample types. However, 
the reliability of RNA-seq data is often undermined by batch 
effects—systematic non-biological differences that arise during sample 
processing and sequencing across different batches. These batch effects 
can be on a similar scale or even larger than biological differences of 
interest, significantly reducing the statistical power to detect differen
tially expressed (DE) genes.

The presence of batch effects in RNA-seq data is a well-recognized 
challenge, prompting the development of various strategies to mitigate 
their impact. One widely used method is ComBat [1], which employs an 
empirical Bayes framework to correct for both additive and multipli
cative batch effects. Methods such as SVASeq [2] and RUVSeq [3] model 
batch effects from unknown sources, while popular DE analysis pack
ages such as edgeR [4] and DESeq2 [5] allow the inclusion of batch as a 
covariate in linear models to account for these effects. ComBat-seq [6], 
which extends ComBat by using a generalized linear model (GLM) with a 
negative binomial distribution, retains the integer count data and has 
demonstrated better statistical power than its predecessors. More 
recently, machine learning methods [7–9] have been proposed to 

address batch effects by modeling discrepancies among batches. 
NPMatch [10], for instance, uses a nearest-neighbor matching-based 
method to adjust for batch effects.

Among these methods, ComBat-seq offers the advantage of preser
ving the integer count matrix in adjusted data, making it particularly 
suitable for downstream DE analysis using tools like edgeR and DESeq2. 
Additionally, it achieves higher statistical power in detecting DE genes 
compared to other methods, especially when batches with different 
dispersion parameters are pooled. This improved performance is largely 
attributed to its accurate modeling of count data using negative bino
mial (gamma-Poisson) distributions. Despite these advantages, ComBat- 
seq still exhibits significantly lower power in DE analysis compared to 
batch-free data, particularly when using the false discovery rate (FDR; 
adjusted p-value) for statistical testing, as recommended by edgeR and 
DESeq2.

In this paper, we introduce ComBat-ref, a refined batch effect 
adjustment method that builds on ComBat-seq while incorporating key 
improvements. ComBat-ref models RNA-seq count data using a negative 
binomial distribution but innovates by estimating a pooled (shrunk) 
dispersion parameter for each batch and selecting the batch with the 
lowest dispersion as the reference. The count data of all other batches 
are then adjusted to align with this reference batch. We demonstrate that 
ComBat-ref retains exceptionally high statistical power—comparable to 
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data without batch effects—even when there is significant variance in 
batch dispersions. Furthermore, ComBat-ref outperforms other methods 
when FDR is used for DE analysis, making it a robust tool for addressing 
batch effects in RNA-seq data.

2. Materials and methods

Similar to ComBat-seq [6], we model RNA-seq count data using a 
negative binomial distribution, with each batch potentially having 
different dispersions. Consider a gene g in batch i and sample j. Let cj 

represent the biological condition of sample j and ng
ij denote the 

measured count. The count ng
ij is modeled as follows: 

ng
ij ∼ NB

(
μg

ij, λ
g
i

)

where μg
ij is the expected expression level of gene g in sample j and batch 

i, and λg
i is the dispersion parameter for batch i. ComBat-seq estimates λg

i 
for each gene and batch and computes an average dispersion per gene 
for data adjustment: 

λg
=

1
Nbatch

∑

i
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i 

However, since the number of samples per batch is typically small, 
the estimation of λg

i can be imprecise, resulting in high variance for λgand 
reduced statistical power for adjusted data. In the new ComBat-ref 
method, we pool the gene count data within each batch and estimate 
a batch specific dispersion λi. The batch with the smallest dispersion is 
selected as the reference batch. Without loss of generality, we assume 
batch 1 is the reference batch. Unlike [11], which discussed an alter
native approach of ComBat [1] using a reference batch, ComBat-ref 
specifically employs a negative binomial model and selects the refer
ence based on dispersion.

To model the expected gene expression level μg
ij, we apply a gener

alized linear model (GLM): 

log
(

μg
ij

)
= αg + γg

i + βg
cj
+ log

(
Nj
)

Here, cj is the biological condition, Nj is the library size of sample j, αg 

represents the global “background” expression of gene g, γg
i represents 

the effect of batch i, and βg
cj 

denotes the effects of the biological condition 
cj on the logarithm of gene g’s expression level. These model parameters 
can be estimated using the GLM fit method implemented in edgeR [4], 
[12], or more computationally intensive MCMC based methods [13]. 
Since the reference batch has the smallest dispersion, retaining its count 
data for downstream DE analysis improves statistical power. Thus, in the 
new ComBat-ref method, RNA-seq count data from other batches are 
adjusted to align with the reference batch.

2.1. ComBat-ref adjustment

Assuming that reference batch 1 has the smallest dispersion λ1, the 
adjusted gene expression level μ̃g

ij for batch i ∕= 1 and sample j is 
computed as 

logμ̃g
ij = logμg

ij + γg
1 − γg

i 

The adjusted dispersion is then set as ̃λi = λ1. Following the approach 
of ComBat-seq, the adjusted count ñg

ij is calculated by matching the cu

mulative distribution function (CDF) of NB
(

μg
ij, λi

)
at ng

ij and CDF of 

adjusted distribution NB

(

μ̃g
ij, λ̃i

)

at ñg
ij. Care is taken to ensure that the 

adjusted count does not become infinity when the CDF equals 1, and 
zero counts are always mapped to zeros.

Setting the adjusted dispersion to λ1 enhances statistical power in 
subsequent analyses of the adjusted data, albeit with a potential increase 
in false positives. This trade-off is often acceptable when pooling sam
ples from multiple batches for DE analysis. In both simulated and real 
datasets, ComBat-ref demonstrated high sensitivity and controlled FPR, 
particularly when adjusted p-values (FDR) were used with edgeR or 
DESeq2.

2.2. Simulations

To evaluate the performance of the new ComBat-ref method and 
compare it to other batch correction (BC) methods, we followed a pro
cedure similar to that described in [6] to generate realistic simulations of 
RNA-seq count data. The count data were modeled using a negative 
binomial (gamma Poisson) distribution, assuming that batch effects 
could influence both the mean expression of genes and the dispersion of 
the count distributions. The simulation included two biological condi
tions and two batches, with three samples for each combination of 
condition and batch, resulting in a total of 12 samples per experiment.

The count data comprised 500 genes, with 50 up-regulated and 50 
down-regulated exhibiting a mean fold change of 2.4. Batch effects were 
simulated to alter gene expression levels in one random batch by a mean 
factor (mean_FC), and to increase the dispersion in batch 2 relative to 
batch 1 by a dispersion factor (disp_FC). Larger values of mean_FC and 
disp_FC represented stronger batch effects, whereas mean_FC = 1 and 
disp_FC = 1 indicated no batch effect.

We simulated 16 experiments with varying batch effects, using four 
levels of mean_FC (1, 1.5, 2, 2.4) and disp_FC (1, 2, 3, 4). The count 
matrices were generated with the polyester R package[14]. Each 
experiment was repeated ten times to calculate the average statistics for 
each BC method. Fig. 1 presents the experimental results, where batch 
effects increase progressively from left to right and top to bottom in the 
grid. The ComBat-ref method introduced in this paper outperformed 
other methods, even in the most challenging scenario represented in the 
lower-right corner.

3. Results

3.1. Simulations

Simulation data were used to compare the performance of the 
ComBat-ref method with other popular batch correction (BC) methods 
for detecting differentially expressed (DE) genes. For comparison, we 
chose the ComBat-seq method, other methods discussed in [6], and the 
more recent NPMatch method [10].

First, we analyzed the results using the same threshold of an unad
justed p-value = 0.05 used in the original ComBat-seq paper [6]. Sup
plemental Figure 1 presents the true positive rates (TPR) and false 
positive rates (FPR) of DE analysis for each method across all experi
ments, using the edgeR package[4]. The simulation results for previous 
methods were consistent with those reported in [6], with the addition of 
new results for ComBat-ref and NPMatch. We observed that other DE 
analysis packages, such as DESeq2 [5] produced very similar results; 
therefore, we only present results from edgeR in this paper.

When there was no change in batch distribution dispersions (disp_FC 
= 1), i.e., in the first column of Supplemental Figure 1, ComBat-seq and 
other previous BC methods performed well, achieving high TPR. How
ever, ComBat-ref exhibited a slightly lower FPR compared to ComBat- 
seq. The NPMatch method also achieved good TPR but consistently 
had an FPR > 20 % in all experiments, even in cases where no batch 
effect was present (upper-left corner). This high FPR might be attributed 
to deficiencies in the NPMatch algorithm, which relies on nearest- 
neighbor samples for adjustments. As batch dispersion (disp_FC) 
increased, the new ComBat-ref demonstrated significantly higher 
sensitivity than all other methods, including ComBat-seq and NPMatch. 
In the more challenging scenarios of higher disp_FC and mean_FC, 
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ComBat-ref maintained a TPR comparable to that seen in cases without 
batch effects, creating a larger performance gap relative to other 
methods. Although the improved power of ComBat-ref came with a 
slightly higher FPR, it was still much lower than that of NPMatch. In DE 
analysis of samples affected by batch effects, the trade-off of higher 
power with a potentially higher FPR is often preferred.

When DE analysis was performed using FDR and adjusted p-values, 
the advantage of ComBat-ref over other methods became even more 
evident. The original ComBat-seq paper [6] did not include this analysis, 
likely due to the low power of previous methods in challenging sce
narios. Fig. 1 illustrates the results for adjusted p-values and FDR ≤ 0.1, 
using the edgeR package. Previous methods, including ComBat-seq, 
experienced a dramatic loss in power as disp_FC and mean_FC 
increased, with discovery rates approaching zero in the most chal
lenging scenarios. In contrast, ComBat-ref maintained TPR levels com
parable to cases with no batch effects, even under the most challenging 
conditions (mean_FC = 2.4 and disp_FC = 4). Not only did ComBat-ref 

preserve its near-ideal sensitivity, but it also exhibited much lower 
FPR when using adjusted p-values. While NPMatch showed higher TPR 
than previous methods, its performance was inferior to ComBat-ref and 
exhibited a much higher FPR.

Based on these simulation results, we recommend using ComBat-ref 
for adjusting batch effects in RNA-seq count data and performing DE 
analysis with adjusted p-values.

3.2. Applications to real data

We first tested the ComBat-ref method on the growth factor receptor 
network (GFRN) dataset [15], previously analyzed in the original 
ComBat-seq paper [6]. This dataset contains three batches, each intro
ducing a specific GFRN oncogene to activate downstream pathway sig
nals, with green fluorescent protein (GFP) controls present in all 
batches. Batch 1 includes 17 samples (five overexpressing HER2 and 12 
GFP controls), batch 2 consists of 12 samples (six overexpressing EGFR 

Fig. 1. Simulation results for different levels of mean expression fold change (mean_FC = 1, 1.5, 2, 2.4) and dispersion fold change(disp_FC = 1, 2, 3,4) between 
batches. The DE genes for each method were identified using edgeR with an FDR ≤ 0.1. As mean_FC and disp_FC increase, all other methods except for ComBat-ref 
lost power significantly. ComBat-ref consistently maintained high power for DE analysis, comparable to data without batch effects, while controlling the false positive 
rate (FPR), even in the most challenging scenario of mean_FC = 2.4 and disp_FC = 4.
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and six controls), and batch 3 comprises 18 samples (nine over
expressing KRAS and nine controls). The unadjusted data, shown in the 
first row of Fig. 2, reveal strong batch effects, with control samples and 
treated cells grouped by batch. A successful batch adjustment should 
align control samples across batches while separating treated cells from 
controls and from each other.

We applied the new ComBat-ref method to the GFRN data and 
compared its results with those from RUV-Seq, ComBat-seq, and 

NPMatch. Both ComBat-seq and ComBat-ref effectively adjusted for 
batch effects, as evidenced by control groups clustering together and 
treatment groups separating in the PCA plot of Fig. 2. A boxplot dis
playing the proportion of variation explained by condition and batch 
further demonstrated the efficacy of the ComBat-ref method. Compared 
to ComBat-seq, ComBat-ref achieved slightly higher variation explained 
by condition, while maintaining a similar reduction in variation 
explained by batch.

Fig. 2. PCA plots of the GFRN dataset for unadjusted data and data adjusted using RUV-Seq, ComBat-seq, ComBat-ref, and NPMatch methods. The unadjusted data 
exhibits strong batch effects with all three batches well separated. Both ComBat-seq and ComBat-ref effectively aligned the control (gfp) while preserving biological 
signals from the treated samples. ComBat-ref outperformed ComBat-seq, as verified by the quantitative measures detailed in the text, and illustrated in the plots of 
explained variation by condition and batch.
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To further evaluate clustering by group in the PCA plot, we 
computed quantitative measures using the “cluster.stats” function from 
the fpc package [16]. The unadjusted data showed poor clustering scores 
by biological condition, with a Gamma score of 0.19 (correlation be
tween distances and a 0–1 vector indicating different clusters) and a 
Dunn index of 0.78 (ratio oy the minimum inter-cluster dissimilarity to 
the maximum intra-cluster dissimilarity). After adjustment with 
ComBat-seq, the clustering scores improved significantly (Gamma =
0.53, Dunn = 1.34). The new ComBat-ref method achieved even higher 
scores (Gamma = 0.66, Dunn = 1.60), indicating superior batch 
correction compared to ComBat-seq. In contrast, NPMatch performed 
poorly for correcting batch effects in this example.

We then performed differential expression (DE) analysis to identify 
DE genes between treated samples and GFP controls pooled across the 
three batches, using ComBat-ref, and other approaches discussed in [6]. 
ComBat-ref demonstrated greater statistical power in DE analysis, 
identifying more DE genes than ComBat-seq across all three conditions 
with an FDR ≤ 0.05 (Supplemental Table 1).

Furthermore, ComBat-ref extracted more biologically meaningful DE 
genes through batch correction. HER2, KRAS and EGFR were expected 
to be over-expressed in their respective samples. As with other methods, 
ComBat-ref successfully ranked HER2 and KRAS at the top of the DE 
gene list. However, detecting differential expression of EGFR was more 
challenging due to batch effects. EGFR was not identified as DE in the 
unadjusted dataset and several other adjusted datasets with an FDR 
≤ 0.05. ComBat-seq, as demonstrated in [6], successfully detected EGFR 
as DE (FDR = 0.0016), and ComBat also succeeded in detecting EGFR 
(FDR = 0.0003). The new ComBat-ref method further improved upon 
these results, identifying EGFR as DE with an FDR ofy0.0001. Supple
mental Figure 2 illustrates how ComBat-ref adjustment led to a more 
distinct separation of EGFR expression levels in treated and control 
samples, explaining the statistically significant DE results.

We also evaluated DE genes in the RAS signaling pathway for the 
KRAS samples, as performed in [6]. Effective batch adjustment is ex
pected to prioritize RAS pathway genes among the top DE genes. Among 
the top 1000 DE genes, ComBat-ref identified 30 genes in the RAS 
signaling pathway (Fisher’s exact test for enrichment, P = 0.0004), 
outperforming ComBat (19 genes, P = 0.2) and ComBat-seq (24 genes, 
P = 0.02) (Supplemental Table 2). Not only did ComBat-ref identify the 
highest number of DE genes in the RAS pathway, but gene set enrich
ment analysis (GSEA)[17] demonstrated that ComBat-ref achieved the 
best enrichment result, as shown in Supplemental Figure 3 plotted using 
the fgsea package [18], where ComBat-seq was a close second.

Additionally, we applied ComBat-ref to various real-world datasets, 
including example human RNA-seq datasets from the NPMatch paper 
[10] and NASA GeneLab transcriptomic datasets [19].

The datasets in [10] exhibited varying levels of batch effects. Below, 
we discuss results for two representative datasets: GSE182440 (with 
strong batch effects) and GSE173078 (with minimal batch effects).

The GSE182440 [20] dataset contained 12 control samples and 12 
samples from individuals with alcohol use disorder (AUD), distributed 
across two batches. In the unadjusted dataset, the two batches were 
distinctly separated (Supplemental Figure 4). ComBat-ref effectively 
removed batch effects, blending samples from both batches well and 
significantly reducing batch-associated variation. ComBat-seq also per
formed well on this dataset. However, NPMatch over-corrected the data, 
likely introducing more false positives.

The GSE173078 [21] dataset included 36 samples from gingival 
tissue biopsies (12 healthy control, 12 gingivitis, 12 periodontitis), split 
across 2 batches. The batches were already well-mixed in the unadjusted 
dataset (Supplemental Figure 5). Both ComBat-seq and ComBat-ref 
applied minimal adjustments, further reducing batch variation while 
preserving the dataset’s overall structure. Supplemental Figure 5 shows 
that ComBat-ref slightly outperformed ComBat-seq in reducing batch 
effects while maintaining data integrity. Again, NPMatch over-adjusted 
the dataset, failing to account for the low levels of batch effects.

We also analyzed NASA GeneLab transcriptomic datasets, which 
included mouse liver RNA-seq data from various space missions and 
library preparation technologies. These datasets contain multiple batch 
covariates, such as “mission”, “library preparation” and “sequencing 
facility”, with researchers primarily interested in differential expression 
of mouse liver genes between flight samples and controls. The original 
study [19] found that batch correction by “library preparation” using 
ComBat was the most effective approach, followed by ComBat-seq.

For this analysis, we combined those covariates into batch factors 
and tested ComBat, ComBat-seq and ComBat-ref on a subset of NASA 
GeneLab datasets comprising three distinct batches: GLDS_137, 
GLDS_242 and GLDS_48 (Supplemental Table 3), with 12, 9 and 14 
samples, respectively. The dataset included 18 flight samples and 17 
ground controls. The unadjusted data showed clear batch separation in 
the PCA plot (Supplemental Figure 6). All three methods effectively 
removed the majority of batch effects. ComBat-ref identified GLDS_137 
as the reference batch and left its count data unadjusted, maintaining a 
PCA plot shape similar to the unadjusted data. Data from the other two 
batches were adjusted to remove batch effects, while retaining intra- 
batch grouping. This adjustment enhanced the power of differential 
expression analysis. These findings further demonstrate that ComBat-ref 
is highly effective for correcting batch effects in RNA-seq count data 
from diverse experiments and sources.

4. Discussion

In this study, we introduced ComBat-ref, a refined batch correction 
method designed to improve the reliability and interpretability of RNA- 
seq count data. Our simulations demonstrated that ComBat-ref consis
tently outperforms existing methods, including ComBat-seq and 
NPMatch, in mitigating batch effects while preserving biological signals. 
By employing a negative binomial model with pooled dispersion esti
mates and aligning other batches to a reference batch, ComBat-ref 
achieves near-optimal sensitivity and specificity, particularly in chal
lenging datasets with high variability in batch dispersions. Moreover, 
ComBat-ref retains integer count data, ensuring compatibility with 
widely used differential expression (DE) analysis tools such as edgeR and 
DESeq2.

4.1. Contributions and improvements

One of the key innovations of ComBat-ref is its ability to handle 
datasets with heterogeneous batch effects effectively, even when the 
number of samples per batch is small. By identifying a reference batch 
with minimal dispersion and aligning other batches accordingly, 
ComBat-ref minimizes over-correction while preserving intra-batch 
structure. This approach addresses limitations observed in methods 
like NPMatch, which often introduce false positives due to excessive 
adjustments, and ComBat-seq, which struggles with datasets character
ized by small batch sizes and significant batch effects. ComBat-ref 
consistently improves sensitivity in DE analysis, even in scenarios 
where batch dispersions and biological conditions introduce substantial 
complexity, as demonstrated in our simulations.

When applied to real-world datasets, such as the GFRN signal dataset 
and NASA GeneLab transcriptomic data, ComBat-ref outperformed other 
methods in recovering biologically meaningful signals. For example, 
ComBat-ref demonstrated its ability to enhance the detection of critical 
DE genes, such as EGFR in the GFRN dataset, and improved clustering 
metrics in PCA analyses. These results underscore its robustness across 
diverse experimental designs and datasets.

4.2. Potential applications to single-cell RNA-Seq data

Although ComBat-ref was developed for bulk RNA-seq data, its 
principles and methodology hold considerable potential for application 
to single-cell RNA sequencing (scRNA-seq) data. Batch effects in scRNA- 
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seq are particularly pronounced due to technical variations during cell 
isolation, library preparation, and sequencing. These challenges are 
compounded by the sparsity of scRNA-seq data, where a large propor
tion of genes are not detected in individual cells, and the variability of 
expression levels across cells within the same biological condition.

Adapting ComBat-ref for scRNA-seq could involve the following 
considerations: 

1. Sparsity Management: Unlike bulk RNA-seq, scRNA-seq datasets 
often include a high proportion of zero counts due to dropout effects. 
Incorporating methods to address sparsity, such as zero-inflated 
negative binomial (ZINB) models [22], could extend the applica
bility of ComBat-ref to scRNA-seq data.

2. Cell Clustering Preservation: Preserving the integrity of cell clus
ters is critical in scRNA-seq data. ComBat-ref’s approach of aligning 
batches while retaining the reference batch structure is particularly 
advantageous, as it minimizes distortions to biological signals during 
correction.

Applying ComBat-ref to scRNA-seq could unlock its potential for 
addressing technical variability while retaining cell-type-specific sig
nals. This would improve downstream analyses, including trajectory 
inference, cell type annotation, and differential gene expression analysis 
across conditions.

4.3. Limitations and future directions

While ComBat-ref shows strong performance, several limitations and 
areas for future improvement remain: 

1. Elevated False Positive Rate (FPR): Although ComBat-ref achieves 
high sensitivity, this comes at the cost of a slightly elevated FPR 
compared to ComBat-seq. Future work could explore integrating 
more precise dispersion estimation models to better balance sensi
tivity and specificity.

2. Applicability to Complex Experimental Designs: The current 
framework assumes a single dispersion parameter per batch, which 
may not fully capture the complexity of datasets with hierarchical or 
nested batch structures. Extending the model to accommodate such 
scenarios could enhance its versatility.

3. Evaluation on scRNA-seq Data: Adapting ComBat-ref for scRNA- 
seq datasets will require incorporating sparsity-aware models and 
validating its performance on large-scale scRNA-seq benchmarks. 
This step is critical for enabling its adoption in the rapidly growing 
field of single-cell transcriptomics.

5. Conclusion

ComBat-ref represents a significant advance in batch effect correc
tion for RNA-seq data. By leveraging an innovative reference batch 
approach and retaining integer count data, it achieves superior sensi
tivity, specificity, and compatibility with DE analysis tools. Its successful 
application to datasets like GFRN and NASA GeneLab highlights its 
utility across diverse experimental contexts. Extending its application to 
scRNA-seq could further enhance its impact, addressing batch effects in 
one of the most challenging yet promising areas of transcriptomics. 
Future efforts to refine dispersion modeling and integrate ComBat-ref 
with single-cell workflows will undoubtedly expand its utility and per
formance, paving the way for more robust and reproducible genomic 
research.
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